
A Spreadsheet-Based User Interface for Managing Plural
Relationships in Structured Data

Eirik Bakke, David R. Karger, and Robert C. Miller
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, Cambridge, MA, USA
{ebakke,karger,rcm}@mit.edu

ABSTRACT
A key feature of relational database applications is manag-
ing plural relationships—one-to-many and many-to-many—
between entities. However, since it is often infeasible to
adopt or develop a new database application for any given
schema at hand, information workers instead turn to spread-
sheets, which lend themselves poorly to schemas requir-
ing multiple related entity sets. In this paper, we propose
to reduce the cost-usability gap between spreadsheets and
tailor-made relational database applications by extending the
spreadsheet paradigm to let the user establish relationships
between rows in related worksheets as well as view and nav-
igate the hierarchical cell structure that arises as a result.
We present Related Worksheets, a spreadsheet-like proto-
type application, and evaluate it with a screencast-based user
study on 36 Mechanical Turk workers. First-time users of
our software were able to solve lookup-type query tasks with
the same or higher accuracy as subjects using Microsoft Ex-
cel, in one case 40% faster on average.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Graphical User Interfaces (GUI)

General Terms
Design

INTRODUCTION
Structured data is everywhere, and information workers need
to manage it. On the storage side, the problem has largely
been solved through the advent of relational databases; an
off-the-shelf relational database management system will
serve as a back-end for any database application. Yet, a
back-end alone provides no user interface, and the database
community has called for more work to be done on the front-
end side of the application stack [1].

Certain kinds of database applications may be useful to
a large number of people and organizations. For these,
high-quality free or commercial GUI implementations are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

likely to be available. Examples include Personal Informa-
tion Managers (PIMs), Customer Relationship Management
(CRM) software, and business accounting software. Other
applications are far more domain-specific, and have to be
developed from scratch, possibly by an organization’s IT de-
partment or an external consulting firm. Real-world exam-
ples range from cultural venue and event management sys-
tems1 to software used by Norwegian immigration authori-
ties to manage applications for political asylum2.

When the effort required to either adopt or develop a new
tailor-made relational database application is too high, in-
formation workers instead turn to a general and more fa-
miliar tool: the spreadsheet. One survey [7] shows that
“sorting and database facilities” are the most commonly
used spreadsheet features, with 70% of business profes-
sionals using them on a frequent or occasional basis. In
contrast, less than half use “tabulation and summary mea-
sures such as averages/totals”—one of the design goals of
the original VisiCalc spreadsheet—or more advanced fea-
tures. Furthermore, spreadsheet users “shun enterprise so-
lutions” [8] and “do not appear inclined to use other soft-
ware packages for their tasks, even if these packages might
be more suitable” [2]. Presumably these ostensibly suit-
able software packages include specialized database applica-
tions; after word processors, database software is the second
kind of software most commonly encountered by spread-
sheet users, with 60% of spreadsheet users reporting some
use of them [7].

Once it is established that spreadsheets are being used for
database tasks, we should ask what functionality is lost when
we compare them to corresponding tailor-made relational
database applications. In this paper we focus on the ability
to maintain plural relationships—one-to-many and many-to-
many—between different kinds of entities in a dataset, a key
feature of any relational database application [3]. The world
of tailor-made database applications has seen some fairly
standard user interface paradigms for viewing and editing
such relationships, see Figure 1. The user retrieves records
using a search form, views results in a table view, and ed-
its or views the details of individual entities in a record
view. We consider two aspects of these user interfaces to be
crucial to their relationship management capabilities. First,
they can provide the user with joined views of related ta-

1E.g. http://us.artifax.net
2Unique Flyktning by Visma AS. http://www.visma.com

1

http://us.artifax.net
http://www.visma.com

Figure 1. The stereotypical user interface of a database application
made with FileMaker, Microsoft Access, or similar software develop-
ment tools. (Screenshots from a Norwegian software system for public
music schools.)

Figure 2. Simplified schema of an academic course management system
(Entity-Relationship diagram).

bles in the database. Second, tailor-made interfaces are not
restricted to simple tabular views, but can expose relation-
ships in a hierarchical fashion. For instance, a record view
for a single entity can itself contain tab rows or miniature ta-
ble views—subforms or portals—to represent multiple, in-
dependent sets of entities related to the main entity through
plural relationships. Note that in tailor-made applications,
these views are hard-coded for the particular schema in ques-
tion. Hard-coded views may sometimes offer significant us-
ability benefits in terms of learning and efficiency, since they
make many decisions on the user’s behalf and may be fine-
tuned for specific tasks. However, they are not an option in
general-purpose interfaces.

As a running example, we consider the schema of an aca-
demic course management system, see Figure 2. Here, each
Course entity has multiple Sections (lectures, precepts, labs,
etc.), each Section has multiple Instructors, and so on. A
tailor-made interface might expose many different views of
the underlying data, for instance, “a list of sections by in-
structors, each section showing its associated course,” or “a
list of courses, each course showing its reading list, grading
scheme, and sections, each section showing its meetings and
assigned instructors.” Both of these views are hierarchical,
since they call for lists contained within lists. The first view
could just as easily be displayed as a flat table, like that re-

turned by a simple join query in SQL. This is not the case
for the second view. Since the second view involves paral-
lel joins on multiple independent relationships, i.e. Grading
Scheme and Reading List, such joins would produce an ex-
tremely large number of rows of redundant data. Whenever
we wish to represent an entity together with related entities
from two or more plural relationships, hierarchical views be-
come a necessity.

