
Singularity-Constrained Octahedral Fields for Hexahedral Meshing

HENG LIU, RWTH Aachen University
PAUL ZHANG,MIT
EDWARD CHIEN,MIT
JUSTIN SOLOMON,MIT
DAVID BOMMES, RWTH Aachen University

input tet mesh octahedral field singularity graph hex mesh (standard)

corrected singularity graph singularity-constrained octahedral field hex mesh (ours)

Fig. 1. Overview. Octahedral fields often exhibit singularities that are invalid for hex meshing, inducing non-hex elements and poor quality (top row). Our
algorithm (bottom row) starts from a corrected singularity graph and generates a hex-meshable oct. field, resulting in a valid and less distorted hex mesh.

Despite high practical demand, algorithmic hexahedral meshing with guar-
antees on robustness and quality remains unsolved. A promising direction
follows the idea of integer-grid maps, which pull back the Cartesian hex-
ahedral grid formed by integer isoplanes from a parametric domain to a
surface-conforming hexahedral mesh of the input object. Since directly opti-
mizing for a high-quality integer-grid map is mathematically challenging,
the construction is usually split into two steps: (1) generation of a surface-
aligned octahedral field and (2) generation of an integer-grid map that best
aligns to the octahedral field. The main robustness issue stems from the
fact that smooth octahedral fields frequently exhibit singularity graphs that
are not appropriate for hexahedral meshing and induce heavily degenerate
integer-grid maps. The first contribution of this work is an enumeration
of all local configurations that exist in hex meshes with bounded edge va-
lence, and a generalization of the Hopf-Poincaré formula to octahedral fields,
leading to necessary local and global conditions for the hex-meshability
of an octahedral field in terms of its singularity graph. The second contri-
bution is a novel algorithm to generate octahedral fields with prescribed
hex-meshable singularity graphs, which requires the solution of a large non-
linear mixed-integer algebraic system. This algorithm is an important step
toward robust automatic hexahedral meshing since it enables the generation
of a hex-meshable octahedral field.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2018/8-ART93 $15.00
https://doi.org/10.1145/3197517.3201344

CCS Concepts: • Computing methodologies → Mesh models; Mesh
geometry models; Volumetric models;

Additional Key Words and Phrases: hexahedral meshing, octahedral fields,
singularity graph, integer-grid maps

ACM Reference Format:
Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes.
2018. Singularity-Constrained Octahedral Fields for Hexahedral Meshing.
ACM Trans. Graph. 37, 4, Article 93 (August 2018), 17 pages. https://doi.org/
10.1145/3197517.3201344

1 INTRODUCTION
A key step in physical simulation and physically-based animation in-
volves dividing the spatial domain of the problem into a mesh whose
elements are associated to the unknown variables. This discretiza-
tion procedure has a strong bearing on the stability and fidelity of
the result: Poorly-shaped, incorrectly-oriented, or unevenly-sized
elements all can lead to failures in the simulation process.
A subtle consideration in meshing involves the type of element.

In particular, there are many structures into which the domain of
the simulation can be divided, including simplicial complexes, recti-
linear grids, and even combinations of different types of elements.
Among the choices for element type, hexahedral—or cube-shaped—
elements are known to yield tight approximation bounds for a sim-
ulation despite using fewer elements [Shepherd and Johnson 2008].
While this suggests that hexahedral (hex) meshing can support
more efficient simulation tools, theory and practice currently do not

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201344
https://doi.org/10.1145/3197517.3201344
https://doi.org/10.1145/3197517.3201344

93:2 • Liu, Zhang, Chien, Solomon, and Bommes

align: few existing hex meshing algorithms provide guarantees on
robustness or quality.

Inspired by successful algorithms for two-dimensional quadrilat-
eral meshing, a promising strategy for hex meshing takes place in
two steps. First, a set of mutually orthogonal directions is assigned
to each point in the volume, with the constraint that one direction
aligns to the normal at boundary points; this field—recently termed
an octahedral field [Solomon et al. 2017]—locally guides the orienta-
tions of the hex elements. Next, an integer-grid map is computed
with guidance from the octahedral field; pulling back grid lines via
this map yields boundary edges of the hexes.

A key challenge in this two-step pipeline involves the topology of
the octahedral field. While two-dimensional cross fields only exhibit
singular points around which the field can circulate, in three dimen-
sions octahedral fields have entire singular graphs that determine
their topological structure. Certain singularity graphs are incompat-
ible with an integer-grid parameterization, yielding degeneracies or
failure at steps downstream in the meshing pipeline. Necessary or
sufficient conditions are largely unknown regarding which singular
graphs are realizable as hex meshes.

With these issues in mind, our paper presents both theoretical and
practical progress toward the overarching objective of topologically-
controllable and geometrically-faithful hex meshing. On the theory
side, we are among the first to consider the relationship between
octahedral field topology and hexmesh topology by enumerating the
possible node singularities that can occur given a particular bound
on edge valence. Since edge degrees in desirable hex meshes are
low, this enumeration comprises a considerable development for the
most practical cases of field-guided hex meshing. Additionally, we
generalize the Hopf-Poincaré index formula to octahedral fields with
locally hex-meshable singularity structure. Beyond our theoretical
study, we also present an efficient algorithm to generate octahedral
fields with prescribed hex-meshable singularity graphs; this allows
admissible singular graphs to be realized as fields that can guide
existing hex meshing techniques.

We test our theory and algorithms on several challenging field de-
sign test cases. Even for fairly exotic hex-meshable singular graphs,
we successfully extract faithful octahedral fields that lead to hex
meshes with the desired singularities. The complete source code
[Liu et al. 2018] is publicly available as a building block for future
research.

2 RELATED WORK
We begin by reviewing state-of-the-art related methods for quad
meshing of surfaces, before moving onto related works for hexmesh-
ing of volumes. Along the way we highlight some subtle difficulties
that arise in this generalization to a volumetric setting.

2.1 Surface Work andQuad Meshing
Field-based parametrization approaches to quad remeshing have
been extremely successful in producing high-quality quad meshes.
In these approaches, a cross field is used to guide a parametrization
of the surface in question to a quantized cone manifold. This allows
for a quad mesh to be pulled back onto the surface. We cover some
relevant works below and refer to surveys on directional field design

[Vaxman et al. 2016] and quad remeshing [Bommes et al. 2013b] for
further discussion.

Our technique is heavily influenced by thework of Ray et al. [2008],
who produced N -symmetry direction fields with input indices satis-
fying the Hopf-Poincaré formula. This was achieved by “zippering,”
or specification of topological matchings in a smart sequential or-
der, which guarantees correct vertex indices. The “chart-zippering”
portion of the algorithm described in §5.3 can be understood as a
volumetric extension of this strategy with the additional challenge
of connecting singularities correctly.
Related work by Crane et al. [2010] achieved a similar goal by

directly optimizing the smoothest (continuous) connection rather
than initially constructing (discrete) topological matchings. Their
approach does not generalize to 3D in a straightforward manner, as
rotations do not commute in this setting and so(3) is non-abelian.
The globally optimal smooth fields of [Knöppel et al. 2013] inspire
our method for generating the frame field with fixed topological
matchings, described in §5.4.

Full pipelines for quad meshing based on cross fields are proposed
e.g. in [Bommes et al. 2013a, 2009] and form the basis of modern quad
meshing software. Beyond field design, locally injective quantized
parametrization [Campen et al. 2015] and robust mesh extraction
[Ebke et al. 2013] procedures are required for the remaining steps
of the pipeline.

2.2 Hex Meshing
We refer the reader to recent surveys [Armstrong et al. 2015; Yu et al.
2015] for a broad perspective of hexahedral meshing. These surveys
cover not only field-based hex meshing but also more classical
techniques, e.g. those based on octrees [Marechal 2009] and dual
complexes [Erickson 2014; Kremer et al. 2014]. These techniques
can provide some robustness guarantees but often produce poor
topology and/or do not conform well to the geometry of the input
domain.

Frame Field Design. Of particular relevance to our field-based
approach is the CubeCover algorithm [Nieser et al. 2011]. In this
seminal work, the authors introduce the octahedral matchings that
are necessary to generate a volumetric parametrization for hex
meshing. They prove that the product of matchings about a singular
edge must be a rotation about one of the coordinate axes and note a
correspondence between local vertex topologies and sphere triangu-
lations. This correspondence immediately yields some restrictions
on possible topologies; we extend their observations by enumer-
ating all practically-relevant vertex topologies for the interior and
boundary. We also extend their analysis on products of octahedral
matchings, showing that partial field information is required to
determine the valence associated with a matching product (see §5).
Unlike in the surface case, there is no simple index theory, e.g.

via a Hopf-Poincaré formula, to describe the singularity structure
of a hex mesh. Thus, Nieser et al. utilize a user-specified coarse hex
mesh, termed a meta-mesh, to specify their matchings. Our algo-
rithm avoids the burden of designing a coarse hex mesh by starting
from a less constrained singularity graph. Completion of our algo-
rithm is a global necessary condition for hex-meshable singularity
graphs. Additionally, we generalize the Hopf-Poincaré formula to

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

Singularity-Constrained Octahedral Fields for Hexahedral Meshing • 93:3

the volumetric setting, discussed in §3, giving another global neces-
sary condition on the topology of our input. A discussion of further
topological issues is presented in [Viertel et al. 2016] where they
note the undesirability of limit cycles, amongst others.

Several works are aimed at producing frame fields, the volumetric
analogue of cross fields. The pioneering work [Huang et al. 2011]
introduces a representation of frame fields using spherical harmonic
coefficients, which is invariant to octahedral symmetries and thus en-
ables the optimization of smooth boundary-aligned fields. [Ray et al.
2016] extends their algorithmwith better initialization and boundary
conditions; both techniques are further improved in [Solomon et al.
2017] by replacing tet mesh discretization with the boundary ele-
ment method (BEM). These works are capable of generating smooth
octahedral fields but cannot incorporate topological constraints; for
this reason their output often is not hex-meshable.
Two works aim to correct input frame fields to produce hex

meshes by mesh refinement/coarsening [Jiang et al. 2014; Li et al.
2012], but they are only able to correct certain specific local de-
fects, leaving others unchanged. Additional correction strategies
are suggested in [Viertel et al. 2016]. Related work is also present
in [Kowalski et al. 2014, 2016] where a vertex-based field is pro-
duced and utilized for meshing via sheet tracing, however, without
robustness guarantees.
There has also been recent work on design and editing of 3D

tensor fields [Palacios et al. 2017], which can represent hexahedral
valence 2 and 6. Since the practically most essential cases of valence
3 and 5 cannot be represented, tensor fields are not appealing for
hexahedral meshing.

