Bounded Distortion Harmonic Shape Interpolation

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics

June 7, 2016

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation

・ロ・・日・・日・・日・ うらぐ

eginning	Middle	
	0000 000000 000	00000 0000

Interpolation in Animation

Step 1: deform source shape for keyframes. Step 2: interpolate deformations for motion.

・ロト ・日・・日・・日・ のへぐ

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning ●O	Middle 0000	End 00000
	000000 000	
Previous work		
Previous work		

In recent years, many works have focused on bounded distortion methods for step 1.

Edward Chien*, Renjie Chen † , Ofir Weber* *Bar IIan University † Max Planck Institute for Informatics

Beginning	Middle	
• • • • • • • • • • • • • • • • • • • •	0000 000000 000	00000 0000
Previous work		
Previous work		

In recent years, many works have focused on bounded distortion methods for step 1. Key contributors: Lipman, Zorin, Weber, Chen, Schuller, Aigerman, Kovalksy, etc.

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning ●0 00000	Middle 0000 000000 000	End 00000 0000
Previous work		
Previous work		

In recent years, many works have focused on bounded distortion methods for step 1. Key contributors: Lipman, Zorin, Weber, Chen, Schuller, Aigerman, Kovalksy, etc. Fewer works have focused on such methods for step 2. For comparison here, we consider four other methods:

Beginning	Middle	
0 00000	0000 000000 000	00000 0000
Previous work		

In recent years, many works have focused on bounded distortion methods for step 1. Key contributors: Lipman, Zorin, Weber, Chen, Schuller, Aigerman, Kovalksy, etc. Fewer works have focused on such methods for step 2. For comparison here, we consider four other methods:

Alexa et al. '00 [ARAP] uses the polar decomposition of the Jacobian, interpolates the parts separately, and then reconstructs the map by finding integrable Jacobians that are close. No guarantees on distortion bounds.

Previous work

Beginning ⊙ ⊙○○○○	Middle 0000 000000 000	End 00000 0000
Previous work		
Previous Work (cont.)		

 Kircher/Garland '08 [FFMP] use differential trihedron connection coordinates, requiring a two-step reconstruction process. Also no guarantees on bounded distortion.

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning	Middle	
0 00000	0000 000000 000	00000 0000
Previous work		
-		

Previous Work (cont.)

- Kircher/Garland '08 [FFMP] use differential trihedron connection coordinates, requiring a two-step reconstruction process. Also no guarantees on bounded distortion.
- Chen et al. '13 [Chen et al. 13] interpolate edge lengths squared of the mesh. Equivalent to linear interpolation of the metric tensor. Bounded conformal distortion.

Beginning O● OOOOO	Middle 0000 000000 000	End 00000 0000
Previous work		

Previous Work (cont.)

- Kircher/Garland '08 [FFMP] use differential trihedron connection coordinates, requiring a two-step reconstruction process. Also no guarantees on bounded distortion.
- Chen et al. '13 [Chen et al. 13] interpolate edge lengths squared of the mesh. Equivalent to linear interpolation of the metric tensor. Bounded conformal distortion.
- Chen/Weber '15 [Chen/Weber 15] computes bounded distortion harmonic mappings with positional constraints. Interpolation of handles offers an easy extension to interpolation.

Beginning ○○ ●○○○○○	Middle 0000 000000 000	End 00000 0000
Mathematical Background		

A useful decomposition for the Jacobian J_f of a C^1 planar map $f : \mathbb{R}^2 \to \mathbb{R}^2$:

$$J_f = egin{pmatrix} a & -b \ b & a \end{pmatrix} + egin{pmatrix} c & d \ d & -c \end{pmatrix}$$

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning ○○ ●○○○○	Middle 0000 000000 000	End 00000 0000
Mathematical Background		

A useful decomposition for the Jacobian J_f of a C^1 planar map $f : \mathbb{R}^2 \to \mathbb{R}^2$:

$$J_f = egin{pmatrix} \mathsf{a} & -b \ \mathsf{b} & \mathsf{a} \end{pmatrix} + egin{pmatrix} \mathsf{c} & d \ d & -c \end{pmatrix}$$

The first matrix applies a similarity transformation, while the second applies an anti-similarity transformation.

Beginning ○○ ●○○○○	Middle 0000 000000 000	End 00000 0000
Mathematical Background		

A useful decomposition for the Jacobian J_f of a C^1 planar map $f : \mathbb{R}^2 \to \mathbb{R}^2$:

$$J_f = egin{pmatrix} \mathsf{a} & -b \ \mathsf{b} & \mathsf{a} \end{pmatrix} + egin{pmatrix} \mathsf{c} & d \ d & -c \end{pmatrix}$$

The first matrix applies a similarity transformation, while the second applies an anti-similarity transformation.

