
Enable Knowledge Sharing in Intrusion Detection

Ji Li JLI@MIT.EDU

Dah-Yoh Lim DYLIM@MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

Increasingly frequently and cleverly, intrusions are invad-
ing our hosts on the Internet. To address this, we see
increasingly creative intrusion detection systems applying
distinctive techniques, using different data structures for
their underlying data, and reporting different kinds of in-
trusion status. Some are based on traffic patterns, others
are based on signatures; some are centralized, others are
distributed. Each of them has its own strengths and weak-
nesses. Despite the fact that attacks often affect multiple
domains or organizations simultaneously, the tools used lo-
cally may not support effective collaboration across those
boundaries. To date we do not have a way to integrate those
techniques and create a comprehensive intrusion detection
framework, so that intrusion detection systems widely dis-
tributed in the Internet can share information easily and
worms be detected quickly. To unify those systems and
make intrusion detection more effective in the Internet, we
propose a unified, knowledge-based framework inspired by
work on the knowledge plane (Clark et al., 2003).

In order to meet the needs of individual clients and al-
low for an adaptable, composable approach, our framework
posits that a user contacts one or more detection engines,
based on a set of criteria including goals, levels of trust,
etc. Each detection engine, in turn will call on a set of
knowledge agents, with various kinds of expertise, ranging
from particular detection techniques to traffic monitoring
capabilities. This framework provides the ability to share
and discover existing and new knowledge between entities.

An important issue is for an entity to only expose as much
or as little of its knowledge as it chooses, which leads to a
mechanism for trustworthy private knowledge retrieval. In
this mechanism, we face three intertwined problems. First,
a knowledge agent may want to provide partial access to
its possible capabilities. Second, the source of a query may
want to disguise its own particular interests from the source
of knowledge. Third, the parties want to have reasonable
trust in the veracity of their exchange. In order to address
the first two, we base our work on prior work on Private
Information Retrieval, and for trust, on a protocol for de-
veloping a trust model.

2. Related Work

In (Allman et al., 2006) Allman et al. proposed a dis-
tributed architecture with cross-organizational information
sharing to fight coordinated attackers. Their system con-
sists of “detectives” and “witnesses”. The detectives are
savvy network monitors equipped with sophisticated in-
trusion detection techniques, while witnesses widely dis-
tributed in the Internet provide simple observations to de-
tectives. Information sharing between detectives and wit-
nesses is through loose private matching. We want to im-
prove on two aspects. First, our framework is more general.
Information is generalized and unified as knowledge, and
most knowledge comes from the existing IDSs. Second,
information sharing is done by secure knowledge sharing.

3. Intrusion Detection Framework

3.1 Overview

The main purpose of our work is to design a general frame-
work so that existing as well as new knowledge can be in-
tegrated into it effectively. The key idea is to treat the result
of any detection technique or other information as a piece
of knowledge to be input to the detection engine. As a gen-
eral term, knowledge in this framework refers to any useful
information to intrusion detection in the Internet, including
that about individual objects in the network, and the rela-
tionships between objects, etc. Figure 1 demonstrates this
basic framework.

User

Local ContextDetection Traffic Dependency
KnowledgeSystems Monitor

Secure Knowledge Sharing

Detection Engine

Figure 1. Knowledge-based intrusion detection framework.

There are three parties in this framework: users, detec-
tion engines, and knowledge agents. A user issues a re-

quest on intrusion detection to a number of detection en-
gines. Each engine analyzes the request, coordinates the
knowledge sharing between knowledge agents, and collects
necessary knowledge from them. The knowledge agents
provide processed knowledge according to their local poli-
cies. In Figure 1, we identify four categories of knowledge
agents: existing intrusion detection systems, local context,
traffic monitor, and dependency knowledge. After collect-
ing enough knowledge, the engine builds a dependency
graph of the agents, and then runs inference algorithms on
it and reports the result to the user. All the parties use the
same ontology language to describe their requests and ca-
pabilities, similar to (Lee, 2007).

