
StudyCaster: A Tool for Automatic and Anonymized
Recording of Online User Studies

Eirik Bakke, David R. Karger, and Robert C. Miller
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, Cambridge, MA, USA
{ebakke,karger,rcm}@mit.edu

ABSTRACT
In recent years, online crowdsourcing markets like oDesk and
Amazon Mechanical Turk have made it easy to recruit human
subjects for online user studies, anonymously and in large
numbers. A major limitation of online user studies lies in the
difficulty of actually observing the actions of the subject as
he or she solves the tasks presented, and much work may be
necessary on the part of the experimenter in order to instru-
ment the system under test or develop questionnaires that can
shed light on the subject’s approach to the problem at hand.
In this note, we present StudyCaster, a Java-based tool that
allows subjects to stream complete recordings of their com-
puter screens to an experimenter’s server with a minimum of
effort. A novel and crucial feature is anonymization, which
blurs any window on the screen that does not match prede-
fined criteria.

ACM Classification Keywords
H.5.2 User Interfaces: Evaluation/methodology

General Terms
Experimentation, Measurement

INTRODUCTION
Online user studies offer many advantages over traditional in-
house lab studies. They can be run on a large number of
subjects without taking up a proportionally greater amount
of the experimenter’s time, and they can yield results faster
by allowing multiple subjects to work in parallel. Online
experiments may also enable subjects to participate anony-
mously, often allowing the experiment to undergo simplified
Institutional Review Board (IRB) review1. Finally, online
crowdsourcing markets like oDesk2 and Amazon Mechanical

1E.g. under ”exempt” status according to US Federal guidelines 45
CFR Part 46.101(b)(2).
2http://www.odesk.com

Figure 1. A subject is checking email while working on a study. The
screen recorder garbles the browser window content before uploading
any data.

Turk3 have made it radically easier to recruit and compensate
a larger number of subjects for an experiment.

Assuming the system under test is a web site or a piece of
software that can be run on a subject’s computer, a major lim-
itation of online user studies lies in the difficulty of actually
observing the actions of the subject as he or she solves the
tasks presented. From a platform like Mechanical Turk, the
only experimental data retrieved automatically is the answer
to questions given in simple HTML forms, as well as the time
elapsed from when the user first accepts a posted task until he
or she submits an answer. Other data, such as features used
in the application under test, more accurate timing informa-
tion, or information about the particular approach taken by
the subject to solve a task, must be gathered through separate
channels. This could mean instrumenting the software under
test, instrumenting a survey form (e.g. with JavaScript code),
or developing additional survey questions that address these
issues and hoping that the subject responds faithfully. In ei-
ther case, both collection and interpretation of data require a
significant effort, and the results may be far less informative
than had the experimenter actually been watching over the
shoulder of the subject doing the study.

3http://www.mturk.com

1

http://www.odesk.com
http://www.mturk.com


In this note, we present StudyCaster, a Java-based tool that
allows user study subjects to stream complete recordings of
their computer screens to an experimenter’s server with a
minimum of effort. Our primary contribution is an integrated
anonymization feature that blurs any window on the screen
that does not match predefined criteria. Because data is up-
loaded asynchronously as the subject is performing the study,
screen recordings can be of arbitrary length, and the tool is
designed to be robust against temporary network failure, fire-
wall limitations, and unexpected errors. Other features in-
clude the ability to download and open files (e.g. a PDF doc-
ument or an Excel spreadsheet) with the default associated
program on the subject’s computer, and the ability to let the
subject upload a modified or new file from his or her com-
puter. The StudyCaster is launched from a Java Web Start
link that can be embedded in any HTML page or email mes-
sage.

RELATED WORK
Existing work has discussed both topics of demographics and
evaluation techniques for Mechanical Turk-based studies [4,
5]. A number of recent startups offer remote usability testing
services, including Loop114, Usabilla5, OpenHallway6, and
UserTesting7. StudyCaster is a free open source alternative
to these, particularly designed for researchers. It provides
the additional advantage of anonymization. StudyCaster’s
anonymization is similar to the screen obscuring features of
RoleBased Views[2] and PrivateBits[3]. These systems are
not designed to work for remote users, however, and can thus
not be used for an end-to-end anonymous online user study.