Letting z = x + iy, $f_z = a + ib$, and $f_{\overline{z}} = c + id$, we get $J_f(x \ y)^T$ in \mathbb{C} :

$$J_f(z) = f_z z + f_{\bar{z}} \bar{z}$$

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation

Beginning ⊙○ ●0000	Middle 0000 000000 000	End 00000 0000
Mathematical Background		

A useful decomposition for the Jacobian J_f of a C^1 planar map $f : \mathbb{R}^2 \to \mathbb{R}^2$:

$$J_f = egin{pmatrix} \mathsf{a} & -b \ \mathsf{b} & \mathsf{a} \end{pmatrix} + egin{pmatrix} \mathsf{c} & d \ d & -c \end{pmatrix}$$

The first matrix applies a similarity transformation, while the second applies an anti-similarity transformation.

Letting z = x + iy, $f_z = a + ib$, and $f_{\overline{z}} = c + id$, we get $J_f(x \ y)^T$ in \mathbb{C} :

$$J_f(z) = f_z z + f_{\bar{z}} \bar{z}$$

Formulae for the complex derivatives: $f_z := (f_x - if_y)/2 \& f_{\overline{z}} := (f_x + if_y)/2$.

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation

Beginning
00000

Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which $f_{\bar{z}} = 0$ everywhere and their Jacobians are similarity transformations everywhere.

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics

Beginning
00000

Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which $f_{\bar{z}} = 0$ everywhere and their Jacobians are similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the results of these operations are holomorphic as well.

Beginning
00000

Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which $f_{\bar{z}} = 0$ everywhere and their Jacobians are similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the results of these operations are holomorphic as well.

They are also closed under sums, products, compositions, and quotients (only when the denominator does not vanish).

Beginning
00000

Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which $f_{\bar{z}} = 0$ everywhere and their Jacobians are similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the results of these operations are holomorphic as well.

They are also closed under sums, products, compositions, and quotients (only when the denominator does not vanish).

Anti-holomorphic mappings f are those for which $f_z = 0$ everywhere, and they have analogous properties.

Beginning
00000

Mathematical Background

Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which $f_{\bar{z}} = 0$ everywhere and their Jacobians are similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the results of these operations are holomorphic as well.

They are also closed under sums, products, compositions, and quotients (only when the denominator does not vanish).

Anti-holomorphic mappings f are those for which $f_z = 0$ everywhere, and they have analogous properties.

Complex conjugation switches back and forth between the two classes of mappings.

Beginning ○○ ○○●○○	Middle 0000 000000 000	End 00000 0000
Mathematical Background		

Harmonic Planar Mappings

Harmonic mappings f = (u, v) have components that satisfy the Laplace equation:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

The value of a harmonic mapping is intuitively the average of its surrounding values.

Edward Chien*, Renjie Chen † , Ofir Weber* *Bar IIan University † Max Planck Institute for Informatics

Beginning ○○ ○○●○○	Middle 0000 000000 000	End 00000 0000
Mathematical Background		

Harmonic Planar Mappings

Harmonic mappings f = (u, v) have components that satisfy the Laplace equation:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

The value of a harmonic mapping is intuitively the average of its surrounding values. If $f: \Omega \to \mathbb{R}^2$ has a simply-connected domain Ω , then it may be represented as the sum of a holomorphic and anti-holomorphic mapping:

$$f(z) = \Phi(z) + \overline{\Psi}(z)$$

This decomposition is akin to the decomposition of the Jacobian.

Beginning ○○ ○○●○○	Middle 0000 000000 000	End 00000 0000
Mathematical Background		

Harmonic Planar Mappings

Harmonic mappings f = (u, v) have components that satisfy the Laplace equation:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

The value of a harmonic mapping is intuitively the average of its surrounding values. If $f: \Omega \to \mathbb{R}^2$ has a simply-connected domain Ω , then it may be represented as the sum of a holomorphic and anti-holomorphic mapping:

$$f(z) = \Phi(z) + \overline{\Psi}(z)$$

This decomposition is akin to the decomposition of the Jacobian.

The converse is true as well with the sum of a holomorphic and anti-holomorphic mapping being harmonic.