3.2 Request Resolution

We demonstrate how the components interact with each
other to resolve requests using a simple example. The ex-
ample request is to detect whether Code Red intruded the
network 1.2.3.4/24 in the past seven days, under the scope
constraint that the knowledge agents must be within the lo-
cal ISP. The prior knowledge is that the operating system
running on most hosts within the network is Windows. A
request is sent by a user to a detection engine. The engine
parses the request and does the following.

1. As the request is about a specific worm, the engine
checks whether any knowledge agent knows the sig-
nature or some properties of Code Red. If not, it has
no way to resolve the request, and will return a fail-
ure to the user, together with the reason. If the request
does not specify any worm, then this step is skipped.

2. If the signature and some traffic pattern are available,
the engine collects such knowledge, and chooses a
number of knowledge agents based on trust, privacy,
and the scope constraint specified in the request. Sup-
pose that at this point in time, two agents happen to
be chosen, one using a signature-based technique, and
the other using a traffic pattern based technique. Then
the engine hands over the knowledge about the worm
to the agents, respectively.

3. The two trustful agents analyze some hosts and the re-
cent traffic in the network using their own techniques,
respectively, and return the results. Note that the data
analyzed may come from a third traffic-monitor agent.

4. After receiving the agents’ results, the engine builds a
dependency graph of the results, and runs some infer-
ence algorithm, for instance, Bayesian inference.

As a concrete example, suppose the engine employs
the following rule to integrate the results from the
agents: the engine will report to the user the proba-
bility that both results are “No intrusion”. Since there

is no dependency knowledge about the results (yet),
the engine will assume independence between them.

5. At this point in time, another relevant agent happens
to join the system, giving dependency knowledge re-
lating the signature and the traffic pattern. In this case
the result will be revised to consider the new knowl-
edge, and get a more accurate result.

6. The engine reports a final result to the user.

This example demonstrates how an engine resolves a
request with the collaboration of multiple independent
knowledge agents, while following the privacy and other
constraints. It also shows how a new piece of knowledge
helps the engine obtain a better result. Note that a tech-
nique itself is just a piece of knowledge in this framework,
and this is especially useful when an engine could not let
the agent with that technique analyze the data directly due
to privacy constraints.

�������
����	�
����
�������
����� � � ��� � �
� � � � �� ������� �������

� � � �

����� � � �

!"��# ��$�# % &(') '(*(% '(�
+,
���� -

����� � �.� � ���
 � �

/
 � � � ����0�� � ��� � � - ��� � 0�1

2 �43 ��� � � � �

5('(&(687 ��9(*(� : *(��'(#

; �.3 � � � � � � � ��� 0 ��� � � -

��
 � � � � ��� ��� � � � � 1�< �

= ����� -.> �� ��	�
����

Figure 2. The resolution process of a request.

4. Secure Knowledge Sharing

Different parties may be under different administrations,
and would not disclose sensitive information to others.
Agents also have different capabilities and credibilities.
Therefore, we need a mechanism for secure knowledge
sharing that protects sensitive information for both sides
(knowledge provider or receiver) and helps establish a trust
system to represent capabilities and prevent cheating.

4.1 Private Knowledge Retrieval

To allow for secure information sharing, we propose to use
Private Information Retrieval (PIR) and policy enforcers.
First, PIR enables detection engines to encode a query in
such a way that knowledge agents can answer the query
but do not know the query itself. Second, policy enforcers
on the agents make sure only proper knowledge will be sent
to the engines. Therefore, little sensitive information is re-
vealed to either side.

Private Information Retrieval has been extensively studied
in theoretical computer science (Chor et al., 1998). For this
work we choose a computationally bounded PIR approach
because the alternative requires either complete copies of

the database at both ends or transmission of the complete
database, both infeasible.

Each agent needs a policy enforcer that enforces a local
policy regarding its own knowledge. The policy enforcer
implements the security policy to prevent the exposure of
sensitive local information, but to allow for the report of
valuable non-sensitive knowledge to the engines.