Post-Processing. Once a parametrization is computed, [Lyon
et al. 2016] can be used to robustly construct the discrete topology of
a hex mesh. After hex mesh extraction, post-processing can improve
the quality of a hex mesh. Base complexes can be used to progres-
sively simplify hex mesh topology through a series of operations
[Gao et al. 2015, 2017b]. Another post-processing approach modifies
the frame field induced by an input hex mesh and uses the modi-
fied frame field to produce a higher quality hex mesh [Wang et al.
2016]. Lastly, the work of Livesu et al. [2015] performs iterative local
improvements on the corners of the hex elements, improving the
scaled Jacobians. These methods provide considerable a posteriori
improvements to a mesh but cannot guarantee conformation to a
prescribed singular topology.

Polycube methods. Polycube methods have also been used to
generate hexmeshes with singular graphs restricted to the boundary
surface [Huang et al. 2014; Sokolov and Ray 2015; Tarini et al. 2004].
Polycube parameterizations of the volume can be computed and
extruded into the volume to generate nontrivial interior topology
[Gregson et al. 2011]. A variation on polycube methods first cuts
the volume into ball topology and then designs a frame field on
the cut volume to create lower-distortion hex meshes [Fang et al.
2016]. The problem with polycube methods is that they exclude hex
mesh topologies that might be required for a low distortion mesh,
in particular if internal structures need to be aligned.

Hex-Dominant Meshing. A relaxation of hex meshing is hex-
dominant meshing, where the output mesh is allowed to exhibit a

small percentage of non-hexahedral elements. Most hex-dominant
meshing algorithms relocate vertices of an input tet mesh and then
combine as many tets as possible into hexahedra. The placement of
the new vertices heavily influences the percentage of the resulting
tets that can be made into hexahedra [Baudouin et al. 2014]. Frame
field-based approaches have been used to place the new vertices,
e.g. [Gao et al. 2017a,a; Sokolov et al. 2016]. Locations where tets
cannot be combined into hexahedra can be computed as gap lo-
cations and are left as tets [Ray et al. 2017]. Other algorithms for
hex-dominant meshing [Bernard et al. 2016; Martin et al. 2012] cir-
cumvent the problem of octahedral fields with invalid singularity
graphs. While these techniques extract high-quality hex-dominant
meshes, there remains a strong demand for pure hex meshes. In par-
ticular, simulations and PDEs on hex-dominant meshes can suffer
from degeneration of approximation quality near non-hex elements,
and specialized finite elements or other techniques are required to
faithfully discretize PDEs on these domains.

3 HEXAHEDRAL MESH TOPOLOGY
A hexahedral mesh H = (V ,E,Q,H) is a CW-complex [Hatcher
2001], which decomposes a volumetric region M ⊂ R3 into hexa-
hedral cells H , formed by quadrilaterals Q , edges E, and vertices
V . The boundary ∂H ⊂ (V ,E,Q) consists of all quadrilaterals ∂Q
incident to only one hexahedron, and includes all vertices ∂V and
edges ∂E of ∂Q . All remaining mesh elements are referred to as
interior elements. A hexahedral mesh example is shown in Fig. 2.

Fig. 2. Hex mesh example. Green and blue edges indicate valence 3 and 5
singularities (valence 1 on boundary). Red vertices indicate singular vertices
(interior and boundary). The dark blue and red face indicate two sides of a
hexahedron, blue on the boundary, red inside.

Local Topology of Edges. An interior edge is called regular if
it is incident to exactly four hexahedra; otherwise it is singular.
Similarly, a boundary edge is regular if incident to exactly two
hexahedra, and otherwise it is singular. The hexahedral valence
valh (σ) ∈ N≥1 of a mesh element σ ∈ V ∪ E ∪ Q is the number
of its incident hexahedra. Based on this, the index idx(e) precisely
specifies the topological type of an edge e by measuring its deviation

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

93:4 • Liu, Zhang, Chien, Solomon, and Bommes

(1/4) (0) (−1/4)

(1/4) (0) (−1/4) (−1/2)

Fig. 3. Practically relevant hex mesh edges, highlighted in red. The top row
illustrates interior edges of valence 3, 4, and 5. The bottom row illustrates
boundary edges of valence 1, 2, 3, and 4.

from regularity:

idx(e) =
{
(4 − valh (e)) /4 for interior e
(2 − valh (e)) /4 for boundary e .

(1)

For interior edges, this is equivalent to the fractional index of the ex-
truded quad mesh singularity, present in the Hopf-Poincaré formula
for cross fields.

In principle, there are infinitely many topological configurations
since valh (e) ∈ N≥1. Considering the quality of the geometric em-
bedding, however, only a very small subset is practically relevant for
hexahedral meshing, as depicted in Fig. 3. For interior edges, only
those with hexahedral valence 3, 4 and 5 corresponding to indices
from Iinterior = {1/4, 0,−1/4} are typically desirable since other
cases induce lower-quality scaled Jacobians. Moreover, all such low-
quality cases could be easily split by sheet insertion [Merkley et al.
2008] into multiple edges of the three good quality cases (cf. Fig. 4).
The same argument holds for boundary edges, where the practically
important set is given by hexahedral valences of 1, 2, 3 and 4 cor-
responding to indices Iboundary = {1/4, 0,−1/4,−1/2} (cf. Fig. 3). A

(−1/2) twice (−1/4)

Fig. 4. (Left) Interior singular edge of valence 6 in red. Dark blue faces
indicate the location of dual sheet insertion. (Right) Hex mesh after dual
sheet insertion. The single valence 6 edge is split into two valence 5 edges.

simply-connected mesh with all interior edges being regular is the
pullback of the Cartesian grid under a continuous locally-injective
(on the interior) map of the volume into R3. If this map is also glob-
ally injective, then the mesh is homeomorphic to a subset of the
Cartesian grid and is often referred to as a polycube mesh [Gregson
et al. 2011].

Singularity Graph. The subset of singular edges ES ⊂ E forms
a graph, which can be conformingly partitioned into segments of
singular edges with identical index, referred to as singular arcs.

(a) (b)

Fig. 5. (a) Interior singular vertex intersected with a yellow sphere. The
intersection of the sphere with hex mesh faces is shown in red. (b) Planar
representation of the triangulation of the sphere depicted on the left. Vertices
correspond to intersections of the sphere with hex mesh edges.

Singular arcs are either closed or bounded by singular nodes, where
they split into multiple singular arcs or terminate at the boundary.
Together, the singular arcs and singular nodes VS ⊂ V form the
singularity graph S = (VS ,ES) of the hexahedral mesh (cf. Fig. 2).
Tracing sheets from all edges of the singularity graph results in
the base complex of the hexahedral mesh, which is the coarsest
partitioning of the mesh into regular blocks [Gao et al. 2015].
A proposed embedded singularity graph S = (VS ,ES) for an

input regionM ⊂ R3 is globally hex-meshable, or globally hexable
for short, if there is a hexmesh ofM with singularity graphmatching
S. Similarly, we say thatS is locally hex-meshable, or locally hexable
for short, if there is a hex mesh of the neighborhood of S, with
singularity graph containing S as a subgraph. This is equivalent
to having local type assignments for elements of VS ,ES . For arcs,
this is an index, as described above, and for nodes, valid types are
described below.

Local Topology of Vertices. A critical theoretical considera-
tion for design of hex meshing algorithms is determining which
topological types of vertices exist in a hexahedral mesh. Compared
to the simple quarter-integer index for edges the answer is more
complicated. Following Nieser et al. [2011], interior vertices of hex-
ahedral meshes topologically correspond to triangulations of the
sphere. The idea is to intersect the neighborhood of a hex mesh
vertex with a sphere, providing the correspondence of hex mesh
edges, faces, and cells with vertices, arcs, and triangular patches
on the sphere (see Fig. 5). Consequently, from a topological point
of view, hexahedral meshes admit infinitely many different vertex
topologies. However, restricting the incident edges to the practically
relevant set of hexahedral valences 3, 4 and 5 results in only 11
topologically different interior vertex types. These are illustrated in
Fig. 6, and a detailed topological analysis is provided in §A.1.

Similarly, boundary vertices can be classified by intersecting the
neighborhood of a hex mesh vertex with a hemisphere, providing
the topological equivalence of boundary hexahedral vertices with
triangulations of the disc (see Fig. 7). Again, there are infinitely
many such triangulations, but we restrict to a practically relevant

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

Singularity-Constrained Octahedral Fields for Hexahedral Meshing • 93:5

(4, 0, 0) (2,3,0) (2, 2, 2) (0,5,2) (1, 3, 3)

(0, 4, 4) (2,0,6) (0, 3, 6) (0,2,8) (0, 0, 12)

Fig. 6. Singular Node Types. Signatures of the nodes (definition in §A.1) are shown below. Green and blue edges are of valence 3 and 5 respectively.

subset of those with incoming boundary edges of hex valence 1, 2, 3,
and 4; incoming interior edges of hex valence 3, 4, and 5; and fewer
than 9 incident hexahedra. This results in 237 topologically different
singular boundary vertices, which can be found using an exhaustive
enumeration algorithm that we describe in §A.2. We use HV to

(a) (b)

Fig. 7. (a) Boundary singular vertex intersected with a yellow hemisphere.
The green boundary of the hemisphere corresponds to intersection with
the hex mesh boundary. (b) Triangulation of the hemisphere, with Vertices
correspond to intersections between hex mesh edges and the hemisphere.

denote this set of practically relevant interior and boundary vertex
singularity types. A locally hexable valence-{3, 4, 5} singularity
graph must have all nodes be within this set. This chosen subset
of hexahedral vertex topologies coincides with the requirements
of many applications but might be inappropriate for others. Unless
otherwise noted, our discussions and algorithms are in general
not restricted to this choice and could be easily extended to other
finite subsets specified by bounds on edge valence and number of
incident hexahedra. It is clear that for any application caring about
the shape of hexahedra there is an upper bound on the number of
hexahedra incident at a vertex, since packing an increasing number

of hexahedra into the 4π solid angle of R3 necessarily deteriorates
the worst scaled Jacobian.

A Global Necessary Condition. The above classifications de-
fine local hexability for a singularity graph. Additionally, we have a
global necessary condition for global hexability which is simple to
state and check:∑

v ∈∂VS

1
2

(
1 −

valh (v)
4

)
−

∑
e ∈∂E−

S

idx(e)

+
∑
v ∈

◦
VS

(
1 −

valh (v)
8

)
−

∑
e ∈
◦
E−
S

idx(e) = 0, (2)

where ∂VS ,
◦

VS denote the boundary and interior nodes of the sin-
gularity graph, and ∂E−

S
,
◦

E−
S
denote the non-closed boundary and

non-closed interior singular arcs. This condition is the analogue of
the discrete Hopf-Poincaré formula for quad meshes:∑

v ∈∂V

idx(v) +
∑

v ∈V \∂V

idx(v) = χ (S), (3)

where idx(v) is defined as in Eq. (1) (with substitution of quad va-
lence for hex valence), and S is the quad-meshed surface. Condition
(2) can be derived with a simple combinatorial counting argument,
given in §B. This condition holds for global hex meshes with ar-
bitrary edge valence, as well as for boundary-aligned locally hex-
meshable frame fields—even those not globally hex-meshable. The
second generalization is analogous to the fact that Eq. (3) holds for
cross fields on surfaces, even if they are not globally quad-meshable.
These hex-meshability definitions for fields are discussed in further
detail in §4 and a proof for the generalization to locally hex-meshable
frame fields is given in supplementary material.