THE SUBJECT’S PERSPECTIVE
We first explain the operation of the StudyCaster tool as seen
from the user study subject’s perspective. As an example, we
use the recruiting phase of a study published in CHI 2011[1].
In this study, which was conducted on Mechanical Turk, sub-
jects were asked to edit a provided Excel spreadsheet, save
their changes, and upload the modified file, all while running
the StudyCaster client application.

The subject’s interaction with the StudyCaster client is shown
in Figure 2. In this example the user study is published as a
Human Intelligence Task (HIT) on Mechanical Turk. When
the subject clicks the Launch button in the HIT, Java Web Start
will load the StudyCaster client application, possibly after a
Do you want to open this file? question from the web browser, and
after a security warning from Java. The main StudyCaster
client window will appear in the lower right-hand corner of
the subject’s screen, with a centered modal dialog box ask-
ing for informed consent to record the user’s screen during
the study. While the system will be blurring the recording of
windows unrelated to the study task, this is not mentioned in
the informed consent message, as we would still like subjects

4http://www.loop11.com
5http://usabilla.com
6http://www.openhallway.com
7http://www.usertesting.com

Figure 2. A StudyCaster-based user study, from the subject’s point of
view.

to think about their own privacy during the study as an ad-
ditional safeguard against accidental exposure of identifiable
information.

To ensure that subjects run the StudyCaster client before start-
ing work on their task, the client can be made to open a link
or document that the subject needs access to. In the example
study, the StudyCaster client would automatically download
and open an Excel spreadsheet for the subject to work on.
This also allowed the experimenter to limit study participa-
tion to subjects who had Microsoft Excel installed on their
machines. In other experiments, the document opened could
be a web page, a PDF file, or a packaged desktop applica-
tion (not necessarily Java-based) under test. The document
opened could also depend on a parameter in the Java Web
Start link on the HIT page.

As the subject works on the tasks presented in the user study,
the StudyCaster client records the contents of the screen. The
screen recording thread automatically limits its frame rate
such that its CPU utilization never exceeds 70%, and never
exceeds 5 frames per second. During the study, the Study-
Caster client window remains always-on-top in the corner of
the screen unless moved or minimized by the subject. De-
pending on the experiment, the window may be used to pro-

2

http://www.loop11.com
http://usabilla.com
http://www.openhallway.com
http://www.usertesting.com


vide instructions that the subject may need to refer back to
while completing a task.

After completing the tasks, the subject presses the Upload and

Retrieve Confirmation Code button. In the example experiment, this
prompts the subject to upload either a modified version of the
originally opened spreadsheet file, or a different file. Other
experiments might disable this feature, or use it for differ-
ent purposes. Next, the client will show a progress bar as it
finishes transferring whatever screen recording data is still in
the pending upload buffer. Since recording data is streamed
continously to the server for the entire duration of the study,
the wait for the final buffer flush is usually only a few sec-
onds, and as another feature of the automatic frame rate lim-
iting, there will never be more than 4 megabytes of data left
to upload at the end. Finally, the user is shown a confirma-
tion code, which can be pasted into the appropriate HIT form
field.

In this example, the StudyCaster client was launched from a
Mechanical Turk HIT. The launch button could just as easily
have been embedded in any HTML page, or subjects recruited
through other means could be sent an email with a static link
to the StudyCaster client.

THE EXPERIMENTER’S PERSPECTIVE
The StudyCaster system, once built with appropriate cus-
tomizations for a particular experiment, is distributed as a
Web Archive (WAR) file which may be deployed to any Java-
based web server. Additionally a MySQL or other database is
required for logging purposes and a local writable directory
to store and access screen recordings. For a hosted solution,
Amazon Web Services8 can be used for all of these require-
ments.

