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Fig. 1. Robustness test. We present results of our method (HGP) for four challenging models from the [Myles et al. 2014] benchmark. Many other state-of-
the-art methods: [Aigerman et al. 2014], [Levi and Zorin 2014], [Springborn et al. 2008], failed to produce locally injective seamless parametrization maps.
The method of [Chien et al. 2016b] managed to produce locally injective maps, but required more than an hour to parametrize the four models above. HGP
required just one or two iterations of a second-order cone program (SOCP) per model, and took less than a minute. The heat maps illustrate the conformal
distortion k and show that we produce maps with relatively low distortion. The cone points are denoted by the colored dots.

We present a method for locally injective seamless parametrization of trian-

gular mesh surfaces of arbitrary genus, with or without boundaries, given

desired cone points and rational holonomy angles (multiples of 2π /q for

some positive integer q). The basis of the method is an elegant generalization

of Tutte’s “spring embedding theorem” to this setting. The surface is cut

to a disk and a harmonic system with appropriate rotation constraints is

solved, resulting in a harmonic global parametrization (HGP) method. We

show a remarkable result: that if the triangles adjacent to the cones and

boundary are positively oriented, and the correct cone and turning angles

are induced, then the resulting map is guaranteed to be locally injective.

Guided by this result, we solve the linear system by convex optimization,

imposing convexi�cation frames on only the boundary and cone triangles,

and minimizing a Laplacian energy to achieve harmonicity. We compare

HGP to state-of-the-art methods and see that it is the most robust, and is

signi�cantly faster than methods with comparable robustness.

CCS Concepts: • Computing methodologies → Mesh models; Mesh
geometry models; • Mathematics of computing → Topology;
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1 INTRODUCTION
Parametrization is a foundational problem in computer graphics and

geometry processing, and its solution is relevant to many other pro-

cesses such as quadrangulation, remeshing, texture mapping, shape

correspondence, rotational symmetry �elds-and-patterns design,

and compression.

A key feature that is desired in mesh parametrizations is that of

local injectivity, and harmonic methods have proven useful in achiev-

ing such parametrizations from the beginning. For disk meshes, a

classic solution involves the use of discrete harmonic maps, based

on a seminal result of Tutte [Tutte 1963]. The method is linear, so is

quite simple and fast, and ensures an embedding, but the boundary

of the disk must be �xed in R2
as the boundary of a convex polygon.

More generally, one would like to allow for non-convex bound-

aries and for more complicated topologies. Theoretical results in

this direction were presented in [Gortler et al. 2006]. By considering

discrete harmonic 1-forms and their indices, the authors provide an

elegant proof of Tutte’s classic result. With the same methods, they

show that for a disc, potentially with punctures and non-convex
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boundary embeddings (with appropriate turning numbers), that the

resulting discrete harmonic map will still be an embedding if the

boundary triangles (or n-gons) are non-degenerate and positively

oriented.

For more complicated topologies, the mesh must be cut to a disc

before mapping, and they suggest integrating two linearly indepen-

dent harmonic 1-forms over the cut mesh. This works (provably)

in the torus case, but runs into signi�cant problems for higher

genus, requiring stronger conditions than linear independence on

the two harmonic 1-forms. In addition, distortion for the resulting

parametrizations is typically quite high, if one does not allow for a

careful choice of cut and cone placement, and this method does not

allow for any control in that respect.

Furthermore, at such cone points, if the cone angle is not a multi-

ple of 2π , there is no sensible linear harmonicity condition. These

problems were tackled in [Tong et al. 2006], which asks the user

to design a singularity graph, decomposing the mesh into patches

(disks topologically). Harmonic 1-forms are solved for on individ-

ual patches with various continuity conditions enforced between

patches. Harmonicity constraints are dropped at the meta-vertices

of the singularity graph, allowing for any cone angles that are mul-

tiples of π/2.

In the �rst part of this paper, given cone points and desired ra-

tional holonomies, we present a linear harmonic system similar to

that of Tong et al. It takes a mesh cut to a disc and enforces rotation

conditions on the two copies of any cut edge to achieve holonomy

angles that are multiples of 2π/q, for any positive integer q (see Sec-

tion 4). The resulting parametrization maps are called q-CCMs (for

convex combination maps). Utilizing the index-counting arguments

of [Gortler et al. 2006], we generalize their results to a mesh S of

any topology:

Theorem 6.1. Let f denote a q-CCM of S , with speci�ed cone
points and holonomy angles determining the rotation constraints. If the
cone and boundary triangles are mapped in an orientation-preserving
manner, and the induced metric on S achieves the desired cone angles
and turning angles, then f is locally injective.

In the proof, we show that a solution to our system results in a 2-

dimensional space of mostly harmonic 1-forms on a q-fold branched

cover, and it is the index of these 1-forms that is analyzed to prove

local injectivity. Inspiration for this perspective was drawn from

[Kälberer et al. 2007], and the Riemann-Hurwitz formula is used

to determine the topology of the branched cover. Additionally, we

modify the de�nition of turning angle to allow for boundary vertices

with turning angle less than−π and generalize the results of [Gortler

et al. 2006] in this fashion as well. Lastly, we note that in this work,

we restrict to triangle meshes, as these are of the greatest practical

interest, but generalization to polygonal meshes is straightforward.

Inspired by these results, we design a method that enforces pos-

itive orientation with convexi�cation frames [Lipman 2012], but

only requires them on the cone and boundary triangles. As the

number of frame conditions needed is much fewer than other frame-

based approaches, this reduces feasibility issues and enhances the

speed of the optimization. With the frame constraints, our linear

harmonic system is then solved by convex optimization. The rota-

tion constraints are kept hard, while the harmonicity constraints

are softened and ultimately enforced by minimization of a Laplacian

energy. Additionally, if there are initial feasibility issues with the

frame choices, we are able to �x the frames locally, an impossibility

with other frame-based methods. We refer to our method with the

acronym HGP, for “harmonic global parametrization.”

As a test of HGP, we run it on the benchmark from [Myles et al.

2014]. We compare it to several state-of-the-art methods and see

that it is the most robust. Only the method of [Chien et al. 2016b]

is comparable in terms of success rate, and our method is 2 to 3

orders of magnitude faster. It usually requires just one iteration

of a second-order cone program (SOCP) to �nd a solution, and is

faster than the other methods we compared to (though not by such

a large degree). Beyond speed and robustness, we �nd that HGP

also produces maps with relatively low distortion (see Figure 9).

We make a �nal note on organization of the paper: for readers

interested only in the application of the theoretical results, only

Section 3.3, Section 4, and Theorem 6.1 need to be read from Sec-

tions 3-6. The rest of these sections contain a nearly self-contained

exposition leading to the main theoretical result (Theorem 6.1). They

include a detailed summary of the index arguments from [Gortler

et al. 2006] (Section 3.2) and examples of the branched cover con-

struction and generalized index arguments (Figure 7), which help

to build intuition for the main result.

Fig. 2. Proof of concept for q = 6. A demonstration of HGP for hexagonal
seamless parametrization on two sphere models from the Princeton and
AIM@Shape repositories, respectively, with 3 cones each of cone angle 2π /3.
This case is of interest and has been considered before [Nieser et al. 2012].

2 PREVIOUS WORK
Parametrization of triangle meshes is a problem with a long his-

tory in computer graphics, and there are too many approaches to

describe individually. Here, we focus on approaches that are aimed

at achieving locally injective seamless parametrizations without

remeshing, or that have somehow inspired our method. We refer

the reader to some excellent surveys [Floater and Hormann 2005;

Hormann et al. 2007] for more complete expositions. As our method

has obvious relevance to quad meshing and directional �eld design,

we also recommend the following surveys for more information on

these topics: [Bommes et al. 2013; Vaxman et al. 2016].

We begin by noting that the majority of parametrization methods

use optimization over spatial variables, which describe the coordi-

nates for the images of the mesh vertices in R2
. HGP is amongst
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these. To parametrize complicated topologies, the mesh surface

must be cut to a mesh disk before mapping; and without additional

constraints, artifacts will arise along the cuts.

We use the language of [Myles and Zorin 2012] and describe such

parametrizations as global parametrizations. Given a cut, Myles

and Zorin note a useful correspondence between locally injective

maps (up to post-composition by a Euclidean isometry) and discrete

metrics on the mesh. In this context, they have a useful discussion

on holonomy of the resulting metric, and de�ne maps to be seamless
if they induce π/2 holonomy (we of course generalize this de�nition

to include 2π/q holonomy). This is discussed in greater detail in

Section 3.3.

2.1 Harmonic methods
A subfamily of the spatial variable approaches are harmonic meth-

ods. The introduction already gave a brief description of these, citing

[Gortler et al. 2006; Tong et al. 2006; Tutte 1963], so we just make a

few additional points here. First, we also note the work of Floater

[Floater 1997], who realized the utility of Tutte’s result, and gen-

eralized it to allow for arbitrary convex combination weights in

the discrete Laplacian. Since then, much analysis has been done

on various choices for such weights, and we refer the reader to

[Wardetzky et al. 2007].