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

93:6 • Liu, Zhang, Chien, Solomon, and Bommes

f −1(Ω ∩G)

f f −1i

u

v

x

y

G

Ω = f (M)

M

u

v

x
y

M1
M2

M3

f1 f2 f3

τ2�3

τ3�1
τ1�2

Ω1
Ω2

Ω3

(a) (b)

Fig. 8. (a) Polycubemap of volumeM such that themapped boundary aligns
with the integer grid G and pulled back hexahedra tessellate M . (b) Integer-
grid map with three boundary aligned charts {(M1, f1), (M2, f2), (M3, f3)}
that induce a singular vertex (blue). Transition functions τ define the para-
metric matching of grid directions.

4 INTEGER-GRID MAPS REVISITED
Polycube Maps. One way to obtain a boundary-aligned hexahe-

dral mesh is to deform the input regionM ⊂ R3 with a map f that
aligns the boundary ∂M with the grid of Cartesian integer isoplanes

G = {(u,v,w)T ∈ R3 |u ∈ Z or v ∈ Z or w ∈ Z}.

The decomposition of M into hexahedral cells is then obtained
by f −1(Ω ∩ G), which pulls back those hexahedra from G which
are covered by the image Ω = f (M), as illustrated in Fig. 8a. To
guarantee a topologically valid hexahedral decomposition, not only
boundary alignment but moreover local injectivity of f is required
[Bommes et al. 2013a]:

(Boundary Alignment) f (p) ∈ G ∀p ∈ ∂M (4)
(Local Injectivity) det Jf > 0 ∀p ∈ M (5)

with Jf = [∂ f /∂x , ∂ f /∂y, ∂ f /∂z] ∈ R
3×3 being the Jacobian ma-

trix of f . Maps from this class are called polycube maps [Tarini
et al. 2004]. Unfortunately, only hexahedral meshes without interior
singularities can be generated. To achieve the class of all hexahedral
meshes, polycube maps must be generalized to integer-grid maps.

Integer-GridMaps. Integer-gridmaps generalize polycubemaps
in a similar way as manifolds generalize simple parametric rep-
resentations. Imagine that the input region is equipped with an
atlas of coordinate charts A = {(Mi , fi)}, i.e. a partitioning M =
M1 ∪ M2 ∪ . . . ∪ Mk into k parts, each providing its own map
fi : Mi → Ωi . To obtain a seamless hexahedral mesh, the piece-
wise polycube maps f −1i (Ωi ∩G) need to be stitched at all points
p ∈ Mi ∩Mj contained in the intersection of charts. This can be done
by restricting the transition functions τi�j = fj ◦ f

−1
i between charts

i and j to preserve the grid of integer isoplanes, i.e. τ (G) = G. In
[Kaelberer et al. 2007; Nieser et al. 2011] it is shown that τ (a) = Ra+t
where R ∈ Oct is one of 24 orientation-preserving octahedral per-
mutations [Solomon et al. 2017] and t ∈ Z3 is an integer translation.
As illustrated in Fig. 8b, the use of charts and grid-conforming

transition functions enable the stitching of hexahedral cells in a

topologically irregular manner and in particular provides the flexi-
bility to create all types of singularities discussed in §3. Whether
a point p ∈ M is a singularity of the map can be measured by the
holonomy of the connection induced by the transition functions.
More precisely, if there is any cycle around p with a nonzero holo-
nomy, p belongs to the singularities induced by the map f , denoted
by p ∈ Sf . Alternatively, Sf is given by the locus of points where
the differential is not well-defined. To guarantee that the conform-
ingly stitched grid consists only of hexahedral cells it is additionally
required that all singularities p ∈ Sf are mapped to the integer grid,
leading to the following two additional conditions:

(Conformity) τi�j (a) = Ri�ja + ti�j ∀a ∈ f −1i (Mi ∩Mj) (6)
(Singularities) f (p) ∈ G ∀p ∈ Sf (7)

An atlas of charts A = {(Mi , fi)} where all fi and τi�j satisfy
(boundary alignment), (local injectivity), (conformity), and (singu-
larities) is called an integer-grid map (IGM). Every IGM is guaranteed
to induce a boundary-aligned and topology-preserving hexahedral
decomposition of M . The reverse also holds: for each hexahedral
decomposition, there exists a corresponding IGM.

IGM Induced Frame Fields. Consider one chart (M0, f0) of
an IGM. Mapping the coordinate frame [û, v̂, ŵ] from the para-
metric domain Ω0 to M0 by means of the inverse differential re-
sults in a frame field F = J−1f ∈ R3×3, which we abbreviate by
F = [du ,dv ,dw] ∈ R

3×3. Geometrically, the frame field represents
the local orientation of mapped hexahedral elements and is smooth
within a single coordinate chart but potentially discontinuous across
different charts due to the transition functions. The transformation
rule for frames between neighboring chartsMi andMj is induced
by the transition function between Ωi and Ωj . It follows from the
identity d f −1j (v) = d f

−1
i (dτj�i (v)), meaning that mapping a vector

v from Ωj to M is identical to first transitioning v to Ωi and then
mapping toM (cf. Fig. 8). Considering that dτj�i = Rj�i , the result-
ing rule for transforming a frame Fi from chart i into representation
Fj w.r.t. chartMj consequently is

Fj = FiRj�i (8)

Note the inverse behavior compared to the transformation of a
vector vi ∈ TΩi in the parametric domain following from Eq. (6):

vj = Ri�jvi (9)

with Ri�j being the inverse of Rj�i .

Octahedral Fields. By means of the octahedral group Oct, a
frame F extends to its axis set A(F) = {±du ,±dv ,±dw }, which is a
smooth field at all non-singular p ∈ M \ Sf , specifically across chart
boundaries. This IGM-induced octahedral field is orthonormal in the
metric of the parametrization. Conversely, a given octahedral field
on M can be converted into a frame field by arbitrarily choosing
a right-handed subset from the axis set for each chart (from here
on frame/octahedral fields are used interchangeably). While every
IGM induces a frame/octahedral field, the converse is not true: not
every field can be integrated to an IGM. If this is the case, we say
the field is globally hex-meshable, or globally hexable for short, as
the hex mesh given by the integrated IGM has the topology dictated

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

Singularity-Constrained Octahedral Fields for Hexahedral Meshing • 93:7

Fig. 9. Top row: splitting approach, an octahedral field (yellow) is generated to guide the IGM parametrization (red). Bottom row: an invalid singularity graph
induces constraints leading to a highly degenerate parametrization. Consequently, only very few hexahedra can be extracted [Lyon et al. 2016]

by the field. In particular, any globally hexable field must have a
singularity graph that satisfies the necessary conditions of §3.

IGMs for HexahedralMeshing. A straightforward hexahedral
meshing approach optimizes for a low-distortion map in the class of
integer-grid maps. Unfortunately, the resulting optimization prob-
lem is extremely challenging due to its high dimensionality, the
strong non-convexity due to (5) and especially the huge number of
discrete degrees of freedom due to (4), (6) and (7). Consequently,
all known IGM-based hexahedral meshing algorithms perform a
splitting approach [Jiang et al. 2014; Li et al. 2012], illustrated in
Fig. 9. In the first step, a smooth and boundary-aligned octahedral
field is generated, e.g. through [Huang et al. 2011; Ray et al. 2016;
Solomon et al. 2017], which is then used as a guidance field to find
the most similar IGM [Nieser et al. 2011].

Fig. 10. Typical singularity graph defects of smooth octahedral fields. Green
and blue arcs are singularities of index 1

4 and − 1
4 respectively. Black spheres

indicate invalid node topology, including cases where singular arcs touch
the boundary tangentially.

A fundamental problem with this approach is that the singularity
graph of the smooth octahedral field is often topologically invalid
[Viertel et al. 2016]. As a result, it is common that for seemingly
high-quality octahedral fields the IGM still heavily degenerates by
violating condition (5), such that in most areas no consistent hexa-
hedral cells can be extracted (cf. Fig. 9, bottom). Typical defects of
the singularity graph include local defects, which are singular nodes

or arcs of invalid type, or global defects. Common invalid singular
nodes that we observed are of type (3, 0, 1) or (1, 0, 1), which are
turning points, where a singular arc changes e.g. from valence 3 to
valence 5 and returns to its source. An example extracted from a
smooth octahedral field is depicted in Fig. 10. Invalid arcs are often
created when several arcs in the vicinity of a singular node snap on
a common edge, creating a complex type. Such cases are often of
local nature and can be resolved by methods like [Jiang et al. 2014;
Li et al. 2012]. If an octahedral field has a singularity graph that is
locally hexable, then we say the field itself is locally hex-meshable,
or locally hexable for short.

Even if we have local hexability, the field may still fail to be glob-
ally hexable. For example, our global necessary condition stated in
§3 might be violated. As another example, there might be no global
meshing due to limit cycles (cf. [Sokolov and Ray 2015; Viertel et al.
2016]). The analogue of this problem, occurs even in the surface
case, for quad meshing [Campen and Zorin 2017]. The example of a
cross-field on a torus with two singularities of index ±1/4 is shown
in this reference. An analogous octahedral field on a thickened torus
will also lack global hexability. There is no known characterization
of globally hexable fields, or method to generate them. However,
the given examples are very specific and locally hexable fields are
typically globally hexable and we aim at producing such fields.

Therefore, we advocate a modified splitting approach, including
two additional steps: I. repairing the singularity graph and II. gener-
ating a new octahedral field, where the corrected singularity graph
is preserved, depicted in Fig.1. Our main contribution, presented
in §5, is an algorithm for step II, which generates a smooth and
boundary-aligned locally hex-meshable octahedral field under the
constraint of a prescribed singularity graph. Developing a general
solution for step I is left for future work, but nevertheless the set
of necessary conditions in §3 is helpful on its own to support cor-
rection of singularity graphs. Furthermore, our algorithm can be
used for detection of invalid topology and provides information on
where inconsistencies are located.

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

93:8 • Liu, Zhang, Chien, Solomon, and Bommes

Fig. 11. Visualization of a singularity graph S, used as input for our algo-
rithm. Green and blue curves are singular arcs of index 1

4 and−
1
4 respectively.