Hierarchical views can often be represented in spreadsheets
using clever formatting tricks, e.g. indentation, skipped
cells, or comma-separated lists. However, this strategy has
a number of problems. First, such views must be manually
created and, if more than one view of the same data is de-
sired, kept in sync with the original data. Second, the strat-
egy does not generalize well, with the sheet structure quickly
growing unwieldy as relationships fan out and cascade. For
instance, while a comma-separated list in a cell might be
easy enough to maintain, a list of lists is not. Third, when the
data representation deviates from the standard tabular for-
mat, also known as first normal form (1NF), key spreadsheet
features such as sorting, inserting, charting, filtering, or even
simple navigation between individual units of data become
hard or impossible to apply correctly.

Because traditional spreadsheet UIs provide no easy way to
create joined views of related tables, it becomes impractical
to follow good practices of schema normalization, which call
for tables of redundantly represented data to be decomposed
into multiple smaller ones. This in turn exposes all the usual
problems associated with managing improperly normalized
data, i.e. insertion, update, and deletion anomalies [5].

While spreadsheets may be inadequate for managing multi-
ple related tables of data, they are great for managing indi-
vidual ones. Spreadsheets afford a large range of streamlined
facilities for working with any data that can be arranged
in a grid of cells, including multiple selection, copy/paste,
find/replace, undo/redo, inserting and deleting, extending
data values, sorting and filtering on arbitrary fields, navigat-
ing and selecting cells with the keyboard, and so on. Tailor-
made database UIs seldom reach this level of sophistication,
due to the limited resources available to develop an applica-
tion for only one schema. When it comes to general editing
tasks on tabular data, spreadsheet systems have an advantage
even over most tailor-made applications.

In this paper, we propose to reduce the cost-usability gap be-
tween spreadsheets and tailor-made relational database ap-
plications by extending the spreadsheet paradigm to let the
user establish relationships between rows in related work-
sheets as well as view and navigate the hierarchical cell
structure that arises as a result. Implementing this idea, we
present Related Worksheets, a spreadsheet-like desktop ap-
plication which provides relationship editing facilities simi-
lar to those often developed with tools like FileMaker or Mi-
crosoft Access, but which work from a single generic user
interface rather than requiring a new one to be developed
for every conceivable database schema. Unlike in a regular
spreadsheet, the user can model complex database schemas

2

Figure 3. A particular hierarchical view of a dataset with the schema shown in Figure 2, as presented by the Related Worksheets system.

in their proper normalized form without losing the ability to
view and edit related data in one place, ensuring long-term
managebility of the data. Figure 3 shows one of the hier-
archical views mentioned earlier, as handled by the Related
Worksheets system.

We evaluate our system with a screencast-based user study
on 36 Mechanical Turk workers. First-time users of our soft-
ware were consistently able to solve lookup-type query tasks
with the same or higher accuracy as subjects using Microsoft
Excel, in one case 40% faster on average.

RELATED WORK
Visual tools for development of tailor-made database ap-
plications first emerged in the 1980s, and have since be-
come a standard genre of office productivity software on par
with spreadsheets, word processors, and presentation soft-
ware. These tools provide visual form designers, wizards,
and such to help speed up the development process. Among
the first such tools were 4th Dimension3 (1984) and File-
Maker4 (1985); Microsoft Access5 appeared later (1992).
Some of the newer applications in this category, such as
Intuit Quickbase6, AppForge [11], and App2You [6], have
brought usability improvements on the application devel-
oper’s side, in particular with respect to how well the de-
velopment environment manages to hide technical details
such as join queries, foreign key relationships, and the un-
derlying relational schema. For instance, the application de-
sign processes of both AppForge and App2You are form-
driven rather than schema driven, that is, the systems use
the forms designed by the developer to derive the underly-
ing relational schema rather than requiring them to be de-
fined explicitly upfront. AppForge also has a flexible visual
interface for defining updatable hierarchical views. How-
ever, these systems are application builders rather than gen-
eral data manipulation tools: a new application must be built
for every schema, and the actual applications produced are
just as schema-dependent as any other tailor-made database

3http://www.4d.com
4http://www.filemaker.com
5http://office.microsoft.com/access
6http://quickbase.intuit.com

application. Furthermore, neither project attempts to create
a spreadsheet-like environment; these are purely form- and
widget-based user interfaces.

There is an increasing tendency among commercial spread-
sheet applications to encourage users to organize data in sim-
ple, flat tables like those found in a relational database. Mi-
crosoft Excel7, Google Docs8, and Apple iWork Numbers9

all encourage the creation of explicit table areas in order to
make table-related features such as sorting, filtering, sum-
mation, and form generation possible or more reliable.

For relational databases, Query-by-Example [12] is the stan-
dard example of a schema-independent visual query lan-
guage. It inspired many of the standard search interfaces
that are found in tailor-made database applications today, al-
though these simpler interfaces typically omit features cru-
cial to the expressiveness of the original language. QBE al-
ways retrieves flat tables, and cannot produce hierarchical
views.