As noted, early harmonic methods were limited in scope of appli-

cability, and the work of [Tong et al. 2006] developed a framework

allowing for application of such methods to arbitrary topologies,

achieving π/2 holonomy. They ask for user-assisted creation of

a singularity graph which decomposes the surface into patches,

and solve a harmonic system on each patch individually. Suitable

continuity and harmonicity conditions are enforced on the edges

between patches, and harmonicity constraints are dropped on the

meta-vertices of the singularity graph.

The individual patch maps may be glued together to form a global

parametrization, and the system that we solve is nearly equivalent

to theirs in the case of a single patch and π/2 holonomy. In HGP, we

generalize to arbitrary rational holonomy, and develop theoretical

criteria which ensure local injectivity of the resulting parametriza-

tion map. These criteria could also be applied to their approach.

2.1.1 Orbifold methods. Here, we cite the harmonic orbifold-

based methods which have partially inspired us: [Aigerman and

Lipman 2015, 2016]. The �rst shows that for sphere and disk meshes

with 3 or 4 cone points and speci�c cone angles, solution of a har-

monic system produces a bijective parametrization to a standard

domain: a Euclidean orbifold. The limited scope is due to the �nite

number of Euclidean orbifolds.

HGP is a generalization of the Euclidean orbifold approach to

manifolds of arbitrary topology, numbers of cone points, and ratio-

nal holonomy; along with su�cient conditions for local injectivity

in this wider domain of applicability. The fact that these conditions

are only applied to cone and boundary triangles was inspired by

recent works demonstrating that distortion is maximized on the

boundary for planar harmonic maps [Chen and Weber 2015; Chien

et al. 2016a; Levi and Weber 2016].

Fig. 3. Results on large models. We show here three large models, from
the AIM@Shape database, with approximately one million faces, that HGP
succeeded in parametrizing in about 5 minutes. Such models are impossible
for slower methods to handle in an e�icient manner. The texture allows one
to see the quality of these maps.

In [Aigerman and Lipman 2016], the authors again consider map-

ping to orbifolds with harmonic maps, but this time map to hyper-

bolic orbifolds. As there are many more hyperbolic orbifolds (an

in�nite number), this method is much larger in scope. However, the

method is primarily useful for surface correspondence, as the seam

isometries are hyperbolic isometries, not Euclidean (in particular,

they are not Euclidean rotations). Additionally, their cone angles

are limited to being 2π/q for some positive integer q, and may be

no greater than π . Lastly, rectangles do not exist in the hyperbolic

plane, so there is no square lattice pattern that may be pulled back

onto the surface.

2.2 Local injectivity through convexification
Key in our work is the use of convexi�cation in the form of frames,

as introduced in [Lipman 2012]. They were also used in [Aigerman

et al. 2014], a paper focused on bijections between meshes, but

which may also be used for parametrization. Such frames enforce

positive orientations of triangles, but must be chosen carefully to

ensure feasibility. Our method allows one to only enforce frames on

cone and boundary triangles, alleviating some of these feasibility

concerns. For our frame choices, we utilize the frame �eld generated

by [Bommes et al. 2009].

Additionally, we note that maps that satisfy frame conditions

induce cone angles at interior vertices that are multiples of 2π .

Local injectivity only results if these angles are all 2π . HGP allows

for a local �x to these problems (see Section 7.1), which is not easily

applicable when frames are imposed over the entire mesh.

2.3 Other relevant works
There are several methods that work with variables that determine

the metric induced by the parametrization map. The most recent of

these is [Chien et al. 2016b], which uses the metric directly in the

form of edge lengths squared. Distortion is convex in these variables,

but the curvature conditions are not, and the resulting optimiza-

tion problem must be solved by sequential convex programming.

While quite robust, the running time can be quite high, and control
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over holonomy for higher genus surfaces requires dense nonlinear

constraints.

Many earlier metric-based methods aimed to approximate confor-

mal maps in their parametrizations: [Kharevych et al. 2006; Spring-

born et al. 2008]. The �rst uses triangle circumcircle radii as vari-

ables, while the second (denoted CETM) uses conformal scale fac-

tors at the vertices. These methods tend to lack robustness, as we

show with CETM in Section 8. Additionally, limiting to the space

of conformal maps is perhaps too restrictive, and harmonic maps

are the natural generalization. These methods also do not allow for

holonomy control for higher genus surfaces.

A related conformal aproach is that of [Gu and Yau 2003] which

computes parametrizations of surfaces of arbitrary genus with holo-

morphic 1-forms. These are just pairs of orthogonal harmonic 1-

forms, and similar to the higher-genus approaches of [Gortler et al.

2006], the method usually induces high (isometric) distortion and

does not allow for control of cone placement, or cone angles that are

not multiples of 2π . The work of [Dong et al. 2005] traces the �ow

lines of the pair of harmonic 1-forms to produce quad-dominant

meshes with user-controlled scaling.

There are many methods which have attacked the problem of

seamless parametrization by incorporating cone placement and

holonomy determination into their approach. These include: [Ben-

Chen et al. 2008; Bommes et al. 2009; Diamanti et al. 2015; Myles

and Zorin 2012, 2013]. HGP assumes that the cone points, angles,

and holonomy have been given, and aims to achieve these, so we

do not compare to these in this paper. Our method may be viewed

as being complementary to these methods.

In addition to [Chien et al. 2016b], there have been two other

recent works which solve similar problems. [Myles et al. 2014]

present a notable method for computing a seamless parametrization

guided by a cross �eld. While the method is fully robust, it does

not necessarily preserve the topology of the cross �eld. Moreover,

the produced map is typically not piecewise linear on the original

triangulation. [Fu and Liu 2016] use per-triangle a�ne transforma-

tions as variables, striving to make these integrable. A barrier term

ensures positive triangle orientation. While the method is quite

quick, it is not guaranteed to produce integrable transformations

that correspond to a locally injective seamless parametrization with

the prescribed cone angles.

Lastly, we must mention QuadCover [Kälberer et al. 2007], and

the related HexCover [Nieser et al. 2012] and [Knöppel et al. 2015],

which solved for stripe patterns on surfaces. These methods con-

sidered q-fold branched covers for q = 4, 6, and 2, respectively, and

our branched cover construction is directly inspired by these ap-

proaches.

3 PRELIMINARIES
In this section, we summarize some relevant previous works and set

some necessary de�nitions and notation. We begin with a descrip-

tion of Tutte’s classic result [Tutte 1963], and then sketch the proof

based on discrete 1-forms given in [Gortler et al. 2006]. In the �nal

subsection, we review the discussion of global parametrization and

holonomy from [Myles and Zorin 2012]. For the reader interested

primarily in application of HGP, only this last subsection, Section

3.3, need be read.

3.1 “How To Draw A Graph”
In 1963, Tutte proposed a simple method for embedding a pla-

nar 3-connected simple graph G in R2
as a straight-line drawing

[Tutte 1963]. One embeds a peripheral cycle (a “boundary”) as a

non-degenerate convex polygon, and replaces the other edges with

springs. The resulting equilibrium positions of the interior vertices

(those not in the peripheral cycle) and springs gives a valid straight-

line embedding of G.

To be more precise, let us set some notation. Let V denote the

vertices of G, let B denote the vertices of G in the chosen periph-

eral cycle (referred to as the boundary from here on), and let N (vi )
denote the neighbors of vertex vi . Additionally, we denote the posi-

tions of vertex vi by (xi ,yi ), and the constrained positions of the

boundary vertices by (bxi ,b
y
i ). One solves for the positions of the

interior vertices by solving a linear system of the following type:∑
vj ∈N (vi )

wi j (xi − x j ) = 0 vi ∈ V \B (1)∑
vj ∈N (vi )

wi j (yi − yj ) = 0 vi ∈ V \B (2)

xi = b
x
i vi ∈ B

yi = b
y
i vi ∈ B

In Tutte’s result, the weights are uniform, wi j =
1

|N (vi ) |
, resulting

in an embedding where the position of each interior vertex is the

average of the positions of its neighbors (Equations (1), (2)). With

this system, Tutte showed that:

Theorem 3.1 (Tutte). If B is embedded as the vertices of a non-
degenerate convex polygon in R2, i.e, the polygon has non-zero area
and no two vertices are coincident, then the resulting straight-line
drawing will be an embedding of G.

The utility of this linear method for parametrizing mesh discs

was recognized in [Floater 1997], and Floater showed that more

generally, the weights wi j just need to be positive to ensure the

embedding of the graph (and thus the mesh). For such weights, the

position of each interior vertex is some general convex combination

of the positions of its neighbors. As a result, such maps are called

convex combination maps (abbreviated as CCMs from here on).