Red spheres are singular nodes and their topological type S(vi) ∈ HV is
visualized as the corresponding hex-mesh. Note that except for singular
edges, S does not constrain the geometric embedding at nodes.

5 FROM SINGULARITY GRAPH TO OCTAHEDRAL
FIELD

Given a tet mesh T = (V ,E,T ,C) with verticesV , edges E, triangles
T and cellsC , and a singularity graph S embedded in the 1-skeleton
V∪E, our goal is to find a discrete octahedral fieldO that is boundary-
aligned and matches the singularity graph S.
Edges and dual edges of T are equipped with an arbitrary but

fixed orientation. Given the end hex-meshing goal, we assume our
input S satisfies the local necessary conditions from §3 and the
global necessary condition (2). In particular, S assigns hexahedral
singularity types S(ei) ∈ {−1/4, 0, 1/4} to each (oriented) edge
ei ∈ E, and S(vi) ∈ HV to each vertex vi ∈ V . The singular node
type S(vi) defines the entire local topology of incident singular
edges including ordered triplets of singular edges that locally form
the corner of a hexahedron. An example of an input singularity
graph including singular node topology is shown in Fig. 11.
We assume the octahedral field to be induced by an (unknown)

IGM, where each tetrahedron defines its own chart, as discussed in

e⋆i j

c jci

§4. Consequently, the octahedral field O = (R,F)
can be encoded as a set R of matchings dτi�j =

Ri�j ∈ Oct for (oriented) dual edges e⋆i j ∈ E⋆

from cell i to cell j, and a set of frames F with
Fi ∈ R

3×3 belonging to cell ci ∈ C .

Splitting the Input Mesh. We require that none of the tetrahe-
dra in T is adjacent to multiple singular edges or multiple boundary
faces. Furthermore, we require that interior singular edges cannot
be incident to tetrahedra with a boundary face, that a singular edge
cannot be incident to two nodes of the singularity graph, and that
a regular edge cannot be adjacent to two singular edges at both
vertices. All these requirements can be easily satisfied by a series
of edge splits in T . A key property of the resulting mesh is that

each singular edge has an independent fan of surrounding incident
tetrahedra.

5.1 Singularity Graph Constraints
The problem of finding an octahedral field O that exhibits a given
singularity graph S can be formulated as a (nonlinear) algebraic
system of constraints for the unknown frames F and matchings R.
The first set of constraints is an immediate consequence of IGMs
and ensures alignment of the octahedral field to boundary normals
and singular arcs:

(C1) Boundary alignment. At the boundary, the octahedral
field aligns to the surface normal, i.e. for each boundary tetrahedron
ci with surface normal ni and frame Fi we require ni ∈ A(Fi).

(C2) Singular arc alignment. At singular arcs, the octahedral
field is tangential, i.e. for each tetrahedron ti adjacent to a singular
edge ej we require ej ∈ A(Fi).

The second set of constraints, which incorporate matchings R,
ensures that for each point in space the octahedral field topology
agrees with the topology of the prescribed singularity graph. The
topology of the discrete octahedral field is measured in the one-ring
tetrahedra incident to an edge or a vertex.

(C3) Edge type. The hexahedral edge type S(e) specifies the

e

C

holonomy of each dual parametric cycle C,
which circles the edge e counter-clockwise in
its one-ring neighborhood. Assuming that the
dual cycle C starts and ends in tet t with frame
F and traverses matchings of dual edges in the
order R0 � R1 � . . . � Rk , the holonomy is
given as the product of these matchings, leading to the condition

Rk . . .R1R0 = rot(F−1e, 2πS(e)) (10)

where rot(a,α) is a rotation around axis a by angle α . This condi-
tion depends on the frame F , which is inevitable since we need to
know the parametric coordinate axis to which e aligns to specify
the correct holonomy. More precisely, while the angle 2πS(e) is
independent of the specific IGM, the rotation axis F−1e is not, since
the IGM could map e to 6 different coordinate axes, each inducing a
different constraint.

For edges at the boundarywe similarlymeasure the rotation of the

e

D n0

n1

surface normals in the parametric domain by
means of an open dual path D traversing
matchings R0 � R1 � . . . � Rk between start
frame F0 and end frame F1. Since the dual path
is open, the surface normals of start and end
tetrahedra might correspond to different axes
of the coordinate frame, leading to a slightly
modified equation

Rk . . .R1R0F
−1
0 [n0, e] = rot(F−11 e, 2πS(e)) · F−11 [n1, e] (11)

Eq. (11) is valid for both interior and boundary edges of any index,
since for interior edges F0 = F1 and n0 = n1 is an arbitrary vector or-
thogonal to e. Regular edges withS(e) = 0 do not align to coordinate
axes but are nevertheless handled correctly since rot(a, 0) = I3×3,
independently of a.

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

Singularity-Constrained Octahedral Fields for Hexahedral Meshing • 93:9

(C4) Vertex type. While in the one-ring neighborhood of edges
there is only a single rotation degree of freedom, the situation gets
more complicated at vertices. The singularity graph defines con-
straints on the angles in which individual singular edges meet at
vertices as well as their precise spatial orientation (e.g. three singu-
lar edges form a right-handed corner in frame space). For vertices of
the singularity graph an additional set of constraints is required to
ensure that all pairwise relations between adjacent singular edges
agree with the singularity graph topology. The set of such singular
vertex constraints can be decomposed into three different subtypes,
the first relating tuples of collinear singular edges, which we call
tangent continuity constraints, the second relating triples that form
a corner in frame space, referred to as corner constraints, and the
third called sector constraints which are the analogue of corners but
on the boundary surface.

(C4a) Tangent continuity constraint: Along an interior sing-

p0

p1

p2

D

ular arc a consistent axis of the octahedral field
is tangential, i.e. no corners or turning points
are allowed, where the parametric alignment
axis would change. Given a dual path D con-
necting two singular edges e0 = p1 − p0 and
e1 = p2 − p1 which are adjacent at a common
vertex p1, tangent continuity means that

RDF
−1
0 e0 = F−11 e1 (12)

where RD is the product of matchings along the dual path D as
before and F0, F1 are the frames at start and end of D. The idea is
to express the frame axes corresponding to e0 and e1 both in the
chart of F1, where they can be compared. Eq. (12) must be satisfied
for all dual paths D that do not enclose other singular arcs.

(C4b) Corner constraint: The neighborhood of a singular node

e0

D0
e1D1

e2
D2

Ω

can be decomposed into (ordered) triplets of
singular edges that form the right-handed cor-
ner of a hexahedron, e.g. four such corners for
the (4, 0, 0) node type. Each corner corresponds
to a triangle in the sphere representation of
Fig. 5. Expressing the parametric representa-
tion of all three outgoing singular edges in a
common chart, results in a right-handed frame inducing the con-
straint [

RD0F
−1
0 e0 |RD1F

−1
1 e1 |RD2F

−1
2 e2

]
∈ Oct (13)

where edge ei adjacent to frame Fi is transformed along (red) curve
Di to the (green) common chart Ω for comparison. The constraint
should be satisfied for all combinations of curves Di inside the re-
gion of the corner and not surrounding any singularity. It is enough
to satisfy the constraint for a specific set of curves in the region in
addition to having zero holonomy on regular edges.

(C4c) Boundary sector constraint: At a boundary singular

e0e1

n1 n0Dsnode, the one-ring neighborhood of
surface triangles is partitioned into
sectors formed by the incident sin-
gular boundary edges. A sector can
be convex, flat, concave or a turning

point, corresponding to interior angles of k · π2 with k ∈ 1, 2, 3, 4 in
parametric space respectively. Assuming that a sector is spanned
counter-clockwise w.r.t. the surface normal from edge e0 to edge e1,
which are connected by a dual surface path Ds , a sector constraint
is expressed through

RDs F
−1
0 [e0,n0] = rot

(
F−11 n1,k ·

π

2

)
F−11 [e1,n1]. (14)

D

Ds
The upper inset figure shows three

boundary sectors, adjacent to the cen-
tral red vertex. Two sectors have an
interior angle of π

2 (green) and one
has an interior angle of 3π

2 (blue). Eq.
(14) is applied along the yellow path
Ds to match the pairs of normal and edge vectors with the 3π

2 sector
angle. This uniquely specifies the rotation RD . In terms of match-
ings, each dual surface edge of Ds represents a chain of interior
dual path D as shown in the second inset, i.e. RDs = RD .

In summary, octahedral node topology at a tet mesh vertex is
fully defined by an overlapping set of corner, sector, and tangent
continuity constraints that are induced by the corresponding hex
mesh vertex type.

Algebraic system. A singularity graph S induces the following
set of constraints: For each boundary triangle of T one (C1) con-
straint, for each edge of T one constraint of type (C3), if singular
additionally one of type (C2), and a set of node constraints (C4) for
each vertex of T which is adjacent to at least one singular edge. The
number of (C4) constraints at a vertex depends on the node type
described in §3. While some of these constraints may be globally
redundant with each other, they are necessary and sufficient for
correct local topology.

Finding solutions to the algebraic system is difficult since the
number of constraints is large (≥ 2 · |E |), the constraints are nonlin-
ear (products in the group of rotations), and the problem involves
continuous as well as discrete variables (frames are continuous,
matchings and choice of alignment axes are discrete). In the fol-
lowing, we describe a novel algorithm for this task, which based
on a careful analysis leverages several structural properties of the
algebraic system.

5.2 Decomposition approach
One difficulty of the algebraic system results from the diversity of
involved variables (frames and matchings). However, the problem
is highly underdetermined, providing flexibility to a priori fix align-
ment of singular edges where required for the solution, leading to a
reduced, purely discrete algebraic system only involving the match-
ings. Once all matchings are determined, the complete set of frames
can be found in an independent subsequent step described in §5.4.
Our decomposition approach is based on the following observation:

Observation 1. There are 24 |C | topologically identical represen-
tations of a discrete octahedral field with different matchings and
frames at faces and cells of a tetrahedral mesh T . This becomes obvi-
ous when considering that there are 24 different frames representing

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

93:10 • Liu, Zhang, Chien, Solomon, and Bommes

one element of an octahedral field and that inversely transforming
a frame and its matchings to neighbors does not alter field topology.
Such a topology preserving transformation is simply a change of a
local coordinate system.