The concept of pivot tables, pioneered in Lotus Improv
(1993), exists today both in spreadsheets like Microsoft Ex-
cel as well as Online Analytical Processing (OLAP) tools
such as Tableau [9] (formerly Polaris) and Oracle Business
Intelligence Discoverer10. Pivot tables are interactive user
interfaces for producing cross-tabulated views of data, that
is, views showing data points grouped and aggregated in cat-
egories along two axes. While interfaces like Tableau may
hide adjacent duplicate data values or organize axis headings
hierarchically, both the input and output of a pivot table in-
terface is a flat table of values. Thus, these systems do not
provide hierarchical views.

PrediCalc [4] approaches the problem of maintaining con-
sistency between multiple tables in a spreadsheet when the
items in the tables are related by plural relationships, includ-
ing the case where there are temporary or partial inconsis-

7http://office.microsoft.com/excel
8http://docs.google.com
9http://www.apple.com/iwork/numbers

10http://www.oracle.com/technetwork/
developer-tools/discoverer

3

http://www.4d.com
http://www.filemaker.com
http://office.microsoft.com/access
http://quickbase.intuit.com
http://office.microsoft.com/excel
http://docs.google.com
http://www.apple.com/iwork/numbers
http://www.oracle.com/technetwork/developer-tools/discoverer
http://www.oracle.com/technetwork/developer-tools/discoverer

Figure 4. Related Worksheets after creating a new worksheet, entering
some simple tabular data, and setting non-text preferred data types for
two of the columns. Some of the values entered do not conform to their
columns’ data types, and have been marked with a red warning box by
the software.

tencies in the constraints. It does not, however, extend the
structure of the spreadsheet itself beyond two-dimensional
cell grids, and thus does not support hierarchical views.

In IceSheets [10], cells in a worksheet can recursively con-
tain entire new worksheets, allowing data to be addressed
and organized in a hierarchical fashion. However, the con-
tent of the hierarchy is static, and must be built manually by
the user. Moreover, the system has no concept of joins or
relationships. This makes the system unsuitable for the kind
of database tasks we are interested in.

THE RELATED WORKSHEETS SYSTEM
Related Worksheets is a desktop application which, in its
initial state, appears largely like a regular spreadsheet. The
user can create, open, and save documents known as work-
books, and each workbook contains a number of infinitely
sized worksheets that can be created and selected through a
row of tabs. Empty worksheets start out looking like those
of Excel or any other spreadsheet application, and can be
navigated and edited using standard mouse and keyboard
commands—click cells to select, navigate cells with arrow
keys, type to edit, drag to resize columns, etc. Since our
system’s novel features depend on the creation of multiple
worksheets, and since worksheets are referred to by name in
various parts of the user interface, we force the user to create
and name every worksheet explicitly. At startup, we show a
blank welcome tab with an instruction on how to create a
new worksheet.

Like Google Docs and Apple iWork Numbers, we intend the
user to populate each worksheet with a single table of items
under a designated row of column headers. Thus, the first
row of each worksheet is automatically formatted as a head-
ing, with a bolded font and a thick border underneath, and
pinned to remain visible at the top of the worksheet view dur-
ing vertical scrolling of the rest of the worksheet. Columns
can be renamed at any time by editing the contents of their

respective header row cells, and can be deleted or moved left
or right.

In our system, each column in a worksheet has an explicit
preferred data type associated with it. The user may change
this type at any time using a drop-down menu in the toolbar
area. If the value of a cell does not conform to its column’s
selected data type—e.g. text in a Number column or an in-
valid date in a Date column—the cell is rendered with a red
warning box similar to those used by PrediCalc and Excel to
indicate other kinds of inconsistencies. See Figure 4. The
user is always free to keep the default Text type, which ac-
cepts any primitive value.

The system’s weak form of type checking serves to allow
temporary inconsistencies. For instance, it is possible to
paste data from Excel without first having to set the appro-
priate column types, and the data type of existing columns
can be changed without special conversion semantics. The
type checking functionality applies not only to primitive data
types, but also to reference types and column cardinalities,
which we discuss next. In the header row, cells always be-
have as they would in a Text column.

Figure 5. Related Worksheets after the Code column has been set to
allow multiple inner cells and some additional course codes have been
entered. The outer cell containing the currently selected inner cell is
rendered with a blue border, and with one extra blank inner cell as an
affordance for adding additional entries.

In addition to a preferred data type, each column also has
a preferred cardinality, selected by a pair of radio buttons
next to the data type drop-down. Columns preferring indi-
vidual cells per row behave just like columns in a traditional
spreadsheet; this is the default. The multiple cardinality,
however, indicates that the column accepts multiple cells per
row. This situation is illustrated in Figure 5. It now becomes
necessary to distinguish between outer and inner cells; in
general, outer cells are defined by the intersection of a row
and a column, while inner cells are contained within outer
cells. Data values are contained in inner cells, and the cur-
sor moves left/right/up/down between the inner cells that are
visible on the screen at any time. Outer cells are always ren-
dered to show the contents of each of their non-blank inner

4

Figure 6. Terminology for describing worksheets in the Related Work-
sheets system.

cells, and always with at least one inner cell visible, even if
blank. In columns of multiple cardinality, a light gray border
is added around inner cells as a visual indicator of the special
behavior of these cells. When the cursor enters such a cell,
the border is highlighted in blue, and an extra blank inner
cell is rendered within the same outer cell as an affordance
to enter additional values. See Figure 6. Thus, to add values
to a cell of multiple cardinality, the user first moves the cur-
sor to an existing value in the list, then to the new blank cell
that appears at the end. Additional blank cells will appear
as the user fills the previous ones with values, or disappear
again as the user deletes the last value in the list.