We will use the private keyword search (Chor et al., 1997)
as a black box and demonstrate how to use it in our proto-
col. For concreteness we focus on a particular example in
which database entries are of the form “(IP, Port, Protocol,
Traffic, Time)”. Say that an engine E wishes to query the
agents KE1, KE2, ..., KEm. The protocol is as follows.

1. User Input. The user provides the engine E with the
goal, constraints, and prior knowledge. E contacts
each KEi, i ∈ 1, ..., m that it thinks it would need
knowledge from, to inform them to start the knowl-
edge handshake.

2. Knowledge Handshake. Each KEi checks its local
policy regarding information exchange with E, then
KEi computes some function fi on its database Di

based on the policy, to end up with fi(Di). Then KEi

tells E the form of queries allowed.

3. Knowledge Query. E sends each KEi a query that it
is interested in, as a function of the user’s inputs, con-
forming to the form that KEi deemed as valid. Here
we use the PIR to obfuscate the queries.

4. Knowledge Answer. KEi computes and sends the re-
sults, and E extracts the answer, using the PIR.

Note that in the step Knowledge Handshake, if KEi has
no local policy that restricts information exchange with E,
then fi is the identity function, and KEi would tell E that
the valid queries are of the form “(IP, Port, Protocol, Traf-
fic, Time)”; if there is a local policy that only allows aggre-
gate information exchange with E without disclosing the
IP address, port number, or protocol type, then KEi would
tell E that the valid queries are of the form “(TotalTraffic,
StartTime, EndTime)”.

4.2 Dealing with Trust

Privacy is not the only issue we need to deal with. Our
system consists of many parties with different interests, and
adversaries may intentionally join the system and provide
false information. In this section, we demonstrate how to
integrate trust into our framework, independently of any
underlying trust model.

A user chooses detection engines based on their rankings,
an engine accepts or rejects a user’s request based on the

user’s ranking, and similarly knowledge agents accept or
reject an engine’s request based on the engine’s rating.

All the parties rate the others based on their performance.
A user rates the engines based on the quality of the returned
results using some out-of-band method and sends feedback
to the engines. Based on the user’s feedback, each engine
rates the knowledge agents involved in this process, and
differentiates them based on the quality of the knowledge
they provided. The engine also forwards the rating infor-
mation to the agents. The agents rate the engine based on
the receiving rating information and other available infor-
mation such as the request rate. The rating process can
be interactive by designing an interactive protocol for two
parties to argue about the feedback, either between the user
and the engines or between the engine and the agents. All
the parties periodically exchange their ratings.

5. Conclusions and Future Work

The strength of this framework comes from its generality
and extensibility to support intrusion detection using a wide
range of detection techniques and knowledge in a secure
way. There are many issues to explore, such as the ontol-
ogy language to describe the knowledge and agents’ capa-
bilities, a practical PIR method, etc. Although it is pro-
posed for intrusion detection, the design is general enough
for many other large-scale systems that involve different
parties to collaborate and share information.

6. Acknowledgments

We thank Karen Sollins for the help on the initial draft. Ji
Li is supported by a research fund from the Intel Corpora-
tion, for which we are grateful.

References

Allman, M., Blanton, E., Paxson, V., & Shenker, S. (2006).
Fighting coordinated attackers with cross-organizational
information sharing. ACM HotNets Workshop.

Chor, B., Gilboa, N., & Naor, M. (1997). Private informa-
tion retrieval by keywords. TR CS0917, Technion.

Chor, B., Kushilevitz, E., Goldreich, O., & Sudan, M.
(1998). Private information retrieval. Journal of the
ACM, 45.

Clark, D., Partridge, C., Ramming, J. C., & Wroclawski, J.
(2003). A knowledge plane for the internet. Proceedings
of ACM SIGCOMM 2003. Karlsruhe, Germany.

Lee, G. (2007). Capri: A common architecture for dis-
tributed probabilistic internet fault diagnosis. Doctoral
dissertation, MIT.