Once the StudyCaster server application is deployed either
locally (for development) or on a public HTTP server, the
experimenter can navigate to its URL, which will contain a
password-protected status page. The status page includes an
HTML template for a link or Java Web Start button that can
be pasted into a user study instruction page, for instance in a
Mechanical Turk HIT. From the status page, the experimenter
can also generate a report that summarizes all current log en-
tries in the database. The report shows a list of all remote
invocations of the StudyCaster client application, their time
and duration, and the total amount of screen recording data
uploaded during the session. Also available are transcripts
of each client invocation’s Java console output, which is up-
loaded for debugging and data collection purposes. Finally,
the report generator uses a combination of short IP address
hashes and cookies stored on client computers to group mul-
tiple invocations of the client application by what is assumed
to be the same subject into a single coherent timeline. This
makes it possible to find all screen recordings made by a sin-
gle subject even if, say, the StudyCaster client or the computer
it was running on crashed and the subject had to reopen it to
get a new random confirmation code. It is also useful in or-
der to detect subjects that should be excluded from a study

8http://aws.amazon.com

Figure 3. Clippy has been censored (upper right). The main Excel and
StudyCaster windows are left legible. Popup windows frequently con-
tain personal information, such as instant messages or email notifica-
tions. (This subject has an unusually low screen resolution.)

due to the possibility of cheating, such as individual Mechan-
ical Turk workers operating multiple accounts. Along with
each subject is also shown their geographic country and re-
gion based on a lookup in a GeoIP database at the time of
each request. At no point is an actual IP address stored in
the database, as this could conceivably be used to identify the
subject.

Screen recordings are stored as files in a server directory us-
ing a custom-designed codec9. Mouse movements are sam-
pled independently and more frequently than full screenshots,
giving the final screen recordings a smooth appearance. A
command-line utility uses Xuggler10 to convert the internal
video format to more standard ones (though with poorer com-
pression), with the option of increasing the speed of the out-
put video by an integer multiple. In our experience, it is
possible to do a meaningful review of a user study record-
ing while viewing it at up to 15x the original speed. This
is a great time saver for an experimenter scanning through
dozens of recordings in search for observations. As an aid to
experimenters wishing to make timing measurements based
on screen recordings, each frame of the output video file is
annotated with an input frame number, an absolute timestamp
calibrated to the local time of the server at the beginning of
the recording, and the number of seconds since the beginning
of the recording, all independent of any speedup applied.

Screen recordings are anonymized before they are uploaded
to the server. The anonymization works by blurring the con-
tents of any area on the subject’s screen that does not be-
long to a window created by a whitelisted process. A pro-
cess is whitelisted if one of its visible windows’ titles contain
one of a set of strings predefined by the experimenter. For

9The codec is inspired by that used in the Java Re-
mote Control project (http://code.google.com/p/
java-remote-control).

10http://www.xuggle.com/xuggler

3

http://aws.amazon.com
http://code.google.com/p/java-remote-control
http://code.google.com/p/java-remote-control
http://www.xuggle.com/xuggler


instance, in the spreadsheet study example, processes were
whitelisted if they possessed a window with a title contain-
ing the strings ”Excel”, ”OpenOffice.org Calc”, or ”Study-
Caster”. Thus a legible recording would be made of any Ex-
cel window or dialog box as well as the StudyCaster window
itself, but any other parts of the screen would be blurred to
make any regular-size text illegible. See Figures 3 and 1. The
StudyCaster client also maintains a blacklist of window titles
which should always trigger blurring regardless of parent pro-
cess; this is mainly used to protect file chooser dialogs, which
may sometimes expose the subject’s local login name.

EXPERIENCES WITH THE TOOL
The first study to use our tool, referred above, involved short
screen recordings made by 64 Mechanical Turk workers in its
first phase, as well as longer sessions by 36 subsequent sub-
jects, about 30 minutes in length on average, but occasionally
as long as two hours. A second study, currently in progress,
has involved recordings made by 159 distinct workers. We
now report on some of the experiences we have gathered with
the StudyCaster tool to this date.