3.1.1 Complex Notation. The linear system above may be more

compactly expressed with a complex number zi = xi +iyi describing

the position of each vertex vi :∑
vj ∈N (vi )

wi j (zi − zj ) = 0 vi ∈ V \B (3)

zi = bi vi ∈ B (4)

In Equation (4) above,bi = b
x
i +ib

y
i denotes the constrained position

of boundary vertex vi . For brevity, we will utilize such complex

notation for the remainder of this paper.

3.2 Proof by Index Argument
As our work extends the results from [Gortler et al. 2006] and gener-

alizes their arguments, we recall the relevant de�nitions made there,

and sketch their basic arguments in this section. Before continuing,

we note that the language of discrete di�erential geometry is used,
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and the concepts are described narrowly, only in ways that are rele-

vant to our particular setting. For more complete discussions, the

reader is referred to [Crane et al. 2013].

3.2.1 Discrete 1-Forms. We begin with an oriented mesh surface

S with vertices V , edges E, and faces F ; and we also require that

the graph formed by the vertices and edges is 3-connected. We may

consider each edge ei j as consisting of two half-edges hi j (going

fromvi tovj ) and hji (going the other way). Due to the orientability

of S , we may consider each face fk as consisting of a cycle of half-

edges consistent with the orientation, and we also get a natural

ordering for cycling through edges around vertices. On such an

object, we de�ne discrete 1-forms (which we simply refer to as

1-forms, hereafter):

De�nition 3.2. A discrete 1-form ρ on a mesh surface S is an

assignment of a real number ρi j to each half-edge hi j such that

ρi j = −ρ ji .

1-forms may be thought of as discretizations of vector �elds. For

our purposes, we consider 1-forms that arise from CCMs. Consider

the inset example, which illustrates the image of a CCM map (non-
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uniform weights) of a simple mesh disc

and two resulting 1-forms. The 1-forms are

ρxi j := Re

(
zj − zi

)
and ρ

y
i j := Im

(
zj − zi

)
,

and values (on the half-edges denoted by

the arrows) are shown in blue and red,

respectively. These two 1-forms may be

thought of as discrete representations of

the gradients of the real and imaginary

parts of the map.

The map may be reconstructed from ρx and ρy , up to translation,

by integrating these 1-forms. In particular, if one �xes a vertex v0

to be mapped to the origin, then the position of any other vertex vi
may be determined by taking any path from v0 to vi and summing

ρx and ρy along this path. If considering the inset example above,

remember to take the half-edge orientations into account.

More generally, we obtain a 2-dimensional (real) space of 1-forms

by taking linear combinations of these 1-forms, ρα,β := αρx + βρy ,

for arbitrary (α , β) ∈ R2
. Geometrically, we may see that ρ

α,β
i j is

the product of ‖(α , β)‖ and the signed length of the projection of

ρx e1 + ρ
ye2 (the image of the half-edge hi j ) onto the subspace

spanned by (α , β). See Figure 4, where we give an example with

‖(α , β)‖ = 1. An analysis of these 1-forms will show that a CCM

is always an embedding when the boundary is mapped to a non-

degenerate convex polygon.

3.2.2 Closedness and Co-Closedness. Given a 1-form ρ, we may

apply the co-boundary operator δ (the discrete extrerior derivative)

and obtain a real number δρ(fk ) for every face fk of the mesh:

δρ(fk ) :=
∑

hi j ∈fk

ρi j

If δρ(fk ) = 0 then we say that ρ is closed at fk . More generally, we

say that ρ is closed if δρ(fk ) = 0 for all faces. For intuition, note

that this means ρ may be integrated locally about fk to obtain a

well-de�ned function, as summation around the half-edges of fk is

zero.
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Fig. 4. An illustration of ρ0.8,0.6 for the inset example. The geometric intu-
ition for the value on a particular half-edge is illustrated on the right.

Generally speaking, most 1-forms are not closed, but any of the

1-forms ρα,β de�ned previously will be closed. This is because they

were obtained from an actual function on the vertices (because they

are exact).

Given a 1-form ρ, we may apply the boundary operator ∂ (deter-

mined by the weightswi j ) and obtain a real number ∂ρ(v) for every

vertex of the mesh. It is given by the formula:

∂ρ(vi ) :=
∑

vj ∈N (vi )

wi jρ ji

If ∂ρ(vi ) = 0 then we say that ρ is co-closed at vi . If ∂ρ(vi ) = 0 for

all vertices, we say ρ is co-closed. For a 1-form ρα,β from a CCM

with weights wi j , we see that it is co-closed at all interior vertices,

as the co-closed condition is just a linear combination of Equations

(1) and (2). For this reason, we also sometimes describe a 1-form

that is co-closed at vi as being harmonic at vi .
Lastly, we note that a 1-form that is both closed and co-closed

is harmonic. We do not utilize fully harmonic 1-forms, but 1-forms

that are mostly harmonic. For example, note that any ρα,β for our

small example is not harmonic at any of the boundary vertices.

3.2.3 Index of a 1-Form. Before de�ning index, we make two

important notes. The �rst is that in our index counting arguments,

we actually consider 1-forms only on closed (oriented) mesh surfaces.

The example and discussions above also apply to a closed mesh of

genus 0, which we form by adding another face to the mesh disk

whose edges are the boundary edges of the disk. We refer to such a

face as an exterior face, and continue to use the language of boundary

and interior vertices to describe those sets from the original disk

mesh. It is the 1-forms ρx , ρy , and ρα,β on the sphere mesh, which

we analyze ultimately. Also, the de�nition below for index is not

meant to apply to true boundary vertices of some non-closed mesh.

The second note is that in the main body of the text, we only

analyze 1-forms that are non-vanishing: which have nonzero values

on all half-edges, and assume that all CCMs do not result in edges of

zero length and faces with zero area. These simplify the presentation

greatly. However, to be rigorous, we will have to deal with vanishing

1-forms, and the second (related) assumption must be proven, so

we defer discussion of these technical details to Appendix B.

For a non-vanishing 1-form, let scgρ (v) or scgρ (f ) denote the

number of sign changes in ρi j when the half-edges around v or f
are cyclically traversed. For scgρ (v), one may consider either the

set of outgoing half-edges or the set of ingoing half-edges. Note
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that scgρ (v) and scgρ (f ) will necessarily be a non-negative even

number.

De�nition 3.3. The index of ρ about a vertex or face p is:

indρ (p) := 1

2

(
2 − scgρ (p)

)
.

If our 1-form is thought of as being sampled at the midpoint of

each edge from a smooth interpolated vector �eld which is zero at

each vertex and in the middle of each face, then indρ (p) is exactly

the index of the smooth vector �eld at p. As might be expected, we

have a theorem analogous to the Poincaré-Hopf index theorem:

Theorem 3.4 (Index Formula). A non-vanishing 1-form ρ on a
mesh surface S of genus д satis�es the following formula:∑

v ∈V
ind(v) +

∑
f ∈F

ind(f ) = χ (S) = 2 − 2д (5)

We refer to Equation (5), as the index formula for the remainder

of the paper. A simple and satisfying proof is given in [Gortler et al.

2006]. In addition, there is a connection between closedness and

co-closedness and the index at vertices and faces:

Lemma 3.5. If a non-vanishing 1-form ρ is closed or co-closed at a
face or vertex p, respectively, then indρ (p) ≤ 0.

This follows simply by noting that if ρ is non-vanishing and

closed or co-closed at a vertex or face p, then there must be values

of opposite signs (otherwise the relevant sum cannot be zero).

3.2.4 Wheel Vertices & Local Injectivity. In order to achieve an

embedding or locally injective map, we would like interior vertices

and faces to be well-behaved. In particular, we would like them to

be wheel and convex, as de�ned in [Gortler et al. 2006]. Given our

setting of triangular meshes, and CCMs that produce nonzero area

faces, we have automatic convexity of the faces. Thus, we recall only

the de�nition for wheel vertices, and state a key lemma relating the

condition to the index of 1-forms ρα,β at the vertices:

De�nition 3.6. Let γi be the signed angles between adjacent out-

going half-edges in the 1-ring of v (angles are measured by going

the “short” way between half-edges, so 0 < |γi | < π ). A vertex v of

a CCM is wheel if all the γi have the same sign and

∑
i |γi | = 2π .

Lemma 3.7. If a vertex v of a CCM is non-wheel, then for some α
and β , the 1-form ρα,β is non-vanishing and indρα ,β (v) < 0.

In particular, Lemma 3.5 tells us that we may show an interior

vertex in a CCM to be wheel by showing that the index of ρα,β

is zero for all α , β (Lemma 3.5 prohibits positivity). The intuition

behind Lemma 3.5 is illustrated and explained in Figure 5. In our

setting, local injectivity is equivalent to having all non-cone interior

vertices be wheel. This is discussed further in Section 6.