Besides the primitive column data types, our system pro-
vides reference types. For each worksheet in the open work-
book, including the currently selected one, a reference type
Items from <worksheet to be referenced> is available in the
column data type drop-down, below the standard primitive
types. Each inner cell in a column of such a type is allowed
to contain, instead of a primitive value, a reference to a row
in the target worksheet specified by the column type. When
the cursor enters an inner cell in a reference column, the user
can select a reference value from another drop-down list.
This drop-down shows one entry per non-blank row in the
referenced worksheet, plus an option to reset the cell to its
default empty state. Note that unlike a relational database,
our system does not have a concept of primary or foreign
keys. Instead, rows are assigned an internal identifier on first
use, and subsequently referenced using this identifier. This
is completely transparent to the user.

As an example, suppose the user is modeling an academic
course management system like that of Figure 2. In two
separate worksheets, the user may have created tables of
Courses and Readings, respectively, and now wishes to es-
tablish a relationship between the two in order to maintain a
reading list for each course. The user can do this by creating
a column Course of type Items from Courses to the Readings
worksheet. This column will then contain, for each reading,
the course containing the reading in its reading list, and the
user can select the appropriate course from the reference se-
lection drop-down. See Figure 7. Alternatively, the user can
create a column of type Items from Readings in the Courses
worksheet—we will explain this symmetry later. Note that

Figure 7. Related Worksheets after adding a new worksheet with data.
The Course column has been set to contain references to the Courses
worksheet by selecting Items from Courses as the column’s preferred
data type. Reference values for cells in this column can now be selected
from a drop-down list (right) that shows one entry for each row in the
Courses table.

Figure 8. Related Worksheets showing the reverse reference column
that was automatically created in the Courses table when the Course
column of the Readings table was set to refer to the former. By pressing
Ctrl+Space, the user can teleport between the cursor location selected
here versus that of Figure 7.

creating a column simply means making use of a new empty
one, like in a regular spreadsheet.

When an inner cell in one worksheet contains a reference to
a row in another, a representation of the referenced row is
itself rendered within the referencing cell. This representa-
tion is a recursive selection of columns from the referenced
row, and can be configured through the Show/Hide Columns
tree of checkboxes, similar to the Schema Navigation Menu
found in AppForge. For instance, in Figure 3, each row in
the Courses worksheet contains a list of references in the in-
ner cells of the Sections column to the rows of the Sections
worksheet. Each section reference is then rendered just like
the corresponding row would be in the Sections table, except

5

with some otherwise visually distracting borders removed,
and with some of its columns hidden according to the user’s
selection in the Show/Hide Columns tree. Since each sec-
tion also has a list of references to Meetings as well as to
Instructors, this process is applied recursively until primi-
tive values are rendered in the base case. Effectively, the
user is able to perform arbitrary nested joins on the rela-
tionships between the worksheets, starting from any given
worksheet as a base table. Each worksheet has its own re-
cursive Show/Hide Columns configuration. For instance, a
course can be shown with its full title when viewed under the
Courses worksheet, while only showing its six-letter course
code when viewed through several levels of references from
the Instructors worksheet.

The entries in the reference selection drop-down are string
representations of each potential target row, also built from
the fields selected to be visible in the Show/Hide Columns
tree, including nested ones, or whatever portion of the string
there is horizontal space enough to display. Though not im-
plemented in our prototype system, users should be able to
pick items from this drop-down list by typing the first letters
of this string representation, using a combo box instead of a
list box.

Relationships are bidirectional. When the user creates a ref-
erence column in one worksheet in order to maintain a rela-
tionship with another worksheet, a corresponding reference
column is automatically created in the referenced worksheet,
referring back to the original worksheet. For instance, if
each Reading is assigned to a Course, then each Course has
a set of Readings. When the type Items from Courses is
selected for the Course column of the Readings worksheet,
this automatically creates a corresponding column of type
Items from Readings in the Courses worksheet. See Fig-
ure 8. The column name Readings (via “Course”) is only an
initial default and, as for any other column, can be changed
at any time. Like any other column, a reverse reference
column can be hidden from the view using the Show/Hide
Columns tree. Deleting a reverse reference column deletes
the original referencing column as well. Note that the system
itself makes no distinction between what we have been call-
ing forward and reverse reference columns; we are merely
using these terms to distinguish between the columns ex-
plicitly created by the user versus those automatically made
available in the other direction.

By setting the cardinalities of a related pair of forward and
reverse reference columns, the user can choose between one-
to-one, one-to-many, many-to-one, and many-to-many rela-
tionships. By default, an automatically created reverse refer-
ence column is set to have the multiple cardinality, resulting
in a one-to-many relationship if the forward reference col-
umn was of the individual cardinality, or a many-to-many
relationship if the forward reference column was of the mul-
tiple cardinality. Our system models many-to-many relation-
ships directly, without an intermediate join table, as long as
no attibutes are required on the relationship itself. This is
an important usability feature, as the concept of join tables
is abstract and may make little sense to a spreadsheet user

that does not have experience designing relational database
schemas.