As an immediate consequence, for every octahedral field there is
a choice of coordinate systems, where each singular edge ei aligns
in all charts of its incident tets tj to the u-direction, and at the same
time each boundary normal nj aligns in the chart of its boundary
tetrahedron to thev-direction, i.e. the parametric images of singular
edges and normal vectors simplify to F−1j (ei) = û and F−1j (nj) = v̂.
This is possible since as mentioned before, our tetrahedral mesh
is always split such that no tetrahedron is incident to more than
one singular edge, and no boundary tetrahedron is incident to an
interior singular edge. Our specific choice of coordinate systems
greatly simplifies the algebraic system. Conditions (C1) and (C2)
are satisfied by construction, and for (C3) all edge holonomies He =

rot(û, 2πS(e)) are fully determined, simplifying Eq. (11) to

Rk . . .R1R0 = He (15)

with known righthand side and independent of the frames F . In
the same way, Eqs. (12), (13) and (14) are simplified to

RD û = ±û, (16)[
RD0 û|RD1 û|RD2 û

]
∈ Oct, (17)

and
RD = rot

(
v̂,±k ·

(
−
π

2

))
, (18)

where we exploit the additional convention that the canonical ori-
entation of singular edges is always outward-pointing from nodes
of the singularity graph. Choice of the sign in Eqs. (16) and (18) is
fully determined by the canonical orientation of singular edges: it
is positive if at the common vertex one edge is incoming and the
other outgoing, otherwise negative.

In summary, the advantage of our specific choice of coordinate
systems is the simplified algebraic system consisting of Eqs. (15),
(16), (17), and (18), which solely depends on the matchings R.

5.3 Determining matchings
To find a set of matchings that satisfy the simplified algebraic system,
we design a chart-merging algorithm. It is based on two principles.
(1) In the beginning all matchings are unknown which means that
each tetrahedron forms a separate chart. (2) Whenever a matching
of a dual edge is determined, we interpret this as merging the charts
of both neighboring tetrahedra. The mathematical challenge lies in
locally determining matchings that are globally consistent.

Constrained chart-merging. A frequent operation in our algo-
rithm is to merge two charts while satisfying a constraint on how
specific coordinate axes a ∈ {±û,±v̂,±ŵ} match along a dual path.
More precisely, assume two separate charts A and B are connected
by a dual path D with combined matching RD = Rk . . .R0. Some
of these matchings might already be fixed but since the charts are
separate there is at least one Rj that is not yet determined. First,
all undetermined matchings on D other than Rj are set to identity.

Then the constrained chart-merging is performed by choosing Rj
such that the constraint is satisfied. If the matching of two

merдe(A,B)

A

B

Dcoordinate axes is specified the combined match-
ing is unique RD = R and Rj is obtained through

Rj = (Rk . . .Rj+1)
−1R(Rj−1 . . .R0)

−1 (19)

If matching of only one coordinate axis is speci-
fied, i.e. RDa = b, we obtain Rj from

Rj [(Rj−1 . . .R0)a] = (Rk . . .Rj+1)
−1b (20)

We arbitrarily choose one of the four Rj ∈ Oct
which maps (Rj−1 . . .R0)a to (Rk . . .Rj+1)−1b. Fi-
nally, if no matching of coordinate axes is con-
strained, each Rj ∈ Oct is a valid solution and we
always pick the identity.

Chart-zippering. The second central operation besides chart-
merging is chart-zippering. Given an edge e where all but one match-
ing of incident triangles are known, the unknown matching Rj can
be uniquely determined based on the edge holonomy Eq. (15):

Rj = (Rk . . .Rj+1)
−1He (Rj−1 . . .R0)

−1 (21)

The operation is called zippering in analogy to the zippering algo-
rithm of [Ray et al. 2008] forN -symmetry fields on surfaces with pre-
scribed singularities. In our terms, the algorithm of [Ray et al. 2008]
creates one initial connected chart through a dual spanning tree of
surface triangles and then iteratively performs chart-zippering until
all matchings are determined. In contrast to the simpler surface
case we need to cope with (C4) node constraints which render a
simple spanning tree construction infeasible and require a carefully
designed chart-merging.

Algorithm. The algorithm performs chart-merging in three ma-
jor steps outlined in Algorithm 1, to determine the set of matchings
X . The idea is to proceed from singular arcs and boundary surfaces,
where most information in the form of constraints is available, to
the interior of the volume. First charts incident to singular edges
are merged along singular arcs, leading to a set of singular tubes
illustrated in Fig. 12b. In the second step the charts of boundary tets
are merged, Fig. 12c. Finally, the algorithm extends the information
to the interior until all matchings are determined, Fig. 12d.

Algorithm 1 DetermineMatchings
Input: Tet mesh with singular topology constraints (15)-(18)
Output: matchings X ∈ Oct |T | satisfying (15)-(18) or INFEASIBLE
1: X ← flag all matchings as uninitialized
2: X ←MergeSingularArcCharts(X) ▷ Singular tube charts
3: X ←MergeBoundaryCharts(X) ▷ Boundary shell charts
4: return MergeVolumeChart(X) ▷ Solve remaining matchings

Step 1: Merging charts of singular arcs. We begin with gen-
erating one combined chart for each singular edge. For one singular
edge, the set of incident matchings R0 . . .Rk needs to satisfy the
holonomy constraint Eq. (15). Since singular edges are consistently
oriented in all incident charts, it is sufficient to set R1 . . .Rk to iden-
tity and determine R0 through chart-zippering Eq. (21). An example

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

Singularity-Constrained Octahedral Fields for Hexahedral Meshing • 93:11

(a) (b) (c) (d)

Fig. 12. Algorithm Overview: (a) A separate initial region is created for each singular edge. (b) Regions are merged into tubes corresponding to singular arcs
and tube networks belonging to boundary components of the singularity graph. (c) Interior tubes touching the boundary are connected to the boundary
components by chart-zippering on the boundary shell. (d) the algorithm terminates after all charts are merged and all matchings are determined.

of the resulting singular edge charts is depicted in Fig. 12a. Next
we connect charts along singular arcs. For interior singular arcs,
each pair of neighboring singular edges is equipped with a tangent
continuity constraint of Eq. (16), allowing a series of constrained
chart-merging operations to obtain one tubular chart per interior
singular arc. Similarly, we perform constrained chart-merging for
all boundary sector constraints (18), leading to a closed tubular
network for each connected component of the boundary singulari-
ties. Pseudocode of these steps is provided in Algorithm 2 and an
example visualization of resulting charts is depicted in Fig. 12b.

Step 2: Merging charts at boundary surfaces. In this step we
reduce the number of independent charts on the boundary. The key
observation is that away from singular edges a consistent frame axis
is aligned to the surface normal, reducing the octahedral field topol-
ogy to the 2D cross-field case. Consequently, we can adapt the 2D zip-
pering approach of [Ray et al. 2008] to consistently merge boundary
charts. We process each connected boundary
surface independently. First, the boundary tri-
angles of charts containing singularities are
used as the root set of a dual spanning forest of
all boundary triangles, as shown on the right.
For boundary surfaces without singular edges,
we choose one arbitrary triangle as the root.
Next, for each dual boundary edge d of the
spanning tree we merge the charts of both inci-
dent triangles by constrained chart-merging for the corresponding
interior dual path D.
Since spanning forest edges are never singular, both normals

C0

C1

C2

C3 C4

agree in a common chart and we constrain
RD = I3×3. In the final step, we iteratively
apply 2D chart-zippering, where the boundary
vertex index needs to be taken into account
when closing dual cycles. Assume a counter-
clockwise (ccw) cycle of dual (non-singular)
boundary edges d0 . . .dk , which surround vertex p and where the
matchings on Di are known for all i except one. The holonomy
of the cycle must be a rotation around the coordinate axis of the

Algorithm 2 MergeSingularArcCharts(X)

1: for all singular edges e do
2: X ←MergeAndZipChart(e) ▷ Singular edge charts
3: end for
4: for all tangent continuity constraints T do
5: if T relates two different charts then ▷ Prevent cycles
6: X ← ConstrainedChartMerging(T) ▷ Int. sing. tubes
7: end if
8: end for
9: for all boundary sector constraints B do
10: X ← ConstrainedChartMerging(B) ▷ Bnd. sing. tubes
11: end for
12: return X ▷ Return determined matchings

normal vector with angle given by the index of the boundary vertex,
i.e. RDk ...D0 = rot(v̂, 2π · idx(p)), leading to one step of constrained
chart-merging. The ccw index idx(p) of a boundary vertex p is equal
to the index of an incident interior singular edge or zero if there
is none. In each boundary component without singular edges all
boundary tetrahedra will be merged into a single chart. If a bound-
ary surface has k connected sets of singular boundary edges, 2D
chart-zippering will terminate with k independent charts, which
will only be merged in a subsequent step. Pseudocode of the bound-
ary chart merging is provided in Algorithm 3 and Fig. 12c shows an
example resulting in two boundary charts that are separated by the
red boundary curve.

Step 3: Merging charts in the volume. In this step we merge

e

n

D

interior singular tubes to the boundary
charts, including those indirectly linked
through corners of the singularity graph.
First, for each boundary surface chart we
merge all interior singular tubes that already
touch the boundary through a vertex. This
can be easily done with a constrained chart-merging that matches
the v̂ coordinate axis of the outward-pointing surface normal n
of the boundary chart with the negative of the inward-pointing

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

93:12 • Liu, Zhang, Chien, Solomon, and Bommes

Algorithm 3MergeBoundaryCharts(X)

1: for all boundary components B do
2: Construct dual spanning forest DSF on boundary
3: for each dual edge d ∈ DSF do
4: X ← ConstrainedChartMerging(D, I3×3)
5: end for
6: while ∃ zippable ccw-cycle C enclosing vertex p do
7: X ← ConstrainedChartMerging(C, rot(v̂, 2π · idx(p)))
8: end while
9: end for
10: return X ▷ Return determined matchings

coordinate axis û of the singular edge e , i.e. with the matching
rot(ŵ,−π/2). Singular tubes that touch the boundary at both ends
are only merged on one side, since we cannot decide the twist of
global cycles at this point.
Next, we grow a dual spanning forest rooted at boundary chart

tetrahedra to all tetrahedra not part of a boundary or tube chart
yet. Unconstrained chart-merging is performed for all dual edges
of the spanning forest, i.e. matchings are set to identity. Addition-
ally, iterative chart-zippering is used to resolve all locally decidable
matchings. After these two steps, all remaining charts are either
boundary charts or isolated singular tube charts that do not touch
the boundary.

Further singular tubes can be merged to the boundary charts by
considering corner constraints (17). A corner constraint is formed by
three dual pathsD0,D1 andD2 that express the axis orientation of
the three singular edges e0, e1 and e2 of a corner in a common chart.
We say that a corner constraint is decidable1 if (i) two singular edges
are part of a common boundary chart and all matchings on their
Di are determined and (ii) the third singular edge is not part of a
boundary chart. Assuming w.l.o.g. that e2 is the non-boundary chart
edge, we connect it to the boundary by constrained chart-merging
along D2 with matching constraint

RD2 û = RD0 û × RD1 û (22)

directly following from (17). After merging a corner, we perform
iterative chart-zippering, which frequently has the positive effect of
resolving matchings that render other singular corners decidable.
Often, iteratively performing the combination of merging at a locally
decidable corner with subsequent chart-zippering is sufficient to
resolve all matchings.