3.2.5 Index Counting. We may now discuss the key index count-

ing argument. Assume the conditions of Theorem 3.1 (with arbitrary

convex combination weights). For the resulting CCM, let us see that

any non-vanishing ρα,β will have index zero over all interior ver-

tices (and faces, by the appropriate analogue to Lemma 3.7).

We consider the index formula (5). As noted previously, ρα,β is

closed and co-closed at all interior vertices and faces. So by Lemma

line crosses
2 wedges

line crosses
4 wedges

line crosses
4 wedges

non-wheel vertex non-wheel vertexwheel vertex

Fig. 5. A reproduction of half of Figure 3 from [Gortler et al. 2006] (excludes
face diagrams). If we consider ρy near the illustrated vertex, we see that a
sign change occurs each time the line is crossed as we trace the boundary
of the 1-ring. Thus, the index is 0 for the wheel vertex, and negative for
the non-wheel vertices. More generally, if any vertex is non-wheel, then a
similar line may be found and we may consider ρα ,β for any nonzero (α, β )
perpendicular to the line. For this particular illustration (α, β ) = (0, 1).

3.5, all of these elements make nonpositive index contributions and

we let s ≤ 0 denote the sum of these contributions. It remains to con-

sider the contribution of the exterior face and boundary vertices. An

example schematic (inspired by Figure 2 from [Gortler et al. 2006])

has been inset and shows the convex polygon boundary and the

potential index contributions for ρα,β at the boundary vertices. Ar-

rows on the edges denote the half-edges on which ρα,β is positive.

index ≤ 0

index ≤ 1

(α, β
)

As the polygon is convex and ρα,β is non-

vanishing, the exterior face is closed and

has index 0. All but two boundary ver-

tices have two outgoing boundary half-

edges on which ρα,β has opposite signs,

so make nonpositive index contribution.

The remaining two vertices make contri-

bution no more than 1 as this the maximum possible index value.

Let t denote the sum of the exterior face and boundary vertex index

contributions.

Thus the index formula gives us: s + t = χ (S2) = 2. As t ≤ 2, we

see that s = 0 and that indeed all interior vertices are wheel (and

faces are convex). This demonstrates local injectivity, and to prove

that the result is an embedding (as stated in Theorem 3.1), just a bit

of additional work is needed. As it is not immediately relevant to us

here, we refer the reader to [Gortler et al. 2006] for these details.

3.2.6 Non-Convex Generalization. Before moving on, we merely

state a generalization of Tutte’s theorem (3.1) to non-convex bound-

aries, from [Gortler et al. 2006], and discuss it informally. The precise

de�nitions of turning angle and re�ex boundary vertices are given

in Appendix C.

Theorem 3.8. Consider a 3-connected mesh disc, with its boundary
mapped to a simple polygonal curve with positive edge lengths and
turning angle 2π . The resulting CCM is an embedding if all the re�ex
vertices of the boundary are in the convex hull of their neighbors.

The closed polygonal curve bounds a compact domain, and re�ex

vertices are those for which this domain is locally non-convex. The

condition at a re�ex vertexv is implied if all interior triangles having

v as a vertex are positively oriented. This mirrors the condition in

our generalization, Theorem 6.1.

The result is proven by a more sophisticated counting argument,

and shows that for a more complicated boundary curve, the exterior
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Fig. 6. An example parametrization, and the rotated harmonicity condition. A locally injective parametrization is shown, with the seam edges and cones
colored to illustrate duplication a�er cu�ing. Insets set notation for Equation (8). In the le�most inset, we have the 1-ring of a degree 2 (in Gs ) seam vertex vi
in S . In the other insets, we have the 1-rings of v0

i and v1

i in the image f (Sc ) (z0

i and z1

i are f (v0

i ) and f (v1

i ), respectively). The sets N ∗(v0

i ) and N ∗(v1

i ) are
the vertices labelled with red dots. The rotation e2π r1i/q denotes the rotation constraint for the seam edges neighboring vi . See text for further commentary.

face and boundary vertices still make a total index contribution of 2

(when the condition on re�ex vertices holds). Lastly, we note that

arguments like this lead to similar results in [Gortler et al. 2006] for

multiply-connected mesh discs, which may be found there.

3.3 Global Parametrization
The above ideas are useful for parametrizing mesh disks, but one also

encounters meshes of more complicated topologies in graphics (and

in other �elds of application). Because of this, we brie�y review some

concepts from Section 3 of [Myles and Zorin 2012] and set some

notation. As noted in the introduction, and to match the discussion

in [Myles and Zorin 2012], we assume our mesh S is a triangular

mesh. It is straightforward to generalize our theoretical result to

polygonal meshes, but the conditions are more complicated to state,

and triangular meshes are the most relevant domain by far.

Let д andm denote the genus and number of boundary compo-

nents of S . Unless д = 0 and m > 0, topological considerations

imply that there is no locally injective map of S to R2
. Thus, one

searches in these cases for a global parametrization of S , which is a

selection of cuts along edges transforming S into a mesh disc Sc , and

a piecewise linear parametrization map f : Sc → R
2
. Let Es denote

the edges in the cuts, and Vs denote the vertices at their endpoints.

They form a subgraph of the mesh, which we denote with Gs and

refer to it as the seam graph. For a seam edge ei j , we use e0

i j and

e1

i j to denote the two copies of the edge in Sc that are created upon

cutting.

If f (e0

i j ) and f (e1

i j ) are of equal length for all ei j ∈ Es , then we

may pullback the standard metric on R2
to obtain a cone metric

дf on S . This metric is �at everywhere except for a discrete set of

cone points, which will be a subset ofVs if f is locally injective. If a

seam graph is chosen arbitrarily, then the resulting map will likely

have high distortion, as the original metric (the restriction of the

standard metric on R3
) is likely to di�er greatly from дf . Thus, it is

important to choose Gs well, and to place cone points judiciously.

One may also go the other direction and begin with a cone metric g

which is �at on each triangle of S , and produce a global parametriza-

tion. In particular, one cuts the mesh S into a disc Sc along a seam

graph Gs which includes all the cone points of g and intersects

all the boundary components of S . Then, one may lay down the

triangles one-by-one following a spanning tree on the dual graph

of Sc . Flatness of g at non-cone vertices ensures that there is no

dependence on the choice of spanning tree.

The parametrization map f is a seamless parametrization if f (e0

i j )

and f (e1

i j )may be mapped onto each other by an orientation-preserving

isometry of R2
for which the rotational part is a rotation by some

multiple of π/2. This is useful for quandrangulation, but we will

more generally allow this angle to be any rational multiple of 2π .

In particular, suppose all angles are multiples of 2π/q, where q is a

positive integer.
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Correspondingly, a cone metric g is de�ned to be seamless if

the holonomies are multiples of π/2. The holonomy angles are

generated by those for a homology basis of S\C , whereC denotes the

cone points. As a brief reminder, recall that the holonomy of g about

a loop in the dual graph is the total angular di�erence between a

vector and a copy of it parallel transported around the loop. Parallel

transport is done here with the discrete Levi-Civita connection

[Crane et al. 2013]. An alternate and equivalent description is also

given in [Myles and Zorin 2012], and we refer readers to these two

sources, if further explanation is desired.

As noted in Proposition 2 of [Myles and Zorin 2012], a cone metric

is seamless if and only if any global parametrization inducing this

metric is seamless. Furthermore, the rotation angles between copies

of seam edges are linear functions of the holonomy angles, and

may be obtained by solving the system described in Appendix B

(of [Myles and Zorin 2012]). However, because rotation angles are

indistinguishable up to multiples of 2π , they only determine the

holonomy angles up to multiples of 2π . This is a slight clari�cation

of Proposition 2, as stated in [Myles and Zorin 2012], but is quite

relevant here as it explains why cone angles and turning angles are

veri�ed in our method to check for success (see Section 7.1).

4 THE HARMONIC SYSTEM
Before describing our linear harmonic system, we recall our object

to be parametrized: an oriented triangular mesh surface S of ar-

bitary topology, whose underlying graph of vertices and edges is

3-connected (almost always true in application). The variables in

our system are zi := f (vi ) for the vertices vi of Sc , the mesh disc

resulting from cutting of S . This is well-de�ned if vi < Vs , but for

vertices in the seam, cutting causes them to be duplicated a number

of times equal to their degree in Gs . Let us denote these copies

with superscript indices, e.g., vertex vi of degree d will have its

copies labelled as v0

i ,v
1

i , . . . ,v
d−1

i . Their positions will be denoted

by z0

i , z
1

i , . . . , z
d−1

i , as might be expected.