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics

Beginning bo ooo∙o	Middle 0000 000000 000	End 00000 0000
Mathematical Background		

Local Geometric Quantities

SVD: $J_f = U \Sigma V^T$

• det
$$J_f = |f_z|^2 - |f_{\bar{z}}|^2$$
,

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation ◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Beginning
00000

Local Geometric Quantities

SVD: $J_f = U \Sigma V^T$

det J_f = |f_z|² − |f_z|², so locally injective and orientation-preserving equivalent to |f_z| > |f_z|

э

Edward Chien * , Renjie Chen † , Ofir Weber * * Bar IIan University † Max Planck Institute for Informatics

Beginning
00000

Local Geometric Quantities

SVD: $J_f = U \Sigma V^T$

- det J_f = |f_z|² − |f_z|², so locally injective and orientation-preserving equivalent to |f_z| > |f_z|
- isometric distortion measures: $\sigma_a = |f_z| + |f_{\overline{z}}|, \ \sigma_b = |f_z| - |f_{\overline{z}}|$

・ロト・四ト・ヨト・ヨト ヨー ろくの

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics

Beginning
00000

Local Geometric Quantities

SVD: $J_f = U \Sigma V^T$

- det $J_f = |f_z|^2 |f_{\bar{z}}|^2$, so locally injective and orientation-preserving equivalent to $|f_z| > |f_{\bar{z}}|$
- isometric distortion measures: $\sigma_a = |f_z| + |f_{\overline{z}}|, \ \sigma_b = |f_z| - |f_{\overline{z}}|$
- other isometric distortion measures: $\tau := \max(\sigma_a, \frac{1}{\sigma_b}), \ \sigma_a + \frac{1}{\sigma_b}$

э.

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics

Beginning
00000

Local Geometric Quantities (cont.)

SVD: $J_f = U \Sigma V^T$

•
$$\mu = \frac{f_{\bar{z}}}{f_z}$$
, Beltrami coefficient

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation ▲□ → ▲□ → ▲目 → ▲目 → ▲□ →

Beginning
00000

Local Geometric Quantities (cont.)

SVD: $J_f = U \Sigma V^T$

- $\mu = \frac{f_{\bar{z}}}{f_z}$, Beltrami coefficient
- conformal distortion measure:
 k = |µ| ∈ [0, 1)

э.

Beginning
00000

Local Geometric Quantities (cont.)

SVD: $J_f = U \Sigma V^T$

- $\mu = \frac{f_{\bar{z}}}{f_z}$, Beltrami coefficient
- conformal distortion measure: k = |µ| ∈ [0, 1)
- alternate conformal distortion measure: $K = \frac{\sigma_a}{\sigma_b} \in [1, \infty)$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Beginning
00000

Local Geometric Quantities (cont.)

SVD: $J_f = U \Sigma V^T$

- $\mu = \frac{f_{\bar{z}}}{f_z}$, Beltrami coefficient
- conformal distortion measure: k = |µ| ∈ [0, 1)
- alternate conformal distortion measure: $K = \frac{\sigma_a}{\sigma_b} \in [1, \infty)$

• stretch direction: $\theta = \frac{1}{2} \operatorname{Arg} \mu \in [0, \pi)$

イロト 不得 トイヨト イヨト ニヨー

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics

Beginning oo ooooo	Middle ●000 ○00000 000	End 00000 0000
Problem Statement & Basic Approach		
Problem Statement		

Given: $f^0, f^1: \Omega \to \mathbb{R}^2$ locally injective, orientation-preserving, harmonic; Ω simply-connected

Beginning oo ooooo	Middle ●	End 00000 0000
Problem Statement & Basic Approach		
Problem Statement		

Given: $f^0, f^1: \Omega \to \mathbb{R}^2$ locally injective, orientation-preserving, harmonic; Ω simply-connected

Want: interpolating function $f : [0,1] \times \Omega \to \mathbb{R}^2$ satisfying basic conditions:

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

eginning 0 0000	Middle ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	End 00000 0000
roblem Statement & Basic Approach		

Problem Statement

Given: $f^0, f^1: \Omega \to \mathbb{R}^2$ locally injective, orientation-preserving, harmonic; Ω simply-connected

Want: interpolating function $f : [0,1] \times \Omega \rightarrow \mathbb{R}^2$ satisfying basic conditions:

1 (interpolation)
$$f|_{\{0\}\times\Omega} = f^0$$
 and $f|_{\{1\}\times\Omega} = f^1$

ginning))000	Middle ●000 ○000000 000	End 00000 0000
oblem Statement & Basic Approach		

Problem Statement

Р

Given: $f^0, f^1: \Omega \to \mathbb{R}^2$ locally injective, orientation-preserving, harmonic; Ω simply-connected

Want: interpolating function $f : [0,1] \times \Omega \rightarrow \mathbb{R}^2$ satisfying basic conditions:

1 (interpolation)
$$f|_{\{0\} imes \Omega} = f^0$$
 and $f|_{\{1\} imes \Omega} = f^1$

2 (harmonicity) $f|_{\{t\} imes \Omega}$ harmonic $\forall t \in [0, 1]$

ginning))000	Middle ●000 ○000000 000	End 00000 0000
oblem Statement & Basic Approach		