If no decidable corner constraint exists, non-local considerations
are required to proceed. To bundle spatially distributed constraints,
we first partition the triangles of unsolved matchings TU ⊂ T into
subsets that represent identical degrees of freedom. These are exactly
the 2-manifold patches embedded inTU since fixing the matching of
one triangle in such a patch is sufficient to resolve all others by chart-
zippering. A patch is decidable if it is supported by two independent
matching constraints, which uniquely specify the single matching
degree of freedom and enable constrained chart-merging.

1Another special case of decidable corner arises, if one singular edge belongs to a
boundary chart not containing boundary singular edges and the other two belong to
isolated int. singular tubes. Any locally valid matchings for Di are then globally valid.

Algorithm 4 MergeVolumeChart(X)

1: for all interior singular tubes T do
2: if T incident to boundary then
3: X ← ConstrainedChartMerging(T) ▷ Connect to bnd.
4: end if
5: end for
6: Grow dual spanning forest DSF from boundary chart tetrahedra
7: for all dual edges d ∈ DSF do
8: X ← UnconstrainedChartMerging(d)
9: end for
10: X ← Chart-Zippering(X) ▷ Solve locally decidable match.
11: B ← � ▷ Set of unfinished branches
12: loop
13: if ∃ decidable corner C then
14: X ← ConstrainedChartMerging(C) ▷ Eq. (22)
15: else
16: if ∃ decidable patch P then
17: X ← ConstrainedChartMerging(P)
18: else
19: (i, {m1 . . .mk }) ← FindBestPatch(X) ▷ k ∈ {4, 24}
20: for j = 2 . . .k do
21: Xi ←mj
22: B ← B ∪ {X } ▷ Store candidate for later
23: end for
24: Xi ←m1 ▷ Proceed with first candidate
25: end if
26: end if
27: X ← Chart-Zippering(X) ▷ Solve locally decidable match.
28: if #charts= 1 then
29: X ← HandleUnsolvedMatchingsByBranching(X)
30: if X satisfies all constraints (15)-(18) then
31: return X ▷ Valid solution found
32: else
33: if B , � then
34: X ← get next branch of B ▷ Continue search
35: else
36: return INFEASIBLE
37: end if
38: end if
39: end if
40: end loop

If neither decidable corners nor patches are available, we explore
all potential solutions until a valid one is found. The idea is to search
a maximally constrained patch with minimal potential solutions,
which are either 4 if it is supported by a matching constraint or
24 otherwise. We randomly pick one candidate solution and con-
tinue the algorithm. All other candidates are stored as unfinished
branches for later investigation. If the current candidate turns out
to be infeasible, we backtrack and search other branches. The same
branching strategy is used if the final chart-zippering cannot re-
solve all matchings. This exhaustive search ensures that whenever a
solution exists, it is found. Complete pseudocode of the volumetric
chart merging is provided in Algorithm 4.

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

Singularity-Constrained Octahedral Fields for Hexahedral Meshing • 93:13

Algorithm Properties. The input to the algorithm is a locally
hex-meshable singularity graph that also satisfies the global nec-
essary condition. The output is a set of matchings of a locally hex-
meshable octahedral field if it exists, otherwise the message “INFEA-
SIBLE” is returned. The driving principle of the algorithm is to in
each step identify a constraint that can be used to resolve a matching
while maintaining feasibility regarding all other constraints. In this
sense, it shares similarity with triangular solvers for linear systems
of equations, which analogously in each step solve for one variable
or choose underdetermined degrees of freedom. Since we cannot
guarantee that in each step we can solve for a unique matching,
the algorithm additionally includes fallback to exhaustive search
of a set of candidate matchings. In this way, termination with a
valid solution is guaranteed if one exists. While theoretically neces-
sary, in none of our experiments were multiple branches explored,
leading to very fast runtimes in practice. Analyzing the underlying
theoretical reason is an interesting direction for future work.

We observed that the singularity graph does not always uniquely
specify the octahedral field topology. In particular for higher genus
handlebodies, closed singular arcs inside the volume, or cavities,
additional constraints are often necessary to uniquely specify field
topology. This is not a problem for our algorithm, since by con-
struction it is able to handle underdetermined cases. However, to
obtain more control, one could either provide additional constraints
or postpone the decision of additional degrees of freedom to the
frame generation to, e.g. exploit the degrees of freedom to obtain
the smoothest solution.

Relation toGlobalNecessaryCondition. While
the global necessary condition Eq. (2) is applied as a
filter on the input singular graphs, and helps to detect
global inconsistencies, it is not sufficient to guarantee
existence of a compatible locally hexable field. Con-
sider the inset example. While the input singularity
graph (green lines) satisfies Eq. (2), our algorithm is
able to detect that no corresponding locally hexable field exists. Our
algorithm produces matchings with extra singularities (red lines)
that do not agree with the input singularity graph. While this hints
at a method for correcting the singular graph, it is outside the scope
of this paper to correct singularity graphs.

5.4 Octahedral Fields with Fixed Matchings and
Alignment

After determining the topological matchings and partial alignment
information, we still need to construct the frames geometrically to
obtain the octahedral field. Regardless of the geometric frame field
output, the topology of the frame field is already specified by the
topological matchings. However, for hexahedral meshing applica-
tions, we aim for the smoothest frame field with prescribed topology.
Accordingly, we minimize the Dirichlet energy of a quaternion field
q subject to alignment constraints for q ∈ B resulting from normals

and singular edge alignment

minimize
q

∫
Ω
|∇q |2dV

subject to Aiqi = 0, qi ∈ B
|qi | = 1, i = 1 . . .n

with Ai ∈ R
2×4 are linear alignment conditions derived below. The

|qi | = 1 constraint may be ill-posed in the continuum, an issue
addressed using the relaxation below.

Relaxation to eigenvalue problem. The Dirichlet energy is
expressed w.r.t. the connection specified by the matchings. Thus, if
two orthogonal frames are related through Fj = FiRj�i , the same
relation can be expressed in quaternion form qj = qi R̂j�i . While
more sophisticated variants are possible, a uniformly weighted dis-
cretization of the Dirichlet energy summing squared differences for
all dual edges e⋆i j is sufficient for our purposes:∫

Ω
|∇q |2dV ≈

∑
e⋆i j

|qi R̂j�i − qj |
2. (23)

In the spirit of the globally optimal direction fields of [Knöppel et al.
2013] we relax the unit-norm constraints |qi | = 1 to

∑
i |qi |

2 = n,
turning the optimality conditions of our optimization problem into
an eigenvalue problem. We add penalty terms ωa |Aiqi |2 to enforce
the alignment conditions in the objective function; ωa = 10 already
produces solutions that obey the constraints well.

Axis alignment conditions. The alignment conditions are ho-
mogenous linear expressions resulting from the following observa-
tion. Assume that we want to align the u-axis of our frame repre-
sented by qi to the direction v . In this case qi is parametrized by
qi = qû→v · qû(α), where qû→v is an arbitrary rotation that maps
û to v and

qû(α) =
(
cos

α

2
, sin

α

2
, 0, 0

)T
(24)

is a rotation around the first coordinate axis. Since quaternion multi-
plication is linear in each quaternion we can express the product as
qi = Q qû(α), withQ ∈ R4×4 expressing multiplication from the left
by qû→v . Hence for normal alignment we end up with the following
four constraints on qi :

Q−1 qi =
(
cos

α

2
, sin

α

2
, 0, 0

)T
It suffices to impose the latter two homogenous constraints because
any unit quaternion fulfilling the latter two conditions, i.e. of the
form (qw ,qx , 0, 0), is automatically of the required form (24) for
some α . The projection of a given quaternion q to the closest one
satisfying a partial alignment condition qa is done by

qa = Q diag(1, 1, 0, 0)Q−1q

with subsequent normalization.We use projection to eliminate small
constraint violations resulting from relaxation to penalty terms.

Coping with the double-covering. Since quaternions double-
cover SO(3), meaning that q and −q represent the same rotation,
there is one additional degree of freedom that we need to address.
When specifying the transition functions ±R̂j�i in quaternion form,
the sign is undefined; hence, we need to ensure that we get the

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

93:14 • Liu, Zhang, Chien, Solomon, and Bommes

right connection on dual cycles in our mesh respecting the double-
covering. To this end, we check and correct all dual edge cycles using
an algorithm similar to the chart-zippering of §5.3. We first ran-
domly initialize the signs of ±R̂j�i and then whenever a dual cycle
is closed, we check whether the first component of the quaternion
product along the cycle is positive. If it is not, we invert the sign of
the matching quaternion that closes the cycle. A negative sign in the
first quaternion component indicates that the encoded holonomy
identifies two different representations in the quaternion double
cover. Luckily, the alignment conditions are homogenous and there-
fore simultaneously valid for ±qi ; this makes them invulnerable to
double-cover issues.

6 RESULTS
We evaluate our algorithm by means of several example models
of various complexity shown in Figs. 1, 2, 13 and 14. For all ex-
amples of Fig. 13 we obtained an initial singularity graph through
an octahedral field generated with [Ray et al. 2016]. Based on the
necessary local and global conditions of §3 we manually repaired
the singularity graph and used the result as input for our algorithm.
The resulting matchings and frames then serve as input for [Nieser
et al. 2011] to obtain an integer-grid map, which is hex meshed with
[Lyon et al. 2016].
The manual correction of a singularity graph was done by it-

eratively adding, removing and smoothing singular arcs until the
singularity graph became locally hexable and satisfied the global
necessary condition. If our algorithm reported that the singularity
graph was still not globally hexable, we performed further mod-
ifications, inspired by the constraints that could not be satisfied.
Algorithmic correction is out of the scope of this work but will be
an important topic for the future. For the joint model in Fig. 13 we
perturbed the input singular graph to demonstrate a result on messy
input. Our algorithm only cares about the topology of the input
singular graph such that geometrically messy input does not impact
the extracted matchings.

The complex examples of Fig. 14 were generated in a similar man-
ner, however, the singularity graphs were imported from hexahedral
meshes provided in the supplemental material of [Fang et al. 2016;
Fu et al. 2016; Huang et al. 2014; Li et al. 2012]. For all models that we
tried, our algorithm generated a valid octahedral field with correct
singularity graph as verified by checking the algebraic system for
the output field; this empirically verifies correctness of our algo-
rithm. The input complexity ranges from 5k up to 300k tetrahedra
for the elephant model. Even for the largest models, generating the
matchings only requires a few seconds, while the optimization prob-
lem to obtain the frames takes significantly longer, e.g. 40 seconds
for the bunny model. For the hand, kitten, knot and rockerarm mod-
els, despite having a valid octahedral field [Nieser et al. 2011] was
not able to obtain a locally injective IGM, leading to some missing
hexahedra or polygonal cells.