The �rst set of conditions are the rotation constraints for each

seam edge ei j , as referenced in Section 3.3. Let the endpoints of e0

i j
bevai andvaj and the endpoints of e1

i j bevbi andvbj . The constraints

are of the form:

zaj − z
a
i = e

i

2π ri j
q (zbj − z

b
i ), ei j ∈ Gs (6)

where ri j ∈ {0, 1, . . . ,q − 1} is used to give the rotation angle,

obtained from the desired holonomy angles.

The second set of conditions are the harmonicity conditions for

non-seam vertices:∑
vj ∈N (vi )

wi j (zi − zj ) = 0, vi ∈ V \Gs (7)

Note that these are the same as Equation (3), and the wi j again

denote arbitrary positive convex combination weights.

The third and last set of conditions are the harmonicity conditions

on the seam vertices that are not cones. These are quite convoluted

to state precisely, but are conceptually simple, so we present here

the condition for such seam vertices that are of degree 2 in Gs . This

should be most, if not all non-cone seam vertices (and the cut seam

may always be modi�ed to ensure all non-cone seam vertices are of

degree 2). Figure 6 establishes notation, and the condition follows

for such a vertex vi :∑
vj ∈N ∗(v0

i )

wi j (z
0

i − zj ) +
∑

vj ∈N ∗(v1

i )

wi je
i

2π r
1

q (z1

i − zj ) = 0. (8)

The basic conceptual idea is easily seen in the �gure. The 1-rings

of seam vertices have been split in the cutting process and the

various sectors have been rotated by known rotation angles. These

rotations must be accounted for, and the positional di�erences (in the

sums) must be rotated back to create the proper harmonic condition.

The general condition for non-cone seam vertices of higher degree

is given in Appendix A as Equation (14).

Our harmonic system consists of Equations (6), (7), and (14). We

refer to solutions of this system as q-convex combination maps (or

q-CCMs, for short). Lastly, we note that our system is related to that

of [Tong et al. 2006]: it consists of just one patch, Sc , as opposed to

many; and allows for arbitrary rational cone angles and holonomies,

instead of just multiples of π/2.

5 A Q-FOLD BRANCHED COVER
With a q-CCM, we will see in this section that we may construct

from it a 2-dimensional space of mostly harmonic 1-forms on a q-

fold branched cover. For the reader interested only in the application

of HGP, this section may be skipped. No explicit construction of

the branched cover (or the 1-forms) is needed for implementation.

Lastly, throughout this section and the next, we refer to the examples

from Figure 7, as examples A, B, and C.

Given a q-CCM f , consider the q maps denoted f0, f1, . . . , fq−1,

where fn :=
(
e2πni/q

)
f . These are just rotated copies of f . Exam-

ples are shown in Figure 7. To construct the branched cover, we will

takeq corresponding copies of the cut mesh, denoted S0

c , S
1

c , . . . , S
q−1

c
and identify seam edges of these cut meshes according to the fn
maps.

In particular, for each seam edge duplicate e0

i j (there should be

q − 1 of them), we identify it to the other duplicate e1

i j for which

their images under the fn maps are parallel and their component

half-edges are pointing in the same direction. This duplicate is likely

on a di�erent copy of Sc , and must exist by the rotation constraints

(6) and the fact that we have q rotated copies e1

i j . Again, Figure

7 provides useful examples, with edge identi�cations being color-

coded.

In these, f happens to be locally injective, and we may think of

the images of the fn as representations of the cut meshes Snc . f will

not be locally injective in general, but the process will remain the

same, as the construction is topological. We will denote the resulting

branched cover by S̃q , and it is an oriented triangular mesh, as the

edge identi�cations are made in a way that keeps the orientations

of the copies of Sc consistent.

The covering map Pq : S̃q → S is implicit in the construction.

Let Q :

⋃q−1

n=0
Snc → S̃q denote the quotient map which describes

the edge identi�cation described above. For any non-seam vertex

or edge, or triangular face in S , its pre-image is the set obtained by

applyingQ to the q copies of it in

⋃q−1

n=0
Snc . An analogous statement

holds for seam edges ei j and vertices v , except there are 2q and
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Fig. 7. Branched covering construction examples (q = 4). Illustrated are fn (Sc ) for three examples, labelled A, B, and C. These may also be thought of as the
mesh copies Snc . Edge identifications are color-coded. In example C, 16 identifications are needed, so numbers are used as well, with an identification being
made if both color and number match. Next to the examples, there is information about the topology of S and S̃q , the cone points and angles of S , and the
boundary components of S and their turning angles (given in the notation of Sections 5 and 6). In examples A and B, the mesh S is a disk mesh with a single
cone point, of cone angle 3π /2 and π , respectively. In window C, the mesh S is a torus with two cone points (black and white vertices) of cone angles 5π /2
and one boundary component, with turning angle −π . A topological illustration of S for example C is in window C

∗. If cut along the colored edges, we obtain
a disc that is topologically equivalent to the le�most mesh in example C. Further discussion of these examples is in Sections 5 and 6.

q deg(v) copies, respectively, in

⋃q−1

n=0
Snc . Note that the cone points,

denoted by C as a set, are the branch points, with other structures

having exactly q preimages. Further discussion is in Section 5.2.

5.1 Some 1-forms on S̃q

On S̃q , we de�ne a 2-dimensional space of 1-forms. As done in

Section 3.2.1, we �rst de�ne two 1-forms: ρ̃x and ρ̃y . For any edge

ẽi j of S̃q not resulting from edge identi�cation, it corresponds to

an edge eni j from some cut mesh Snc . If we let vni and vnj denote the

endpoints of eni j , then we de�ne ρ̃xi j := Re

(
fn (v

n
j ) − fn (v

n
i )

)
and

ρ̃
y
i j := Im

(
fn (v

n
j ) − fn (v

n
i )

)
.

For any edge ẽi j resulting from an edge identi�cation, we just

pick one of the identi�ed edges, and de�ne ρ̃xi j and ρ̃
y
i j analogously.

It will be well-de�ned, since the identi�ed edges had parallel images

that are isometric, so it does not matter which edge we take. Finally,

we de�ne ρ̃α,β := αρ̃x + βρ̃y for any (α , β) ∈ R2
. These 1-forms

will be analyzed to prove Theorem 6.1.

5.2 The topology of S̃q
To perform this analysis, we must determine the topology of S̃q .

This is determined by the Riemann-Hurwitz formula:

Theorem 5.1. If M̃ is an N-fold branched cover of a base surface
M , and R denotes the rami�cation points of M̃ and eP denotes the
rami�cation index at P , then the following formula holds:

χ (M̃) = N χ (M) −
∑
P ∈R

(eP − 1) .

Recall that a rami�cation point P is a pre-image of a branch

point, and near P the covering map looks like z 7→ zeP , de�ning the

rami�cation index. The inset (from Figure 5 of [Kälberer et al. 2007])

illustrates a self-intersecting immersion of the

neighborhood of a rami�cation point of index

4, with points in the branched cover sharing

horizontal coordinates if they map to the same

point under the covering map. Note that this

inset may also serve as a topological picture of

S̃q for example A (though the geometry induced

by the immersion does not match).

It is also quite easy to deduce the topology of S̃q for example B:

that of two disjoint discs. This example helps to show that S̃q need

not be connected (though it usually is). For example C, the topology

is hard to deduce by eye, so we will use the Riemann-Hurwitz

formula.

For this (and to apply the formula generally), we must determine

how many rami�cation points lie above each branch point (cone

point) and what their rami�cation indices are. We shall see that this
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depends only on the desired cone angle at the branch point, so let

us de�ne an angle index ki at branch (cone) point vi , so that this

desired angle is 2πki/q.

We need to consider the 1-ring R1(vi ) about a cone point vi and

P−1

q (R1(vi )). Note that R1(vi ) is cut into sectors by the seam graph

Gs , and the q copies of these in

⋃q−1

n=0
Snc are identi�ed under Q to

form P−1

q (R1(vi )). There is a rami�cation point for each connected

component of P−1

q (R1(vi )), and the number of copies of R1(vi ) re-

quired to form the component gives the rami�cation index.

Let us �rst consider the case where vi is of degree 1 in Gs , as is

true for the cone points in examples A and B. Here, there is only one

sector and duplicate of vi in each copy of Sc , and we may begin at

the duplicate of vi in S0

c and move around it in a counterclockwise

manner (according to the orientation on S) making identi�cations.

The �rst identi�cation is to the sector in S
ki (modq)
c , by the rotation

constraints (6) (derived from the desired cone angle).

Similarly, each subsequent identi�cation will take you to a di�er-

ent copy of Sc where the superscript is incremented by ki (modq)
each time. Once a return has been made to S0

c , a connected compo-

nent of P−1

q (R1(vi )) has been formed. The formation of the other

components is an analogous and parallel process. For intuition, the

reader is invited to follow this argument for examples A and B,

where ki = 3 and 2, respectively (and q = 4, of course).

