
A Robust Aggregation Tree on Distributed Hash Tables

Ji Li JLI@CSAIL.MIT.EDU

Dah-Yoh Lim DYLIM@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

A Distributed Hash Table (DHT) is a distributed resolution
mechanism that manages the distribution of data among a
changing set of nodes by mapping keys to nodes. A large
number of DHTs have been proposed, and are expected to
eventually become the fundamental components of many
large scale distributed applications in the near future.

As P2P networks grow in popularity, there is an emerging
need to collect aggregate information from such systems on
the parts of both administrators and application users, such
as available network storage, computation capabilities, and
network size estimation for randomized DHTs. Our goal is
to enable a P2P network to compute an aggregation func-
tion (MIN, MAX, COUNT, SUM, AVG) over data residing
at nodes or over the network itself.

We propose a bottom-up approach to build a robust tree
in a P2P environment to implement aggregation. Our ap-
proach uses a parent function to help a node determine its
parent dynamically, and maintain it using soft-state. Com-
pared with previous systems on constructing trees in P2P
networks (El-Ansary et al., 2003; Ratnasamy et al., 2001b;
Rowstron et al., 2001) which are tightly coupled with their
underlying P2P networks, our approach is independent of
the underlying P2P topology and thus more flexible in con-
structing trees based on different requirements.

2. Parent Functions

Parent function plays a central role in our scheme. In this
section, we define parent function and present an example
of parent function.

2.1 Distributed Hash Table Overview

After the success of Napster at file-sharing, many other
peer-to-peer systems have been proposed, especially those
based on DHTs, such as CAN (Ratnasamy et al., 2001a),
Chord (Stoica et al., 2001), Tapestry (Zhao et al., 2001),
and Pastry (Rowstron & Druschel, 2001). DHTs share sev-
eral common properties. First, many DHTs use circular and
continuous namespaces. Second, they all provide efficient

lookups. Most DHTs can resolve a lookup in O(log n)
or fewer steps. Third, they are relatively resilient to node
failures in that they automatically repair the network when
nodes leave or fail.

With the three features, continuous namespace, efficient
lookup and robustness, our goal is to build an efficient and
robust aggregation tree in a dynamic environment. In this
section, we define a parent function and propose a sample
which is used in our work.

2.2 Parent Function

A key part in our work is a many-to-one function, P (x), to
map each node to a parent node in the tree based on its id x.
The parent node for a node x is the node which owns the id

P (x). If node x owns P i(x) for i = 1, · · · ,∞, then x is the
root of the tree. If we consider nodes in a DHT as nodes in
a graph and the child-parent relations determined by P (x)
to be directed edges, the resulting graph is a directed tree
converging at the root.

Generally, P (x), which we call a Parent Function, is a
function that satisfies the following conditions:

P (α) = α (1)

P∞(x) = α, ∀ x (2)

Distance(P i+1(x), α) < Distance(P i(x), α) (3)

where α is an id owned by the root of the tree, x is a node
id, and Distance(x, α) is the distance between x and the
root α. If a function P (x) satisfies the above conditions,
there is a directed path from all nodes to the root.

Note that a DHT namespace is much larger than the nor-
mal network size. Therefore, a node in DHTs is usually re-
sponsible for an id range. Like in many DHTs, we assume
a node is responsible for the ids between its predecessor
(exclusively) and itself (inclusively), and the node is called
the id’s successor or owner. Accordingly, we do not require
that a node with an exact id of P (x) exists. Instead, as long
as a node is currently responsible for id P (x) according to
the underlying DHT definition, the node represents the id

P (x).

2.3 A Sample Parent Function

Parent functions play a central role in determining tree
properties. The following is an example adopted in this
work.

P (x) =

α +
⌊

(x−α) (mod m)
k

⌋

(mod m),

for 0 ≤ (x − α) (mod m) < m
2

α −

⌊

m−(x−α) (mod m)
k

⌋

(mod m),

for m
2 ≤ (x − α) (mod m) < m

where k is a parameter that determines the branching factor
of a tree, and m = 2address space bits.

As shown in Figure 1, a tree resulting from this function is
rooted at a node owning the id α. The expected height of a
spanning tree constructed with this function is O(logk n),
where n is the network size. The expected branching factor
is approximately k if the nodes are uniformly distributed in
the namespace (except for the root).

PSfrag replacements

0
α

α + m
2

m
2

increasing
id

Figure 1. Aggregation pattern of the parent function. The circle
represents the name space, and the arrows show the directed edges
from a child to its parent.

2.4 Discussion

We believe that, due to the scale and dynamics of DHTs,
a good parent function should also have the following fea-
tures to be efficient and flexible.

First, it should guarantee that each parent node has approx-
imately the same number of children, given nodes are uni-
formly distributed in the namespace. This helps to build
a balanced tree. Our sample parent function satisfies this
property: each non-leaf node has on average k children ex-
cept the root.