Comparison to previous work. Since our method is the first
one for generating octahedral fields with prescribed topology, a
direct comparison to previous work is impossible. Closest to our
method are the singularity correction techniques of [Li et al. 2012]

Fig. 13. Several models with manually corrected singularity graph. From
left to right: singularity graph, octahedral field and hexahedral mesh.

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

Singularity-Constrained Octahedral Fields for Hexahedral Meshing • 93:15

Fig. 14. Complex examples obtained from supplemental material of: [Fang
et al. 2016] kitten and knot, [Li et al. 2012] rockerarm, [Fu et al. 2016] bunny
and armadillo, and [Huang et al. 2014] elephant.

and [Jiang et al. 2014]. While they are automatic, they only per-
form a small set of local corrections through splitting or collapsing
singularities that is not sufficient to obtain hex-meshable singular-
ity graphs for most of our examples. For example, in Fig. 1, global
changes and the addition of new singular arcs are necessary. Both
previous methods cannot handle such global changes, which require
a re-computation of the octahedral field.
The geometric quality of the hexahedral meshes, typically mea-

sured using scaled Jacobians, mostly depends on the pre-processing
(design of singularity graph) and post-processing (optimization
e.g. via [Livesu et al. 2015]). Consequently, measuring scaled Jaco-
bians is not a meaningful way to evaluate success of our algorithm,
since we would mostly measure how much time we spent on tuning
the input singularity graph. Our scaled Jacobians are typically on
par with the state of the art.

7 CONCLUSIONS AND FUTURE WORK
Many confounding factors make automatic hexahedral meshing ex-
tremely difficult; somehow the elegant structure of two-dimensional
quad meshing problems does not admit an obvious lifting to the
volumetric case. While octahedral field-based meshing appears to
be a strong contender for design of practical and efficient algo-
rithms, many questions remain in establishing the fundamentals of
this approach. We consider our work to be a serious step toward
theoretically-justified, robust field-based hex meshing. By returning
to the basics, we clarify the fundamental unknowns in the problem
by defining the relevant algebraic system. Along the way we derive
new necessary local and global conditions for hex meshability of
singular graphs, including a complete enumeration of the practically-
relevant vertex singularities. Furthermore, our chart-merging algo-
rithm robustly recovers topology-constrained octahedral fields that
can be provided to existing field-guided meshing techniques.

Several open mathematical and algorithmic challenges remain in
the domain of field-guided hex meshing. The holy grail in this do-
main is a complete (necessary and sufficient) characterization of hex
meshable singular octahedral field topologies, ideally accompanied
by an algorithm that can project a singular graph to its closest me-
shable counterpart. A continuum theory of octahedral fields posed
using differential geometry/topology language rather than relying
on an underlying discrete structure may also provide insight. In
parallel with these theoretical considerations, other topics for future
research are more human-oriented. In particular, while singular
topology is critical for understanding the set of hex meshes that
can be embedded in a particular volume, it may be the case that a
natural user interface for hex meshing should incorporate guidance
in a different form, inferring the singular topology automatically
behind the scenes. One intriguing direction might be to learn a
map from volumes to singular graphs informed by a collection of
hand-designed hex meshes.
These future improvements aside, we anticipate that our algo-

rithm and theoretical framework will broadly inform the theory
and practice of field-based hexahedral meshing. By working in the
space of globally hex-meshable singular graphs and correcting oc-
tahedral fields to conform to this restricted set, we can circumvent
debilitating degeneracies later in the meshing pipeline.

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

93:16 • Liu, Zhang, Chien, Solomon, and Bommes

ACKNOWLEDGMENTS
D. Bommes received funding from the German Research Founda-
tion (DFG, grant GSC 111, Aachen Institute for Advanced Study in
Computational Engineering Science) and H. Liu from the Chinese
Scholarship Council (CSC). J. Solomon acknowledges the generous
support of Army ResearchOffice grantW911NF-12-R-0011 (“Smooth
Modeling of Flows on Graphs”), from the MIT Research Support
Committee (“Structured Optimization for Geometric Problems”),
and from the Skoltech–MIT Next Generation Program (“Simulation
and Transfer Learning for Deep 3D Geometric Data Analysis”). We
would like to thank Jan Möbius for OpenFlipper, Martin Heister-
mann for help with interfacing Blender, Amir Vaxman for inspiring
discussions, and the reviewers for their helpful feedback.

REFERENCES
Cecil G. Armstrong, Harold J. Fogg, Christopher M. Tierney, and Trevor T. Robinson.

2015. Common Themes in Multi-block Structured Quad/Hex Mesh Generation. Pro-
cedia Engineering 124, Supplement C (2015), 70 – 82. 24th Int. Meshing Roundtable.

Tristan Carrier Baudouin, Jean-François Remacle, Emilie Marchandise, François Hen-
rotte, and Christophe Geuzaine. 2014. A frontal approach to hex-dominant mesh
generation. Advanced Modeling and Simulation in Engineering Sciences 1, 1 (10 Feb
2014), 8.

P.-E. Bernard, J.-F. Remacle, N. Kowalski, and C. Geuzaine. 2016. Frame field smoothness-
based approach for hex-dominant meshing. Computer-Aided Design 72, Supplement
C (2016), 78 – 86. 23rd International Meshing Roundtable.

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.
2013a. Integer-grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4,
Article 98 (July 2013), 12 pages.

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,
and Denis Zorin. 2013b. Quad-Mesh Generation and Processing: A Survey. Computer
Graphics Forum 32, 6 (2013), 51–76.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation.
ACM Trans. Graph. 28, 3, Article 77 (July 2009), 10 pages.

R. Bowen and S. Fisk. 1967. Generations of Triangulations of the Sphere. Math. Comp.
21 (1967), 250–252.

Marcel Campen, David Bommes, and Leif Kobbelt. 2015. Quantized Global Parametriza-
tion. ACM Trans. Graph. 34, 6, Article 192 (Oct. 2015), 12 pages.

Marcel Campen and Denis Zorin. 2017. Similarity Maps and Field-guided T-splines: A
Perfect Couple. ACM Trans. Graph. 36, 4, Article 91 (July 2017), 16 pages.

Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial Connections on
Discrete Surfaces. Computer Graphics Forum 29, 5 (2010), 1525–1533.

Tamal K. Dey and Sumanta Guha. 1998. Computing Homology Groups of Simplicial
Complexes in R3. J. ACM 45, 2 (March 1998), 266–287.

Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. 2013. QEx:
Robust Quad Mesh Extraction. ACM Trans. Graph. 32, 6, Article 168 (Nov. 2013),
168:1–168:10 pages.

Jeff Erickson. 2014. Efficiently Hex-Meshing Things with Topology. Discrete & Compu-
tational Geometry 52, 3 (Oct. 2014), 427–449.

Xianzhong Fang, Weiwei Xu, Hujun Bao, and Jin Huang. 2016. All-hex Meshing Using
Closed-form Induced Polycube. ACM Trans. Graph. 35, 4, Article 124 (July 2016),
124:1–124:9 pages.

Xiao-Ming Fu, Chong-Yang Bai, and Yang Liu. 2016. Efficient Volumetric PolyCube-Map
Construction. Computer Graphics Forum 35, 7 (2016), 97–106.

Xifeng Gao, Zhigang Deng, and Guoning Chen. 2015. Hexahedral Mesh Re-
parameterization from Aligned Base-complex. ACM Trans. Graph. 34, 4, Article 142
(July 2015), 10 pages.

Xifeng Gao, Wenzel Jakob, Marco Tarini, and Daniele Panozzo. 2017a. Robust Hex-
dominant Mesh Generation Using Field-guided Polyhedral Agglomeration. ACM
Trans. Graph. 36, 4, Article 114 (July 2017), 13 pages.

Xifeng Gao, Daniele Panozzo, Wenping Wang, Zhigang Deng, and Guoning Chen.
2017b. Robust Structure Simplification for Hex Re-meshing. ACM Trans. Graph. 36,
6, Article 185 (Nov. 2017), 13 pages.

James Gregson, Alla Sheffer, and Eugene Zhang. 2011. All-Hex Mesh Generation
via Volumetric PolyCube Deformation. Computer Graphics Forum 30, 5 (2011),
1407–1416.

Allen Hatcher. 2001. Algebraic Topology. Cambridge University Press, Cambridge, UK.
Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun Bao, and Mathieu Desbrun.

2014. l1-Based Construction of Polycube Maps from Complex Shapes. ACM Trans.
Graph. 33, 3, Article 25 (June 2014), 11 pages.

Jin Huang, Yiying Tong, Hongyu Wei, and Hujun Bao. 2011. Boundary Aligned Smooth
3D Cross-frame Field. ACM Trans. Graph. 30, 6, Article 143 (Dec. 2011), 8 pages.

Tengfei Jiang, Jin Huang, Yuanzhen Wang, Yiying Tong, and Hujun Bao. 2014. Frame
Field Singularity Correction for Automatic Hexahedralization. IEEE Trans. on Visu-
alization & Computer Graphics 20, 8 (Aug. 2014), 1189–1199.

Felix Kaelberer, Matthias Nieser, and Konrad Polthier. 2007. QuadCover - Surface
Parameterization using Branched Coverings. Computer Graphics Forum 26, 3 (2007),
375–384.

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally Optimal
Direction Fields. ACM Trans. Graph. 32, 4, Article 59 (July 2013), 10 pages.

N. Kowalski, F. Ledoux, and P. Frey. 2014. Block-structured Hexahedral Meshes for
CAD Models Using 3D Frame Fields. Procedia Engineering 82, Supplement C (2014),
59 – 71. 23rd International Meshing Roundtable (IMR23).

N. Kowalski, F. Ledoux, and P. Frey. 2016. Smoothness driven frame field generation
for hexahedral meshing. Computer-Aided Design 72, Supplement C (2016), 65 – 77.
23rd International Meshing Roundtable.

Michael Kremer, David Bommes, Isaak Lim, and Leif Kobbelt. 2014. Advanced Automatic
Hexahedral Mesh Generation from Surface Quad Meshes. Springer International
Publishing, Cham, 147–164.

Yufei Li, Yang Liu, Weiwei Xu, WenpingWang, and Baining Guo. 2012. All-hex Meshing
Using Singularity-restricted Field. ACM Trans. Graph. 31, 6, Article 177 (Nov. 2012),
11 pages.

Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes. 2018. Source
Code: Singularity-Constrained Octahedral Fields for Hexahedral Meshing. https:
//graphics.rwth-aachen.de:9000/SCOF/SingularityConstrainedOctahedralFields

Marco Livesu, Alla Sheffer, Nicholas Vining, and Marco Tarini. 2015. Practical Hex-
mesh Optimization via Edge-cone Rectification. ACM Trans. Graph. 34, 4, Article
141 (July 2015), 11 pages.

Max Lyon, David Bommes, and Leif Kobbelt. 2016. HexEx: Robust Hexahedral Mesh
Extraction. ACM Trans. Graph. 35, 4, Article 123 (July 2016), 11 pages.

Loic Marechal. 2009. Advances in Octree-Based All-Hexahedral Mesh Generation:
Handling Sharp Features. In Proceedings of the 18th International Meshing Roundtable.
Springer, Berlin, Heidelberg, 65–84.

Tobias Martin, Elaine Cohen, and Robert M. Kirby. 2012. SMI 2012: Mixed-element
Volume Completion from NURBS Surfaces. Comput. Graph. 36, 5 (Aug. 2012), 7.

Karl Merkley, Corey Ernst, Jason Shepherd, and Michael Borden. 2008. Methods and
Applications of Generalized Sheet Insertion for Hexahedral Meshing. In Proceedings
of the 16th International Meshing Roundtable. Springer Berlin Heidelberg, Berlin,
Heidelberg, 233–250.

N. Mishra and D.G. Sarvate. 2008. A Note on Non-Regular Planar Graphs. Journal of
Combinatorial Mathematics and Combinatorial Computing 66 (2008), 17–31.

Matthias Nieser, Ulrich Reitebuch, and Konrad Polthier. 2011. CubeCover-
Parameterization of 3D Volumes. Computer Graphics Forum 30, 5 (2011), 1397–1406.

Jonathan Palacios, Lawrence Roy, Prashant Kumar, Chen-Yuan Hsu, Weikai Chen,
Chongyang Ma, Li-Yi Wei, and Eugene Zhang. 2017. Tensor Field Design in Volumes.
ACM Trans. Graph. 36, 6, Article 188 (Nov. 2017), 15 pages.

Nicolas Ray, Dmitry Sokolov, and Bruno Lévy. 2016. Practical 3D Frame Field Generation.
ACM Trans. Graph. 35, 6, Article 233 (Nov. 2016), 9 pages.

Nicolas Ray, Dmitry Sokolov, Maxence Reberol, Franck Ledoux, and Bruno Lévy. 2017.
Hexahedral Meshing: Mind the Gap! Technical Report. INRIA.

Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. 2008. N-symmetry Direction
Field Design. ACM Trans. Graph. 27, 2, Article 10 (May 2008), 13 pages.

E. F. Schmeichel and S. L. Hakimi. 1977. On Planar Graphical Degree Sequences. SIAM
J. Appl. Math. 32, 3 (1977), 598–609.

Jason F. Shepherd and Chris R. Johnson. 2008. Hexahedral Mesh Generation Constraints.
Eng. with Comput. 24, 3 (June 2008), 195–213.

Dmitry Sokolov and Nicolas Ray. 2015. Fixing normal constraints for generation of
polycubes. Technical Report. INRIA.

Dmitry Sokolov, Nicolas Ray, Lionel Untereiner, and Bruno Lévy. 2016. Hexahedral-
Dominant Meshing. ACM Trans. Graph. 35, 5, Article 157 (June 2016), 23 pages.

Justin Solomon, Amir Vaxman, and David Bommes. 2017. Boundary Element Octahedral
Fields in Volumes. ACM Trans. Graph. 36, 3, Article 28 (May 2017), 16 pages.

Marco Tarini, Kai Hormann, Paolo Cignoni, and ClaudioMontani. 2004. PolyCube-Maps.
ACM Trans. Graph. 23, 3 (Aug. 2004), 853–860.

Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus
Hildebrandt, and Mirela Ben-Chen. 2016. Directional Field Synthesis, Design, and
Processing. Computer Graphics Forum 35, 2 (2016), 545–572.

Ryan Viertel, Matthew L Staten, and Franck Ledoux. 2016. Analysis of Non-Meshable Au-
tomatically Generated Frame Fields. Technical Report. Sandia National Laboratories
(SNL-NM), Albuquerque, NM (United States).

Rui Wang, Shuming Gao, Zhihao Zheng, and Jinming Chen. 2016. Frame Field Guided
Topological Improvement for Hex Mesh Using Sheet Operations. Procedia Engineer-
ing 163 (2016), 276 – 288. 25th International Meshing Roundtable.

W. Yu, K. Zhang, and X. Li. 2015. Recent algorithms on automatic hexahedral mesh
generation. In 2015 10th International Conference on Computer Science Education
(ICCSE). 697–702.

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

https://graphics.rwth-aachen.de:9000/SCOF/SingularityConstrainedOctahedralFields
https://graphics.rwth-aachen.de:9000/SCOF/SingularityConstrainedOctahedralFields

Singularity-Constrained Octahedral Fields for Hexahedral Meshing • 93:17

A LOCAL VERTEX TOPOLOGIES

A.1 Interior Vertices
A triangulation of the sphere with vertices V , edges E, and faces F
necessarily obeys Euler’s formula: |V | − |E |+ |F | = 2. As all faces are
triangles, we have 3 |F | = 2 |E |; and also that

∑
v ∈V degv = 2 |E |,

resulting in the following form:

1
6

∑
v ∈V
(6 − degv) = 2 ⇔ 3i + 2j + k = 12, (25)

where i, j,k denote the number of valence 3, 4, 5 vertices in the
triangulation. Let the signature of a triangulation denote the triplet
(i, j,k). As i, j,k are all nonzero integers, there are a finite number
of solutions, or possible signatures for such a triangulation, listed
below, organized by the total number of vertices |V | = i + j + k :

|V | = 4: (4,0,0)
|V | = 5: (3,1,1) (2,3,0)
|V | = 6: (3,0,3) (2,2,2) (1,4,1) (0,6,0)
|V | = 7: (0,5,2) (1,3,3) (2,1,4)
|V | = 8: (0,4,4) (1,2,5) (2,0,6)
|V | = 9: (0,3,6) (1,1,7)
|V | = 10: (0,2,8) (1,0,9)
|V | = 11: (0,1,10)
|V | = 12: (0,0,12)

The signatures that have been struck out, correspond to signatures
with no valid corresponding triangulation of the sphere. This is a
consequence of previouswork [Mishra and Sarvate 2008; Schmeichel
and Hakimi 1977] which characterizes the possible vertex degrees of
planar (and hence sphere) triangulations. The remaining signatures
are unique corresponding local singularities, see Fig. 6.

A.2 Boundary Vertices
Enumerating boundary vertex topologies is equivalent to enumer-
ating triangulations of a disc. We enumerate such triangulations
by modifying an algorithm for enumerating sphere triangulations
[Bowen and Fisk 1967]. Let us first summarize their basic approach.
As done in Equation (25), the Euler formula can be rearranged into∑
k Xk (6 − k) = 12 where Xk is the number of vertices of degree k .

This shows that all triangulations of a sphere must contain some
vertices with degree less than 6. For any triangulation with more
than 3 vertices, one of these vertices may be removed, resulting in
a triangulation with one less vertex. Reversing the vertex removal
procedure yields an algorithm for generating all triangulations of
a sphere of V vertices from all triangulations of a sphere of V − 1
vertices. The degree 6 bound means that there are only a finite
number of possibilities for each vertex addition. Application of this
algorithm and restriction to triangulations with vertex degrees 3,4,
and 5 verifies the results of Appendix A.1.
We extend this approach to triangulations of a disc. In this case,

rearranging Euler’s formula gives
∑
k Xk (6 − k) = 6 + 2Nb , where

Nb is the number of boundary vertices, again forcing existence of
some vertices with degree less than 6. The other main difference is
that boundary vertex removals are considered in addition to interior
vertex removals. These removals are illustrated in Figure 15. Appli-
cation of the analogous algorithm and restriction to triangulations

Fig. 15. List of ways to remove a vertex of degree 2, 3, 4, or 5, from a disc
triangulation. The red vertex is the one being removed. (Left) Removal of
boundary disc vertices. (Right) Removal of interior disc vertices.

with vertex degrees 2, 3, 4, and 5 (with degree 2 vertices restricted
to the boundary) gives us our result.

B GLOBAL INDEX CONDITION
Condition (2) follows from the following finer condition:

1
2

∑
v ∈∂V

(
1 −

valh (v)
4

)
−

∑
e ∈∂E

(
2 − valh (e)

4

)
+

∑
v ∈

◦
V

(
1 −

valh (v)
8

)
−

∑
e ∈
◦
E

(
1 −

valh (e)
4

)
= 0, (26)

where
◦

V ,
◦

E denote the interior vertices and edges of the hex mesh.
This is argued straightforward by noting that only singular vertices
and edges make nonzero contributions to the lefthand side; and for
non-closed singular arcs, all but one of the internal component edge
contributions is canceled by internal vertex contributions.

To argue for Equation (26), first note two simple equalities:∑
v ∈V

valh (v) = 8 |H | &
∑
e ∈E

valf (e) = 4 |F | .

With these, consider the standard formula for the Euler characteris-
tic of a 3-dimensional CW-complex:

χ (M) = |V | − |E | + |F | − |H |

=

(∑
v ∈V

1 −
valh (v)

8

)
−

(∑
e ∈E

1 −
valf (e)

4

)
The above terms behave well for interior vertices and edges, but
regular boundary vertices and edges still make nonzero contribution,
so we focus on these and perform some additional manipulation.(∑

∂V

1 −
valh (v)

8

)
−

(∑
∂E

1 −
valf (e)

4

)
=
∂V

2
+
1
2

(∑
∂V

1 −
valh (v)

4

)
−
∂E

4
−

(∑
∂E

3 − valf (e)
4

)
=

χ (∂M)

2
+
1
2

(∑
∂V

1 −
valh (v)

4

)
−

(∑
∂E

3 − valf (e)
4

)
The last equality follows from Equation (3) for the surface quad
mesh. Now, realizing that χ (M) = χ (∂M)

2 (see [Dey and Guha 1998]
for a discussion), we get Equation (26).

ACM Trans. Graph., Vol. 37, No. 4, Article 93. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Surface Work and Quad Meshing
	2.2 Hex Meshing

	3 Hexahedral Mesh Topology
	4 Integer-Grid Maps Revisited
	5 From Singularity Graph to Octahedral Field
	5.1 Singularity Graph Constraints
	5.2 Decomposition approach
	5.3 Determining matchings
	5.4 Octahedral Fields with Fixed Matchings and Alignment

	6 Results
	7 Conclusions and Future Work
	Acknowledgments
	References
	A Local Vertex Topologies
	A.1 Interior Vertices
	A.2 Boundary Vertices

	B Global Index Condition