We have reduced the problem to one in basic modular arithmetic.

Each rami�cation point has rami�cation index equal to the order

of ki in Z/qZ, and the number of rami�cation points is equal to

the index of 〈ki 〉 (the subgroup generated by ki ) in Z/qZ. We have

argued for the following result in the degree 1 case.

Lemma 5.2. The number of rami�cation points above a branch
point vi with angle index ki is gcd(ki ,q). The rami�cation index at
each of these points is q/gcd(ki ,q).

For cone points vi of higher degree in Gs , it is not hard to see

that the same equivalence to the modular arithmetic problem holds.

The fact that R1(vi ) is split into multiple sectors just means that

additional identi�cations are needed to create a copy of R1(vi ). As

the identi�cations are parallel, we still end up incrementing the

superscript by ki (modq) after each copy of R1(vi ) has been added.

Example C provides two examples of these higher degree cases with

cones of degrees 2 and 5 (and ki = 5 and q = 4 for both).

5.2.1 Boundary components. In order to use the Riemann-Hurwitz

formula and prove Theorem 6.1, we must also consider boundary

components Bj of S and their preimage P−1

q (Bj ) ⊂ S̃q . As can be

seen in example C, P−1

q (Bj ) is not merely q copies of Bj in many

cases. Additionally, we must de�ne turning angle and prove some

relevant lemmas about index contributions. To not further delay the

main index counting argument, we summarize the main lemmas

below and refer the reader to Appendix C for further details.

First, we state an analogue of Lemma 5.2 which follows by exactly

the same line of reasoning. Under the conditions of Theorem 6.1,

let us use lj to denote the turning index, where the turning angle of

Bj is 2πlj/q.

Lemma 5.3. The number of connected components of P−1

q (Bj ) above
a boundary Bj with turning index lj is gcd(lj ,q). The turning angle
of each of these components is 2πlj/gcd(lj ,q).

With a way to count boundary components in S̃q , we may now

apply the Riemann-Hurwitz formula to exampleC . It has one bound-

ary component with turning index -2, so S̃q has gcd(−2, 4) = 2

boundary components. χ (S) = −1, as a once-punctured torus, and

there are two rami�cation points of index 4/gcd(5, 4) = 4. Thus,

χ (S̃q ) = −10 = 2 − 2д̃ − 2, where д̃ = 5 denotes the genus of S̃q .

Thus, S̃q is a twice-punctured genus 5 surface in example C.

Secondly, we present a formula for the index contribution of a

boundary component for any non-vanishing ρ̃α,β , which is the

main aim of Appendix C.

Lemma 5.4. If a boundary component Bj has turning angle 2πϕ for
some integer ϕ, then the total index contribution (for a non-vanishing
ρ̃α,β ) of its exterior face and vertices is ϕ + 1.

Lastly, we again note that our constructed S̃q is a generalization

of the branched covers described in QuadCover [Kälberer et al.

2007], HexCover [Nieser et al. 2012], and the stripe patterns paper

[Knöppel et al. 2015].

6 INDEX COUNTING ON THE BRANCHED COVER
We may now �nally state and prove the main theoretical result of

the paper. The reader only interested in application of HGP, only

needs to understand the statement of Theorem 6.1. We note that

analogous to the de�nition of cone triangles, boundary triangles
refer to triangles of S containing a boundary vertex (or two). The

de�nition for turning angle is given in Appendix C.

Theorem 6.1. Let f denote a q-CCM of S , with speci�ed cone
points and holonomy angles determining the rotation constraints. If the
cone and boundary triangles are mapped in an orientation-preserving
manner, and the induced metric on S achieves the desired cone angles
and turning angles, then f is locally injective.

To show that f is locally injective it su�ces to show that any

non-vanishing 1-form ρ̃α,β is of index zero at all interior vertices

of S̃q . This ensures that all interior vertices of f (Sc ) are wheel, and

that the seam vertices will also be wheel under reconstruction of

the 1-ring by isometries of the component sectors. We state �rst a

useful lemma which stems directly from the discrete Gauss-Bonnet

equation.

Lemma 6.2 (Gauss-Bonnet).

q |C | −
∑
vi ∈C

ki +
m∑
j=1

lj = q(2 − 2д −m).

As noted before, we consider the index formula (5). As with the

proof of the disc case, we need to consider our 1-forms ρ̃α,β on

a closed mesh, so we add exterior faces to each of the boundary

components of S̃q . The Euler characteristic of the cover goes up by

1 for each exterior face we add. With the previous discussions, we

have determined the right-hand side (RHS) of formula (5). Below,

we utilize the Riemann-Hurwitz formula and Lemmas 5.2, 5.3, and
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6.2.

RHS = q(2 − 2д −m) −
∑
P ∈R

(eP − 1) +

m∑
j=1

gcd(lj ,q)

= q(2 − 2д −m) − q |C | +
∑
vi ∈C

gcd(ki ,q) +
m∑
j=1

gcd(lj ,q)

=
∑
vi ∈C

gcd(ki ,q) +
m∑
j=1

gcd(lj ,q) −
∑
vi ∈C

ki +
m∑
j=1

lj

(9)

Now we consider the left-hand side (LHS) which counts the in-

dices of the 1-forms ρ̃α,β on S̃q . Again, let s denote the contribution

of interior vertices (in this case, non-cone and boundary points) and

interior faces (all but the exterior faces). All that remains is the con-

tributions of the rami�cation points and the boundary components,

whose neighboring triangles are positively-oriented and achieve

the desired cone and turning angles.

For the rami�cation points, note �rst that a cone point of angle

2πN has index contribution 1−N (a simple analogue to Lemma 5.4).

Let us group the rami�cation points into sets P−1

q (vi ) for branch

(cone) points vi . By Lemma 5.2, there are gcd(ki ,q) rami�cation

points in P−1

q (vi ) all of cone angle 2πki/gcd(ki ,q). Thus, we have

that the index contribution for the rami�cation points is:∑
vi ∈C

gcd(ki ,q)

(
1 −

ki
gcd(ki ,q)

)
=

∑
vi ∈C

gcd(ki ,q) − ki .

Analogous arguments with Lemmas 5.3 and 5.4 show that the index

contribution for the boundary components of S̃q is:

m∑
j=1

gcd(lj ,q) + lj .

Thus, we get that:

LHS = s +
∑
vi ∈C

gcd(ki ,q) − ki +
m∑
j=1

gcd(lj ,q) + lj (10)

and we may only have RHS= LHS if s = 0, indicating that all interior

vertices are wheel. QED.

6.1 Example A Calculation
In this brief subsection, we summarize the above argument for

example A, to provide some intuition. Afterwards, the reader is

invited to do the same with examples B and C with the starting

information from Figure 7 (left of examples). With this information,

we see that Lemmas 5.2 and 5.3 tell us that for S̃q from example A, we

�nd 1 rami�cation point of rami�cation index 4, with cone angle 6π ;

and 1 boundary component with turning angle 6π . Recalling that

χ (D) = 1, we have Equation (9): RHS = 4(1) − 3 + 1 = 2. The cone

angle and turning angle give us Equation (10): LHS = s + (−2) + 4.

Thus, we �nd s = 0, as desired.

7 THE METHOD (HGP)
The above generalization of [Gortler et al. 2006] demonstrates that

with positive orientation of the cone and boundary triangles, and the

correct induced cone angles and turning angles, we have a guarantee

on local injectivity of any resulting q-CCM. This inspires the use of

convexi�cation frames [Lipman 2012] for these triangles. However,

the choice of frames must be made carefully, in a way which does

not exclude the linear space of q-CCMs and lead to infeasibility.

The choice of frames is tied to the desired holonomy, so for the

results here, both were determined with the use of the frame �eld

from [Bommes et al. 2009]. Experimentally, we found that for mod-

els with low topological complexity (low genus), the use of these

frames worked well, and did not lead to feasibility problems. Unfor-

tunately, for higher genus models, these frames were not as robust.

Our solution to this problem was to soften the harmonicity con-

straints (7), (14) while maintaining the rotation constraints (6) and

the convexi�cation frames.

To state the optimization problem that we solve, recall that our

variables are the zi := f (vi ) for the vertices vi of Sc . Let us also set

some useful notation to make the representation more compact. Let

L denote the Laplacian-like matrix obtained when the harmonicity

conditions (7), (14) are gathered into a matrix equationLz = 0 (where

z denotes the vector of the zi ’s). Let us also inherit the notation of

Section 4 for the rotation constraints (6). Finally, let f
j
z (z) and f

j
z̄ (z)

denote the similarity and antisimilarity parts of Jf restricted to a

triangular face tj . These are simple linear functions in terms of the

zi for the vertices of tj . The set of cone and boundary triangles in

Sc will be denoted Fcb . We solve the following optimization:

minimize

zi
‖Lz‖2 (11)

subject to zaj − z
a
i = e

i

2π ri j
q (zbj − z

b
i ), ei j ∈ Gs (12)

Re

©­­«fz
��� ˜f

j
z

���
˜f
j
z

ª®®¬ − | fz̄ | ≥ ϵ, tj ∈ Fcb (13)

Note �rst that (12) is just the rotation conditions (6) repeated. Condi-

tions (13) are just the frame conditions, applied to the boundary and

cone triangles. ϵ is a small positive constant to enforce positivity.