For the purposes of selecting columns to display in the
Show/Hide Columns tree, forward and reverse references can
be followed indefinitely. For instance, it is possible to show,
for each instructor, the courses taught by that instructor (via
the Sections worksheet), then for those courses, what other
instructors teach the course, then for those instructors, the
complete set of courses taught by those instructors, and so
on. Infinite recursion is avoided by expanding the Show/Hide
Columns tree lazily and hiding, by default, columns that
have already been instantiated as an ancestor in the tree.
Like any other column, these can be shown or hidden again
by checking or unchecking the appropriate checkbox in the
tree.

While references are rendered recursively and the user can
easily see across many cascading and parallel relationships
simultaneously, the cell cursor moves across the top level
only. This was a design decision made to keep the interface
simple, in particular to keep cursor behavior similar to that
of a regular spreadsheet interface. As a consequence, in or-
der to edit a particular value, whether it be a primitive or a
reference, the user must first select the worksheet that con-
tains that value directly, that is, the worksheet that contains
the value in one of its inner cells. For instance, in Figure 7,
it is not possible to edit the course code or title of a course
without first switching to the Courses worksheet tab. This
is analogous to restrictions often found in FileMaker-style
database applications. However, generalizing a standard id-
iom often found in the record views of such applications,
we introduce a teleport feature to simplify navigation across
related entities in different worksheets.

The teleport feature allows the user to quickly jump between
multiple related worksheets via the references that exist be-
tween them. With the cursor located on a cell containing a
reference to a row in another worksheet, the user can press
Ctrl+Space to switch to the related worksheet, with the cur-
sor placed on the inner cell containing the corresponding re-
verse reference in the referenced row. After teleporting, the
user is free to move the cursor around in the newly selected
worksheet, for instance to edit values that were previously
too deep in the hierarchy to select with the cursor, or even
to teleport another degree away from the original worksheet.
To get back to the original point, the user can move the cur-
sor back to the original reverse reference that was selected
after the teleport, and teleport again. Consequently, tele-
porting twice without changing the cursor location will al-
ways lead back to the original cell. We believe a regular set
of back/forward buttons, not implemented in our prototype,
would complement the teleport feature well.

As an example of the teleport feature, consider the situation
in Figure 7. A user who wishes to edit the title of the course
CLG 214 can press Ctrl+Space to get to the state shown in
Figure 8. The user can now move the cursor to and edit the
cell containing the Wisdom, Sophistry, Philosophy primitive
value. When done, the user can move the cursor back to the

6

cell containing the Lysias / Selected Speeches reference and
teleport to get back to the original location in Figure 7.

We provide a simple search feature accessible from a search
bar similar to that found in the Mozilla Firefox11 web
browser. By entering a text string and clicking the Search
button, the cursor will move to the next cell whose string
representation contains the search term. The string repre-
sentation is the same as that used by the reference selection
drop-down item, minus separator characters; it contains the
primitive values of all the columns that have been recursively
selected for display in the Show/Hide Columns tree.

In the process of setting up a sample database for our user
study, we implemented two special data normalization com-
mands that are likely to be of general utility. The Detect
References command replaces each value in a column with
a reference to a row in a target worksheet that contains the
value in question in its first visible column (as selected in
the Show/Hide Columns tree), if a unique such row exists.
This is typically used to convert a column of primitive val-
ues to a column of reference values, for instance after having
imported two flat tables related through a foreign key rela-
tionship from a relational database. The other command, Re-
place References, works oppositely; it replaces each refer-
ence value in a column with the value of the first visible col-
umn in the referenced row. This command has uses beyond
undoing the work of a previously invoked Detect References
command; in particular, it can be used as a step to convert the
join tables commonly found in relational database schemas
into directly supported many-to-many relationships.

USER STUDY
To evaluate our system, we conducted an online user study
using Amazon Mechanical Turk12 and the User Study Con-
sole, a Java-based tool we developed to allow test subjects
to stream timestamped recordings of their computer screens
to our server with a minimum of effort. The User Study
Console would also automatically download and open sam-
ple spreadsheets we had prepared as well as allow the user
to submit changed versions of these in exchange for a con-
firmation code to be pasted into the Mechanical Turk HIT
(Human Intelligence Task, a survey form). Depending on the
stage and parameters of the experiment, sample spreadsheets
would be opened in either Microsoft Excel, assumed to be
already installed on the user’s computer, or in our own Re-
lated Worksheets application, distributed as part of the same
Java Web Start executable.

Our study was a between-subjects design in two stages. The
first stage was a recruiting task offered to the general popu-
lation of Mechanical Turk workers, intended to let us select
a group of workers who (1) were willing and able to success-
fully run the User Study Console on their machines, (2) hap-
pened to have Microsoft Excel or a compatible spreadsheet
application installed, (3) had demonstrated good faith in
solving an otherwise unrelated spreadsheet task, and (4) had
provided us with answers to some background and demo-

11http://www.mozilla.com/firefox
12http://www.mturk.com

Courses(Course, Distribution Area, Title, Max. Enrollment, May Audit)
Readings(Course, Author Name, Title)
Sections(Class Number, Course, Status, Max. Enrollment, Section)
Meetings(Section Class Number, Day, Time, Place)
Instructors(First Name, Last Name, Email)
Grading Components(Course, Grading Category, Percentage)
Instructors-Sections(Instructor Name, Section Class Number)
Cross-Listings(Crosslisted Course Code, Primary Course Code)

Figure 9. The normalized schema as it appeared in the Excel version
of the tasks. Primary keys that participate in foreign key relationships
are underlined, foreign keys are double-underlined.

graphic questions. We offered $0.25 for workers to launch
the User Study Console, make a chart based on sample data
we provided in an Excel spreadsheet, and fill in a survey.
The survey included questions about gender, age, occupa-
tion, previous spreadsheet experience, and previous experi-
ence with Microsoft Access, FileMaker, or other database
software, if any.

