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µ̄0 =
∑
i

aiδxi
,

µ̄1 =
∑
j

bjδyj

Solve the Linear Programming problem

min
π

∑
i,j

πij

with conservation of mass constraints{∑
j πij = ai,∑
i πij = bj ,

Villani, Cédric. Topics in optimal transportation. 2003.
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We compute the whole interpolation in one single convex optimization problem

Primal Problem

Unknown : µ : [0, 1]︸︷︷︸
time

× M︸︷︷︸
space

→ R+

min
µ,m

{∫ 1

0

∫
M

|m|2

2µ

}
where m = µv is the momentum, under the
constraints

∂tµ+ ∇ ·m = 0,

µ0 = µ̄0,

µ1 = µ̄1.

Dual Problem

Unknown : ϕ : [0, 1]×M→ R

max
ϕ

{∫
M
ϕ(1, ·)µ̄1 −

∫
M
ϕ(0, ·)µ̄0

}
under the constraint

∂tϕ+
1

2

∣∣∣ ∇ϕ ∣∣∣2 6 0.

.

Benamou, Jean-David, and Yann Brenier. A computational �uid mechanics solution to the Monge-Kantorovich

mass transfer problem. 2000.

Papadakis, Nicolas, Gabriel Peyré, and Edouard Oudet. Optimal transport with proximal splitting. 2014.
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In the continuous world

=Static OT Dynamical OT

Maas, Jan. Gradient �ows of the entropy for �nite Markov chains. 2011.
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Our contribution : discretization and implementation of dynamical OT

∇, ∇· on a curved surface ;

Average to go from faces (m) to vertices (µ) to compute

∫∫
|m|2

2µ
;

Preserving the Riemannian structure of the Wasserstein space.

We have a single �nite-dimensional convex (SOCP) optimization problem :

Size ∼ N ×M (N temporal grid, M number of vertices).

Alternating Direction Method of Multipliers (only non local step : space-time �xed Poisson problem)

N = 30, 5000 vertices : ∼ 5 minutes.

Code available at https://github.com/HugoLav/DynamicalOTSurfaces
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Positivity and mass preservation are enforced automatically
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Adding +
α

2

∫ 1

0

∫
M
µ2
t dt in the (primal) objective functional.

Still convex, only a few lines of codes to add.

No problem in taking α = 0.
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Comparison with entropic OT [Solomon et al, 2015]

Our method

Solomon, Justin, et al. Convolutional Wasserstein distances : E�cient optimal transportation on geometric

domains. 2015.
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F functional on the space of densities, we want to compute the gradient �ow

µ̇ = −∇WF (µ).

If µk is known, to compute µk+1 we use the JKO scheme, same complexity as before.

µk+1 minimizes



∫∫
|m|2

2µ
+ τF (µk+1)

∂tµ+∇ ·m = 0

µ0 = µk

µ1 = µk+1

  . . .

Jordan, Richard, David Kinderlehrer, and Felix Otto. The variational formulation of the Fokker�Planck equation.

1998.



F is gravitational energy + constraint for the density to stay below a threshold :

Maury, Bertrand, Aude Roudne�-Chupin, and Filippo Santambrogio. A macroscopic crowd motion model of

gradient �ow type. 2010.
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F is

∫
M
µp with p > 1 : slow di�usion (porous medium).
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On Discrete Surfaces, use Dynamical OT

Everything is about convex optimization.

Only need to know how to compute ∇ on a surface.

Yet complex geometries are handled.

Thank you for your attention
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