The form of this condition was taken from [Chen and Weber 2015],

and
˜f
j
z /|

˜f
j
z | is used to denote the frame for tj . Lastly, we call the

energy in (11) the Laplacian energy, following [Jacobson et al. 2011].

If it is zero, the result will be a q-CCM.

The resulting problem is an SOCP (second-order cone program)

with quadratic energy, and the solver we use is Mosek [ApS 2015]. If

the resulting parametrization map is not locally injective, we use this

result to set new frames and attempt to solve again with new weights,

obtained from the edge lengths induced by the non-injective map.

This iteration is similar to the frame iterations performed in other

frame-based methods [Aigerman et al. 2014; Lipman 2012].

A few additional details: we use mean value coordinates for our

harmonicity conditions in this paper [Floater 2003], as they are

guaranteed to be positive; and ϵ = 0.01 for the results in this paper.

7.1 Frame Fixing
As noted before, the satisfaction of frame conditions may not ensure

the correct cone angle at a vertex, as it merely ensures they are

mapped in an orientation-preserving manner. The induced cone

angle may di�er by multiples of 2π . For Theorem 6.1 to apply, the

cone angles must be achieved exactly.
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If this occurs (it is rare), we can locally embed the 1-ring and just

re-assign frames based on this embedding as we only have frames

at the cone points. The resulting map is guaranteed to have the

correct cone angles if the SOCP is feasible. This follows from an

observation of [Aigerman et al. 2014]: that the angle sum at any

vertex is a continuous function of the vertex positions. Thus, any

other map in the convex space cut out by the frames will have the

same angle sums.

For the results in this paper, we implemented a simple algorithm

for local embedding. In particular, to determine the interior angles

(those based at the cone point) we solved an ABF-like system [Shef-

fer and de Sturler 2001] which minimized the sum squared angle

deviations while achieving the desired cone angle. The geometry of

the rest of the 1-ring is determined by �xing the lengths (from the

initial incorrect embedding) of the edges with the cone as a vertex.

Lastly, note that any other local embedding procedure achieving

the correct cone angle may also be used to generate new frames.

For other frame-based methods, there is no equivalent local �x,

because there are frames on every single triangle. If one simply

modi�es the frames about a troublesome point, but does not modify

other nearby frames in some systematic manner, feasibility issues

are likely to occur. Figure 8 shows the results of such a �x.

Fig. 8. Frame fixing demonstration. This femur model (from the AIM@Shape
repository) was parametrized with both HGP and the BD method [Lipman
2012], and did not produce the desired cone angles initially in both cases.
We highlight the troublesome region in the blowups, where the desired cone
points are denoted with pink dots and the yellow dot denotes a regular
vertex. The cone point nearest the regular vertex had cone angle 2π instead
of 4π and the regular vertex inherited this angle deficit and became a cone
with angle 4π . The top illustrates our result a�er frame fixing, while the
bo�om illustrates the BD result, which cannot be fixed in a similar fashion.

8 RESULTS
In this section, we discuss the robustness and running time of

our method, HGP, and present several �gures that demonstrate

its strengths. The models used are from the well-known benchmark

data set from [Myles et al. 2014], drawn from the AIM@Shape,

Stanford, and Princeton shape repositories.

8.1 Robustness & Running Times
On the benchmark, we compare to several state-of-the-art methods.

There were 114 models in the data set, and 8 of these are impossible

to parametrize without modifying mesh connectivity (�ligree, hel-

met, raptor, seahorse2, vh_skin, brain, pegaso, robocat). Thus, we

omit these and are left with 106 models.

In [Chien et al. 2016b], the same database was used, and we utilize

the statistics obtained there for comparison. In addition to the metric-

based method suggested there, they also consider implementations

of the constrained optimization methods of [Aigerman et al. 2014]

and the ARAP-L∞ approach of [Levi and Zorin 2014], as well as

the conformal CETM method [Springborn et al. 2008]. We add to

these statistics a comparison to an implementation of [Lipman 2012]

(denoted BD), another method which uses a full set of frames on

every triangle in the mesh. The LSCM energy [Lévy et al. 2002] was

optimized for, and the frames are also obtained from the cross-�eld

calculated in [Bommes et al. 2009]. Only a single SOCP iteration was

performed in each application of the method (no frame iteration),

as distortion was not a measure of success for the statistics.

Ultimately, we �nd that HGP succeeded in producing locally

injective seamless parametrizations for 104 models, failing on only

2. The resulting successful parametrization maps are included as

supplementary material. Of these, 96 required just 1 SOCP iteration,

6 required 2 iterations, and 2 required 3-4 iterations. For the other

methods under consideration: [Chien et al. 2016b] succeeded on 102,

[Aigerman et al. 2014] succeeded on 97, ARAP-L∞ succeeded on 93,

BD succeeded on 90, and CETM succeeded on just 18.

While the success rate of [Chien et al. 2016b] is nearly identical,

HGP is much faster. On larger models in the benchmark, it is 2

or 3 orders of magnitude quicker. For example, on the “armchair”

model, with 100K faces, our method took just 10.5 seconds, while

the metric-based method took about 40 minutes. HGP uses just one

iteration of an SOCP problem for almost all of the models in the

benchmark, while [Chien et al. 2016b] requires many. Also, we note

that the method of [Chien et al. 2016b] did not implement additional

constraints to control for the holonomy angles (though possible).

Thus on models with positive genus, the parametrizations obtained

there may be merely global and not fully seamless.

We may also consider more closely the comparison to the other

frame-based methods: BD and [Aigerman et al. 2014]. As re�ected

in the results above, it is advantageous that we only need to apply

frames on the boundary and cone triangles. This not only leads to

greater feasibility, but also a slight increase in speed. HGP tended

to be about twice as fast on average (BD took 26 seconds on the

armchair model). Finally, it is important to recognize that feasibility

of the underlying SOCP does not automatically imply success for

such frame-based methods. Feasibility only ensures the angle sums

about vertices up to some 2π multiple (see Figure 8). If we run into

these problems, we are able to apply a local frame �xing approach,

while such local �xes are not possible for BD and [Aigerman et al.

2014]. On our benchmark results, this frame �xing was applied to 4

out of 5 models successfully, the last one being one of our only 2

failures.
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Fig. 9. Map quality comparison on select models from the benchmark [Myles et al. 2014]. First column: Variant V1 of [Chien et al. 2016b]. Second column:
ARAP-L∞ [Levi and Zorin 2014]. Third column: BD [Lipman 2012]. Fourth column: HGP. The heat maps illustrate conformal distortion k , which serves as a
measure of map quality. As discussed further in Section 8, HGP produces high-quality maps even without explicit a�empts at distortion control.

8.2 Figures
Embedded within the paper, we have several images that illustrate

various strengths and features of HGP. First, we have Figure 1.

As noted in the caption, it shows four di�cult models for which

many other methods failed to produce locally injective seamless

parametrizations. The method of [Aigerman et al. 2014] fails due to

infeasibility of the convex problem cut out by the frames. ARAP-L∞
produces a parametrization map, but it contains foldovers. CETM

takes the original metric and �ows out of the region of metrics due

to violation of the triangle inequality. The method of [Chien et al.

2016b] managed to produce locally injective maps, but took over

an hour to complete on the four models, while HGP took less than

a minute. Heat maps are provided in the image for the conformal

distortion k , and show that we not only succeed in producing locally

injective seamless results, but that the distortion for these models is

relatively low (see Figure 9 for some results for other models).

The second image, Figure 2, demonstrates HGP for q = 6. In

[Nieser et al. 2012], such holonomies were considered for the pur-

poses of hexagonal seamless parametrizations. Thus, we take two

models with 3 cones each (cone angles 2π/3) and use our method

to create such parametrizations. The result is pleasing and the

hexagons agree in orientation across the seam (though not exactly,

as we did not place the images of the cone points at Eisenstein

integers).

Figure 3 shows the success of HGP in parametrizing three very

large models (≈10
6

faces). The running time for each was approxi-

mately 5 minutes. The method of [Chien et al. 2016b] would take

signi�cantly longer. This is again due to the fact that we only require

one SOCP solve for these models.

Figure 6 is a schematic which illustrates the rotated harmonicity

condition, but also serves to give an example parametrization. The

model shown is the “retinal” model from the [Myles et al. 2014]

benchmark. Note that the parametrization is locally injective and

seamless (seam duplicate edges are labelled with the same color).