We observe that while the blurring algorithm only makes text
illegible up to about a 16 point font size, text above this size
rarely contains personally identifiable information. For in-
stance, it may be easy to see that a subject is browsing GMail,
YouTube, or Mechanical Turk, but hard to make out names
or smaller headings. This is still a limitation for users who
might use larger-than-normal fonts, such as vision impaired
users. Photos of people tend to remain clear even after blur-
ring, especially in the case of desktop backgrounds, which fill
the entire screen area. A proposed improvement would be to
obscure the desktop background completely. The only dis-
advantage would be the inability to observe interaction with
desktop icons and such.

Another class of anonymization issues deal with the selec-
tion of the region to blur. In the first version of our soft-
ware, the region was always rectangular, based on a single
window with a white-listed title or its active child windows.
This was vulnerable to popup windows from email and in-
stant messaging clients, which would appear unobscured on
top of a whitelisted window. Another problem related to hard-
ware graphics acceleration in Windows 7, where the clipping
area of a whitelisted window would appear larger than its ac-
tual visible portion, creating a too big unobscured area on
the screen. These problems are solved in the current version
of the software, which uses higher-level information from
the Win32 API to determine window location and Z-order,
and which allows non-rectangular blurring areas. On non-
Windows platforms, the screen is kept blurred in its entirety.

A more subtle bug in the determination of the blurring area
results from the fact that on a sluggish computer, a ”ghost”
image of a background window may remain in another win-
dow that has newly been promoted to the foreground before
the latter has had time repaint itself. If a screenshot is taken
at the wrong moment, an unobscured view of the old window
may be captured as a whitelisted one is brought to the fore-
ground. A related effect is even more prevalent in Windows

7, where windows may intentionally fade gradually in on top
of existing ones. A solution to this problem could be to in-
troduce an explicit delay in the algorithm that determines the
blurring area.

A few usability problems were seen and corrected in the tool
itself. In particular, confirmation dialogs were added for clos-
ing the StudyCaster window without retrieving a confirmation
code first, and before concluding the study and retrieving a
confirmation code. We also implemented a method to pre-
vent multiple instances of the client from being run at the
same time, with a warning to the user if attempted.

Finally, we added several internal features to increase the
technical robustness of the tool, including the ability to retry
and recover from failed server requests even after the internet
connection goes down temporarily, after the subject’s com-
puter switches to a different network interface (e.g. from
wireless to ethernet), or after the server has been restarted
with a new software update.

CONCLUSION
We have presented StudyCaster, a Java-based tool that al-
lows subjects to stream complete recordings of their computer
screens to an experimenter’s server with a minimum of ef-
fort. Our system includes the novel feature of anonymization,
which blurs any window on the screen that does not match
predefined criteria. A user study conducted using the tool re-
vealed several potential improvements to the anonymization
performance, several which have already been implemented.

REFERENCES
1. Eirik Bakke, David R. Karger, and Robert C. Miller. A

spreadsheet-based user interface for managing plural
relationships in structured data. In Proceedings of the
29th International Conference on Human Factors in
Computing Systems (CHI ’11), New York, NY, USA,
2011. ACM.

2. Lior Berry, Lyn Bartram, and Kellogg S. Booth.
Role-based control of shared application views. In
Proceedings of the 18th annual ACM symposium on User
interface software and technology (UIST ’05), pages
23–32, New York, NY, USA, 2005. ACM.

3. Kirstie Hawkey and Kori M. Inkpen. Privatebits:
managing visual privacy in web browsers. In Proceedings
of Graphics Interface 2007 (GI ’07), pages 215–223,
New York, NY, USA, 2007. ACM.

4. Aniket Kittur, Ed H. Chi, and Bongwon Suh.
Crowdsourcing user studies with mechanical turk. In
Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems (CHI
’08), pages 453–456, New York, NY, USA, 2008. ACM.

5. Joel Ross, Lilly Irani, M. Six Silberman, Andrew
Zaldivar, and Bill Tomlinson. Who are the
crowdworkers?: shifting demographics in mechanical
turk. In Proceedings of the 28th of the international
conference extended abstracts on Human factors in
computing systems (CHI EA ’10), pages 2863–2872, New
York, NY, USA, 2010. ACM.

4


	Introduction
	Related Work
	The Subject's Perspective
	The Experimenter's Perspective
	Experiences with the Tool
	Conclusion
	References 