In the second stage of our experiment, Mechanical Turk
workers with complete and technically unproblematic sub-
missions for the recruiting task were divided randomly into
two groups of equal size, and invited by e-mail to do a longer
follow-up task, worth $3.00. Workers in the control group
would be instructed, like before, to launch the User Study
Console and solve tasks using a Microsoft Excel spreadsheet
that we provided. Workers in the treatment group would,
on the other hand, be instructed to use the Related Work-
sheets application. The tasks and instructions in the two
main forms were identical except in the description of the
tool used to solve the tasks. No actual instructions were pro-
vided on how to perform the tasks, neither in the Excel nor
the Related Worksheets versions of the experiment.

The actual database tasks modeled in our user study were
based on the course management system example introduced
earlier. The data was a subset of an actual course database,
containing 37 courses and related entities.

In the Excel version of the tasks, the database was repre-
sented as a set of normalized relations, each stored as a ta-
ble in its own worksheet. See the Introduction for a dis-
cussion of why this particular mapping is a natural one for
our investigation. We used natural rather than surrogate pri-
mary keys, e.g. course codes in the form “KOR 107,” to
identify the various entities involved. The full normalized
schema of the database is shown in Figure 9. For the Re-
lated Worksheets version of the task, we imported the same
normalized database tables into our system as individual
worksheets, converted foreign key columns into reference
columns using the Detect References and Replace Refer-
ences operations mentioned earlier, and made default selec-
tions in the Show/Hide Columns tree corresponding to what
we believed would be seen in a real course management sys-
tem. In particular, the Courses worksheet was shown with
all fields and subfields fully expanded, excluding reverse ref-
erence columns (each course showing its reading list, grad-
ing scheme, sections, meetings, instructors, etc.). Each of
the other worksheets were shown with all of their immediate

7

http://www.mozilla.com/firefox
http://www.mturk.com

Description
1 Find a course that is taught by Harry Morrill.
2 In the course “MUS 105: Music Theory Through Performance and Composition,” what percentage

of the final grade is derived from the Midterm Exam?
3 Find a course that satisfies the “LA” (Literature and the Arts) distribution area, with a lecture (meet-

ings belonging to a section denoted “L01”) that starts after noon (after 12.00).
4 What is the e-mail address of the instructor who teaches “KOR 107: Intermediate Korean II”?
5 Who teaches the precept section of “HIS 383: The United States Since 1920” that meets on Wednes-

days at 10am?

Table 1. Tasks given in the user study.

fields visible, and some selection of important identifying
subfields for each related entity (e.g. course code, distri-
bution area, and course title whenever a course was refer-
enced). Effectively, it would not be necessary for a user to
show additional columns or subcolumns to solve the tasks
given, though depending on window size and screen resolu-
tion, it might have been necessary to scroll horizontally or
hide some columns to see the desired information.

The exact tasks given are listed in Table 1. The actual in-
structions given to users also specified the exact form ex-
pected of the answers and gave an example of a correctly
specified answer. These tasks are lookup (read-only) tasks
of the kind we would imagine to be frequently performed on
a real-world course management database. We originally in-
cluded a number of update tasks as well; however, these un-
covered a number of discoverability bugs that would have to
be fixed before realistic update performance could be mea-
sured.

After the expiration of the main task, we reviewed workers’
submissions and associated screencasts, log files, and up-
loaded spreadsheet files. We graded each of the tasks on a
pass/fail basis, and manually estimated the amount of time
spent on each task using video frame timestamps and obser-
vations of the subjects’ actions.

RESULTS
The recruiting stage of the study yielded 52 subjects,
screened from submissions by 64 distinct Mechanical Turk
workers. The subjects were divided randomly into two
groups of 26 subjects each, and invited to participate in the
main part of the study. Of these, 18 recruits from the Excel
group and 18 recruits from the Related Worksheets group
completed the main task. An additional 4 recruits from
the Excel group and 4 recruits from the Related Worksheets
group started doing a few of the tasks, but soon closed the
User Study Console and never submitted a response. The re-
maining recruits never opened the User Study Console dur-
ing the second part of the study.

Of the 36 subjects participating in the main part of the study,
25 were male (69%). Subjects were between 19 and 48 years
of age, with first, second, and third quartiles at 26, 30, and
35 years, respectively. 16 subjects (44%) described having
some prior experience using “database software such as File-
Maker or Microsoft Access.” Most users had significant pre-
vious spreadsheet experience; Table 2 shows the levels of

“How often do you typically use
spreadsheet software?”

N

1 Never 1
2 Once a year or less 1
3 A couple of times per year 1
4 A couple of times per month 12
5 A couple of times per week 5
6 Almost daily 10
7 Multiple times per day 6

Total 36

Table 2. Number of subjects reporting particular levels of previous
spreadsheet experience. The numbers to the left are used to calculate
averages in Table 3.