Second, it should guarantee that node joining and leaving
will not greatly affect the structure of an established tree,
especially tree height. We identify that two factors make it
hard to stabilize a tree. First, P (x) usually maps to the node
that follows P (x). Another factor is that parent changes
due to nodes joining or leaving may change the tree height.
Our sample parent function satisfies this property because
neighboring nodes are at the same level or an adjacent lev-
els in the tree, and such parent changes will usually move

children from a node to another node at the same or an ad-
jacent level of the tree.

Third, a parent function should support branch balancing.
Although ideally a good parent function can balance the
number of children each node has, some nodes may be
assigned too many children to handle due to the dynam-
ics of peer-to-peer networks and variance in node distribu-
tion. We propose two branch-balancing schemes: admis-
sion control and dynamic adaptation. The problem is how
the refused or abandoned children find their new parents. In
the sample parent function, in case of overloading, the par-
ent will ask some of the farthest children in the namespace
to move. An alternative parent candidate will be found by
moving stepwise one neighbor of the parent away from the
root, repeatedly until an underloaded node is found. This is
guaranteed to terminate because a leaf node will eventually
be found in the worst case. After a certain time, the moved
children will recompute the parent function, and move back
to their normal parents. This method has little impact on the
height of the tree, because nodes near each other are in the
same level or adjacent levels of the tree and thus those tem-
porary parents are probably in the same level as the original
parent.

3. A Bottom-up Tree Building Algorithm

In this section, we describe a bottom-up tree construction
algorithm, which consists of two parts: tree construction
and tree maintenance.

3.1 Tree Construction Protocol

The tree construction protocol describes how a node joins
an existing tree as follows. Figure 2 shows an example.

1. When a new node x joins the network, as most peer-
to-peer networks assume, it should know some node
already in the network from which node x can set up
its state. It is also from the introducing node that node
x learns about the parent function, P (x), and the root
id α.

2. Node x determines its parent node using P (x). If
P (x) falls into its own id range, P 2(x) is computed
and checked if it is still in its own id range. This con-
tinues until P i(x) is found not in its range.

3. Node x then performs a lookup for the P i(x). The
lookup resulting node, say node y, will become x’s
parent in the tree. After finding node y, node x sends
a message containing P i(x) to y to register itself as
y’s child.

4. After receiving x’s register message, node y will add
node x to its list of child nodes together with the re-

ceived P i(x). If node y already has too many children
to handle, it will use some admission control to redi-
rect node x to other nodes.PSfrag replacements

0

α
z

x

p(y) y
p(x)

increasing
id

Figure 2. The node joining procedure. Node y is node x’s parent
in terms of P (x). Node z is y’s parent in terms of P (y).

3.2 Tree Maintenance Protocol

After a tree is constructed, it needs to be maintained care-
fully in the peer-to-peer environment. The tree mainte-
nance protocol is as follows.

1. After a node x joins the tree, it is henceforth x’s re-
sponsibility to contact its parent node y periodically
to refresh its status reliably as a child node. If y fails
to hear from x after a specified expiry duration, x will
be deleted from y’s children list.

2. If node y fails, x will detect node y’s failure when it
tries to refresh its status with y. Then x will perform
another joining procedure to find its new parent.

3. Node y will discover that it is no longer responsible
for the id P i(x) when a new node, say z, happens to
join between P i(x) and y, and takes over P i(x). In
such a case, y will observe it and inform x that it is
no longer its parent in terms of P i(x) and to its best
knowledge, z should be its new parent. Figure 3 shows
an example. After receiving y’s message, x will con-
tact z. Based on the received P i(x), z may either add
x to its children list, or tell x that to its best knowledge,
another node z′ should be x’s parent, if it knows that
z′ is between P i(x) and z. This recursive procedure
continues until a proper parent is found.

4. Node x may notice that it should change the par-
ent. This happens when x’s current parent is found in
terms of P i(x)(i > 1), which implies that P j(x), j =
0, 1, ..., i − 1 are covered in x’s id range. If x notices
that a new node has joined as its neighbor and is re-
sponsible for P k(x)(0 < k < i), x will switch to the
new node and simply stop refreshing its status at its
former parent. Figure 4 shows this case.

5. If a parent node is overloaded because it has too many
children, or cannot handle all children due to capa-
bility changes, it will ask some children to switch to
other nodes.

PSfrag replacements

0

α

z

x

p(y)

y
p(x)

increasing
id

Figure 3. The first case of parent change due to node joining.
Node y is node x’s current parent in terms of P (x). Node z is a
new node which joins and covers P (x). Thus z should be x’s new
parent. y can easily discover this by observing that z becomes its
neighbor.

PSfrag replacements

0

α

z x

p2(x)
y

p(x)
increasing

id

Figure 4. The second case of parent change due to node joining.
x’s current parent is y, in terms of P 2(x), because there is no
nodes between x and P (x). Later, z joins and takes over P (x)
and thus should be x’s new parent. x can easily discover this by
observing that z becomes its neighbor.