Figure 8 shows the successful application of our local frame �xing

method. The “femur” model was parametrized with both BD and

HGP, with the frames from [Bommes et al. 2009]. The results had

incorrect cone angles, with a cone that was supposed to be 4π
becoming a regular vertex with cone angle 2π and a nearby regular

vertex became a cone vertex of angle 4π . The local frame �x works

and produces a valid parametrization.

Last, but not least, we have Figure 9, which shows that HGP

produces high quality maps. We show results on a few models

alongside the results for a few other methods: variant V1 of [Chien

et al. 2016b], ARAP-L∞ [Levi and Zorin 2014], and BD [Lipman 2012].

As can be seen, our maps have better overall conformal distortion

than all methods, except for BD, which is comparable. This is despite

the fact that HGP merely minimizes the Laplacian energy without

any additional distortion terms. If distortion tends to be poor on

any particular model, we may also feed our map to any of these

methods, which should improve the result while keeping the map

locally injective.

9 CONCLUSIONS & FUTURE WORK
In this paper, we have demonstrated that HGP is a fast and ro-

bust method for locally injective seamless parametrization. The

desired holonomy angles are allowed to be any rational multiple

of 2π/q. The basis for our method is a satisfying generalization of

Tutte’s classic “spring embedding theorem” and the work in [Gortler

et al. 2006]. The solution to our harmonic system (Section 4) pro-

duces a parametrization map, which may be used to construct a 2-

dimensional space of mostly harmonic 1-forms on a q-fold branched

cover. As done in [Gortler et al. 2006], we utilize an index count-

ing argument on these 1-forms to show our main result (Theorem
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6.1). This result states that if the cone and boundary triangles are

positively oriented and achieve the correct cone and turning angles,

then the map is guaranteed to be locally injective. We solve the lin-

ear system by optimizing a Laplacian energy with convexi�cation

frames applied only on the cone and boundary triangles. This boosts

speed and robustness, as well as allows us to �x frames locally, if

cone angles di�er from the desired values by some multiple of 2π .

There are many avenues for future work. In Section 7, we noted

that with higher genus models it was sometimes di�cult to �nd good

frames, and the frames from [Bommes et al. 2009] would sometimes

lead to infeasibility. It would be of interest to �nd a more robust

way to choose frames. This might allow us to directly utilize the

linear space of q-CCMs, and would allow for more direct distortion

control. Lastly, we suspect that with a couple technical arguments,

the main result should hold for arbitrary non-rational holonomy

(by continuity).
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A HIGHER-DEGREE ROTATED HARMONICITY
To state the general rotated harmonicity condition precisely, we

need to set up some notation, and we refer the reader to the inset

schematic for added clarity. It illustrates the 1-ring of a degree 3

(in Gs ) vertex vi after cutting (though

the following discussion is for any de-

gree d). After cutting, the 1-ring ofvi is

split into d sectors by the edges of Gs .

These sectors may be cycled through

in a fashion that agrees with the orien-

tation on S , and we ensure that the su-

perscript indices labelling the copies of

vi follow this order. Let u0,u1, . . .ud−1

denote the neighbors of vi in Gs and

let uj be the vertex separating sector j from sector j + 1 (modd).
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Additionally, let uaj and ubj denote the copies of uj obtained after

cutting, which are adjacent tov
j
i andv

j+1 (modd )
i , respectively. Then

we may de�ne N ∗(vsi ) := N (vsi )−
{
ubs−1 (modd )

}
, where N (vsi ) is the

neighborhood in Sc . Lastly, we de�ne rs to be a correcting rotation

condition which is determined from the rotation conditions on the

seam edges including vi . In particular, r0 = 0 and rs =
∑s
j=1

θ j

where 2πθ j/q is the rotation condition between the edge from v
j
i to

ubj−1
to the edge from v

j−1

i to uaj−1
. The general condition is then:

d−1∑
s=0


∑

vj ∈N ∗(vsi )

wi je
i

2π rs
q (zsi − zj )

 = 0, vi ∈ Vs\C . (14)

B VANISHING 1-FORMS
In this section, we brie�y summarize the basic approach in [Gortler

et al. 2006] for dealing with vanishing 1-forms. The details are con-

tained within Appendices A and B in that paper, and the arguments

made there generalize easily to our case.

The �rst thing to note is that we may easily extend the de�nitions

for scg and ind to vanishing 1-forms. If a half-edge is 0, it does not

qualify as a sign change. Their basic approach is to note that if a

vanishing 1-form from a CCM is encountered, it may be perturbed

to a non-vanishing 1-form which does not add any positive index

vertices or faces and does not remove any negative index vertices or

faces. The standard analysis applies to this perturbed 1-form, and

we see that all vertices and faces are well-behaved with respect to

the vanishing 1-form.

In Appendix B, they extend these results to show that for a CCM,

there will be no singular structures (no edges of zero length, faces of

zero area, or angles of 0 or π ). In fact, this is the only result we really

need. Consider Figure 5 and note that if a vertex is wheel there is

an interval of directions that may be used to obtain negative index.

As the meshes are �nite, there must be a direction within that is not

parallel to any of the segments in the parametrization (which is the

only way to get vanishing 1-forms with no singular structures).

C WELL-BEHAVED BOUNDARIES
The aim of this section is to establish some necessary de�nitions of

turning angle and re�ex vertices and to prove Lemma 5.4. This is a

direct generalization of Lemma 4.14 and arguments from Lemma

4.15 in [Gortler et al. 2006], so we are brief with the presentation

(and recommend the reader consider the arguments therein �rst).

Lemma 5.4. If a boundary component Bj has turning angle 2πϕ for
some integer ϕ, then the total index contribution (for a non-vanishing
1-form ρ̃α,β ) of its exterior face and vertices is ϕ + 1.

We are in the setting of Theorem 6.1, so we may assume that all

boundary triangles (those having a boundary vertex) are positively

oriented. Given such a map, we consider the metric near boundary

Bj induced by the map.

De�nition C.1. The turning angle of Bj is given by the sum of

the individual turning angles at each vertex:∑
v ∈Bi

π − θv

where θv denotes the angle sum at vertex v .

Note that the turning angle at a vertex may now be arbitrarily

negative, unlike the de�nition given in [Gortler et al. 2006]. The

following de�nitions for convex and re�ex boundary vertices and

extrema correspond to the de�nitions in [Gortler et al. 2006].

De�nition C.2. A boundary vertex is convex if θv ≤ π .

De�nition C.3. A boundary vertex is re�ex if θv > π .

De�nition C.4. A boundary vertex is an extremum relative to a

direction d = (α , β) in the plane if the two boundary edges meeting

at v both project positively or negatively onto d .

The above are restatements of their de�nitions in terms of angle

sums (though not equivalent due to the possibility that θv > 2π ).

With all the boundary triangles positively-oriented, we �nd that the

index of a boundary vertex with respect to a direction d = (α , β) is

fully determined by whether or not the vertex is an extremum or

not, and the angle sum at the vertex.

Lemma C.5. A non-extremal boundary vertex has index k if θv ∈
(−2kπ , 2(1 − k)π ).

Lemma C.6. An extremal boundary vertex has index k if θv ∈
((−2k + 1)π , (−2k + 3)π ).

The above lemmas may be obtained with a direct count of sign

changes with respect to direction d , noting that the existence of

these changes is ensured by the fact that any angle of a triangle is

bounded above by π .

For a boundary Bj , let Nk and Ek denote the non-extremal and

extremal vertices with index k . The following holds by the same

argument used in the proof of Lemma 4.14.

Lemma C.7. For a boundary Bj with turning angle 2πϕ, we have:

(|E1 | − |E0 | − 3|E−1 | − . . . − (2k + 1)|E−k | − . . .)+

(−2|N−1 | − 4|N−2 | − . . . − 2k |N−k | − . . .) = ϕ

In particular, scaling of the boundary perpendicular to d = (α , β)
gives the above equality in the limit. We may now argue for Lemma

13. We note that the index of the exterior face is:

1 −
|E1 | + |E0 | + |E−1 | + · · ·

2

When summed with the indices of the boundary vertices, we get

the result:

1 −
|E1 | + |E0 | + |E−1 | + · · ·

2

+ ind(N0) + ind(N−1) + ind(N−2) + · · ·

+ ind(E1) + ind(E0) + ind(E−1) + · · ·

= 1 −
|E1 | + |E0 | + |E−1 | + · · ·

2

+ s

+ 0 − |N−1 | − 2|N−2 | + · · ·

+ |E1 | + 0 − |E−1 | + · · ·

= 1 +
1

2

[(|E1 | − |E0 | − 3|E−1 | − · · · ) + (−2|N−1 | − 4|N−2 | − · · · )]

= 1 + ϕ
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