Occupation N

Average
spreadsheet
experience

Student, business/finance 2 6.0
Student, mechanical engineering 1 4.0
Student, unknown 1 2.0
Teacher 2 4.0
Business administration 5 5.6
Business process outsourcing (BPO) 3 6.0
Homemaker 5 3.2
Programmer 8 5.8
Other IT 3 5.0
Other technical 5 5.6
Other non-technical 1 4.0
Total 36 5.1

Table 3. Number of subjects and average levels of previous spreadsheet
experience by occupations reported. Averages are based on the 7-step
scale in Table 2.

typical spreadsheet use as reported by subjects themselves.
The subjects’ self-reported occupations are categorized in
Table 3.

Of the subjects who submitted a response to the main task,
the number who passed each task is shown in Table 4. The
average times taken to complete each task, for subjects who
solved each task in question correctly, are shown in Fig-
ure 10. Due to intermittent network problems, 5 screencasts
from the Excel group and 2 screencasts from the Related
Worksheets group were incompletely streamed and could
not be used for timing measurements.

Using uploaded screencasts and event logs, we summarized
the features used by subjects during the study. This data is

8

Task #
N 1 2 3 4 5

Excel 18 18 18 14 17 12
RS 18 18 18 14 17 15

Table 4. Number of subjects who solved each task correctly.

Excel Related Worksheets
Feature n N n/N n N n/N
Search 13 17 76% 9 17 53%
Mark Rows 3 15 20% 2 17 12%
Filter 11 15 73%
Sort 1 15 7%
Teleport 8 18 44%
Show/Hide Columns 3 17 18%

Table 5. Number of users observed to make use of specific features or
techniques during the user study.

shown in Table 5. Some features are found in both Excel
and Related Worksheets, others are specific to one system.
Except for the teleport feature, the numbers are based on
manual review of the screencast videos; the number of data
points is slightly less than the total number of users due to
some incomplete screencasts. The teleport command was
invoked 1, 1, 2, 5, 5, 7, 12, and 13 times by each respective
user. Of the Related Worksheets subjects making use of the
search feature, 3 discovered it only after having progressed
about halfway through the study. Of the Excel subjects mak-
ing use of the filter feature, 3 did not use the search feature
at all. “Mark Rows” refers to subjects visibly working to
keep track of rows in a worksheet; this was done in various
ways by different users. Two Excel users colored marked
rows yellow with the highlighting tool, one of these also at
one point wrote down the primary keys of marked rows in
an external text editor. A third Excel user marked rows by
typing an “x” in the first empty column available next to the
table. Two Related Worksheets users marked rows as well;
these both used an external editor. It is possible that some
subjects may have taken notes on paper as well.

DISCUSSION
For each submission we watched the screencasts and mea-
sured the time taken to solve each task. We then, for each
task, applied Welch’s unpaired two-tailed t-test to the times
taken to complete the tasks by those subjects who got them
right only. Only Task 4 showed a statistically significant
(p<0.05) improvement in the Related Worksheets case; it
was 41% faster than Excel. Task 5 showed a 31% improve-
ment, but was not statistically significant (p=0.09). In all
other cases the results were insignificant.

The different tasks can be analyzed in terms of the joins
involved and tables traversed in the normalized database
schema used in the Excel version of the database in each
case. It is useful for this purpose to refer back to the Entity-
Relationship diagram that was shown in Figure 2.

For Task 2, only the primary key is needed from the Courses
table, and the answer can be found by looking at the Grad-

Figure 10. Timing measurements for the user study. The error bars
show the standard error of the mean.

ing Components table. This makes the task simple in both
Excel and Related Worksheets. We believe the fact that sub-
jects spent a relatively large amount of time on Task 1 com-
pared to, for instance, Task 4 to be due to the learning time
needed to get acquainted with the database and, in the case
of the Related Worksheets group, the software itself. For
Task 4, we saw a large performance gain for subjects using
our system versus those using Excel. We can attribute this
to the manual join that must be done between the Sections
and Instructors-Sections tables followed by the lookup in the
Instructors table in the Excel case. In the Related Spread-
sheets case, solving the task was a simple matter of finding
the course in the Courses worksheet, which showed all re-
lated entities in one place. Task 3 is harder than Task 4, since
there are both multiple meetings per section as well as mul-
tiple sections per course; in Task 4, only a single lookup was
required in the Instructors table. To solve Task 3 in Excel
typically requires the user to keep track of numbers of sev-
eral sections to look for in the Meetings table while browsing
the Sections table. In Related Worksheets, one can simply
browse for the appropriate course, though since we do not
provide any filter-like capabilities, the user must manually
look through the entire list of courses. Task 5 involved the
Sections, Meetings, and Instructors-Sections tables. Since
there is often only a single instructor per section, the task
is simpler than Task 3. Like in Task 4, we see indications
of a performance advantage among users using the Related
Worksheets application over those using Excel. While not
statistically significant, it seems that the advantage is large
but slightly smaller than that of Task 4. This effect could
potentially be due to Excel users getting more familiar with
the manual process of joining tables.

The most frequently used feature in both the Excel and the
Related Worksheets version of the tasks was search, avail-
able in both systems. Typically, users of both systems would
use a combination of searching and manual browsing—
scrolling back and forth, switching between worksheets, and
scanning the data visually—to complete the tasks. This was
anticipated: the chief advantage of the Related Spreadsheets
system is, in this context, the relevancy of the information
seen on the screen at any time. Using a Firefox-style search
interface may have put us at a disadvantage due to limited
discoverability; only 53% of Related Worksheets users tried
searching, vs. 76% of Excel users.