3.3 Discussion

Our goal is to maintain it as a light-weight aggregation
infrastructure, and as a base to construct other special-
purpose and more complicated trees, such as media stream-
ing. To keep it simple, we do not consider factors such as
bandwidth or proximity. Since the refreshment message is
a null message, we can use it to aggregate some general
network information. For example, we can piggyback the
size of the subtree in refresh messages, so that the root will
get the size of the whole peer-to-peer network. Then the
root and each parent node can piggyback the network size
to the acknowledgments, so that in the end each node will
learn the network size.

There are several advantages of our algorithm over previ-
ous tree construction and maintenance schemes. First, our
parent-function-based tree is constructed and maintained in
a distributed bottom-up way. A parent only needs to pas-
sively maintain a list of children without any active detec-
tion of their status. Each node is responsible for contacting

only one node, i.e., its parent. Therefore, the tree mainte-
nance cost is evenly assigned to each node.

Second, a node’s parent is determined by the parent func-
tion and node distribution in the namespace, so each node
can find its parent independently. Unlike some previous
tree-based broadcast and multicast systems where tree re-
pair requires coordination of the root or multiple nodes, our
tree can be repaired simultaneously by each node that de-
tects the failure of its parent. Therefore our tree can be
repaired easily and efficiently in case of node failure.

Third, parent changes can be detected and performed eas-
ily. As explained in Section 3.2, there are two cases when
a node should change its parent. Both cases can be de-
tected by a child or a parent via simply observing its neigh-
bor change. Figure 3 and 4 show the two cases, respec-
tively. Therefore, tree maintenance on parent changes is
very cheap.

4. Performance Evaluation

We use Chord (Stoica et al., 2001) as the underlying DHT.
Our experiments are divided into discrete time periods. In
each period, a number of nodes join the network according
to a Poisson distribution. At the point when a node joins,
its departure time is set according to an Exponential dis-
tribution, and nodes are removed from the network when
their lifespans expire.

As an example of usage, we estimate the available network
storage in a P2P network. The parent function is the sam-
ple one in Section 2.3 in which α is set to m

2 , and k is 4.
The storage on each node keeps changing according to an
approximately Gaussian distribution with a mean of 50MB
and a standard deviation of 20MB.

Figure 5 shows the evolution of the network storage and the
network size, and their estimates aggregated at the tree root
with a node failure rate of 10%. The spikes in the figure are
caused by the failure of intermediate nodes high up in the
tree. The results demonstrate however that our algorithm
recovers rapidly from failures, and the average estimation
is very close to the true value.

5. Conclusion and Future Work

The aggregation problem is complicated by the scale and
dynamics of P2P networks. We propose to build a robust
tree over DHTs as a general light-weighted utility and as
a base to construct trees for special usage. The reason for
separating solution to tree construction from the underlying
P2P topologies is to concentrate on a general purpose capa-
bility independent of but needed in many DHTs. The major
advantage of our bottom-up algorithm is its relatively low
overhead, resilience to node failures, and flexibility. We

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 50 100 150 200
 0

 10000

 20000

 30000

 40000

 50000

 60000

N
et

w
or

k
st

or
ag

e
(M

B
)

N
et

w
or

k
si

ze

Time period

Actual Network Storage
Estimated Network Storage

Actual Network Size
Estimated Network Size

Figure 5. Network storage and size estimation.

are currently improving our approach by designing parent
functions with different properties, and methods to over-
come single points of failure in a tree. We are also working
on comparison between our performance and other aggre-
gation methods and tree-based broadcast schemes in peer-
to-peer networks.

References

El-Ansary, S., Alima, L. O., Brand, P., & Haridi, S.
(2003). Efficient broadcast in structured P2P networks.
IPTPS’03 (pp. 304–314). Berkeley, CA.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., &
Shenker, S. (2001a). A scalable content addressable net-
work. Proceedings of ACM SIGCOMM 2001.

Ratnasamy, S., Handley, M., Karp, R., & Shenker, S.
(2001b). Application-level multicast using content-
addressable networks. NGC 2001 (pp. 14–29).

Rowstron, A., & Druschel, P. (2001). Pastry: Scalable, de-
centralized object location, and routing for large-scale
peer-to-peer systems. IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware)
(pp. 329–350). Heidelberg, Germany.

Rowstron, A. I. T., Kermarrec, A.-M., Castro, M., & Dr-
uschel, P. (2001). SCRIBE: The design of a large-scale
event notification infrastructure. NGC 2001 (pp. 30–43).

Stoica, I., Morris, R., Karger, D., Kaashoek, F., & Bal-
akrishnan, H. (2001). Chord: A scalable Peer-To-Peer
lookup service for internet applications. Proceedings of
the 2001 ACM SIGCOMM Conference (pp. 149–160).

Zhao, B. Y., Kubiatowicz, J. D., & Joseph, A. D. (2001).
Tapestry: An infrastructure for fault-tolerant wide-area
location and routing (Technical Report UCB/CSD-01-
1141). UC Berkeley.