9

Among the Excel users, we were surprised to find that just
about as many subjects made use of the filter feature as made
use of the search feature. The filter feature allows the user
to restrict rows shown in a table to those containing specific
values selected from a drop-down menu above each column.
Subjects used the filter feature both to search for specific
rows in each table and to mark multiple rows of potential in-
terest for later review. Since the drop-down list provided by
the filter feature is always sorted, users could quickly locate
a specific item in an otherwise unsorted table, without using
the search feature. As mentioned, three users even made ex-
tensive use of the filter function without making use of the
search feature at all. Given these observations, we consider
a filter feature to be an important potential addition to future
versions of our interface.

Users sometimes found it necessary to temporarily mark
rows of interest in order to solve tasks involving more than a
single join between tables; see our earlier observations. Two
Related Worksheets users wrote down primary keys in an ex-
ternal editor, despite this not being necessary for completing
the tasks in our system. We assume these users must have
believed it would be faster to approach the problem in the
same way as they would in a standard spreadsheet rather than
spending time learning how the hierarchical views worked.

In the Related Worksheets version of the tasks, it was not
necessary to modify the Show/Hide Columns configuration,
since we had already provided reasonable defaults. Most
users thus rightly ignored the feature. A few subjects used
the Show/Hide Columns configuration, along with column
resizing, to hide unnecessary data from view. The teleport
feature was tried by 8 of the 18 Related Worksheets sub-
jects; at least 5 of these subjects seemed to make productive
use of it throughout the progression of the study, indicating
significant potential value in this feature.

FUTURE WORK
In future work, we plan to incorporate a more expressive vi-
sual query language that allows a larger class of hierarchical
views to be built by the user, including the ability to apply
sorting, filtering, formulas, and aggregation functions. Fur-
thermore, the system should be able to render these hierar-
chical views using a selection of different layout configura-
tions beyond the simple tabular one, for instance to emulate
the record views that are ubiquitous in FileMaker-style ap-
plications. Finally, the system should provide a more flex-
ible interface for storing and organizing views themselves.
Future evaluation should include a comparison with tailor-
made UIs, and also investigate other classes of tasks such as
schema creation and more complex querying.

CONCLUSION
We have presented Related Worksheets, a spreadsheet-like
application that lets the user establish relationships between
rows in related worksheets as well as view and navigate the
hierarchical cell structure that arises as a result. These fea-
tures make the system well-suited for database tasks. A user
study on 36 subjects found that first-time users of our system
were able to solve lookup-style query tasks with the same or

higher accuracy as subjects in a control group using Excel,
in one case 40% faster on average.

ACKNOWLEDGEMENTS
We thank Paul Grogan and Phumpong Watanaprakornkul for
their help designing and implementing the original Related
Worksheets prototype.

REFERENCES
1. Abiteboul, S., Agrawal, R., Bernstein, P., Carey, M.,

Ceri, S., Croft, B., DeWitt, D., Franklin, M., Molina,
H. G., Gawlick, D., Gray, J., Haas, L., Halevy, A.,
Hellerstein, J., Ioannidis, Y., Kersten, M., Pazzani, M.,
Lesk, M., Maier, D., Naughton, J., Schek, H., Sellis, T.,
Silberschatz, A., Stonebraker, M., Snodgrass, R.,
Ullman, J., Weikum, G., Widom, J., and Zdonik, S. The
Lowell database research self-assessment. Commun.
ACM 48, 5 (2005), 111–118.

2. Chan, Y. E., and Storey, V. C. The use of spreadsheets
in organizations: determinants and consequences.
Information & Management 31, 3 (1996), 119–134.

3. Chen, P. P.-S. The Entity-Relationship model—toward
a unified view of data. ACM Trans. Database Syst. 1, 1
(1976), 9–36.

4. Kassoff, M., and Genesereth, M. R. PrediCalc: a logical
spreadsheet management system. The Knowledge
Engineering Review 22, 03 (2007), 281–295.

5. Kent, W. A simple guide to five normal forms in
relational database theory. Commun. ACM 26
(February 1983), 120–125.

6. Kowalzcykowski, K., Deutsch, A., Ong, K. W.,
Papakonstantinou, Y., Zhao, K. K., and Petropoulos, M.
Do-It-Yourself database-driven web applications. In
CIDR (2009).

7. Pemberton, J. D., and Robson, A. J. Spreadsheets in
business. Industrial Management & Data Systems 200,
8 (2000), 379–388.

8. Raden, N. Shedding light on shadow IT: Is Excel
running your business? Tech. rep., Hired Brains, Inc.,
January 2005.

9. Stolte, C., Tang, D., and Hanrahan, P. Polaris: A system
for query, analysis, and visualization of
multidimensional relational databases. IEEE
Transactions on Visualization and Computer Graphics
8, 1 (2002), 52–65.

10. Whitmer, B. C. Improving spreadsheets for complex
problems. Master’s thesis, Brigham Young University,
August 2008.

11. Yang, F., Gupta, N., Botev, C., Churchill, E. F.,
Levchenko, G., and Shanmugasundaram, J.
WYSIWYG development of data driven web
applications. Proc. VLDB Endow. 1, 1 (2008), 163–175.

12. Zloof, M. M. Query-by-Example: A data base
language. IBM Syst. J. 16, 4 (1977), 324–343.

10

	Introduction
	Related Work
	The Related Worksheets System
	User Study
	Results
	Discussion
	Future Work
	Conclusion
	Acknowledgements
	References