Problem Statement

Р

Given: $f^0, f^1: \Omega \to \mathbb{R}^2$ locally injective, orientation-preserving, harmonic; Ω simply-connected

Want: interpolating function $f : [0,1] \times \Omega \rightarrow \mathbb{R}^2$ satisfying basic conditions:

1 (interpolation)
$$f|_{\{0\} imes\Omega}=f^0$$
 and $f|_{\{1\} imes\Omega}=f^1$

2 (harmonicity)
$$f|_{\{t\} imes \Omega}$$
 harmonic $orall t \in [0,1]$

3 (loc. inj.) $f|_{\{t\}\times\Omega}$ is loc. inj. orientation-preserving $\forall t \in [0,1]$

iginning D DOOO	Middle ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	End 00000 0000
oblem Statement & Basic Approach		

Problem Statement

Given: $f^0, f^1: \Omega \to \mathbb{R}^2$ locally injective, orientation-preserving, harmonic; Ω simply-connected

Want: interpolating function $f : [0,1] \times \Omega \to \mathbb{R}^2$ satisfying basic conditions:

1 (interpolation)
$$f|_{\{0\} imes\Omega}=f^0$$
 and $f|_{\{1\} imes\Omega}=f^1$

2 (harmonicity)
$$f|_{\{t\} imes \Omega}$$
 harmonic $orall t \in [0,1]$

3 (loc. inj.) $f|_{\{t\}\times\Omega}$ is loc. inj. orientation-preserving $\forall t \in [0,1]$

4 (smoothness)
$$f|_{[0,1] imes \{z\}}$$
 is C^∞ for all $z\in \Omega$

Beginning oo ooooo	Middle ○●○○ ○○○○○○ ○○○	End 00000 0000
Problem Statement & Basic Approach		
Problem Statement (cont.)		

 $f^t := f|_{\{t\} \times \Omega}$ (analogous superscript notation used for other quantities)

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics
Beginning Do Doooo	Middle ⊙●⊙⊙ ⊙⊙⊙⊙⊙ ⊙⊙○	End 00000 0000
Problem Statement & Basic Approach		
Problem Statement (cont.)		

Beginning 30 30000	Middle ○●○○ ○○○○○○ ○○○	End 00000 0000
Problem Statement & Basic Approach		
Problem Statement (cont.)		

5 (conf. distortion) $k^t \leq \max(k^0, k^1)$ for all $t \in [0, 1]$

eginning 0 0000	Middle ○●○○ ○○○○○○ ○○○	End 00000 0000
roblem Statement & Basic Approach		
Problem Statement (cont.)		

5 (conf. distortion)
$$k^t \leq \max(k^0, k^1)$$
 for all $t \in [0, 1]$

6 (max scaling)
$$\sigma_a^t \leq \max(\sigma_a^0, \sigma_a^1)$$
 for all $t \in [0, 1]$

eginning 0 10000	Middle ○●○○ ○○○○○○ ○○○	End 00000 0000
roblem Statement & Basic Approach		
Problem Statement (cont.)		

- **5** (conf. distortion) $k^t \leq \max(k^0, k^1)$ for all $t \in [0, 1]$
- 6 (max scaling) $\sigma_a^t \leq \max(\sigma_a^0, \sigma_a^1)$ for all $t \in [0, 1]$
- 7 (min scaling) $\sigma_b^t \ge \min(\sigma_b^0, \sigma_b^1)$ for all $t \in [0, 1]$

Beginning DO DOODOO	Middle ○●○○ ○○○○○○ ○○○	End 00000 0000
Problem Statement & Basic Approach		
Problem Statement (cont.)		

5 (conf. distortion)
$$k^t \leq \max(k^0, k^1)$$
 for all $t \in [0, 1]$

6 (max scaling)
$$\sigma_a^t \leq \max(\sigma_a^0, \sigma_a^1)$$
 for all $t \in [0, 1]$

7 (min scaling)
$$\sigma_b^t \ge \min(\sigma_b^0, \sigma_b^1)$$
 for all $t \in [0, 1]$

Note: Can consider these desired bounds as pointwise or global.

Beginning oo ooooo	Middle ○○●○ ○○○○○ ○○○○	End 00000 0000
Problem Statement & Basic Approach		
Basic Approach		

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

As with many other approaches, we aim to interpolate the Jacobians as these approximate the mapping locally.

Beginning oo ooooo	Middle ○○●○ ○○○○○ ○○○○○	End 00000 0000
Problem Statement & Basic Approach		
Basic Approach		

With harmonic input maps, the decomposition: $f(z) = \Phi(z) + \overline{\Psi}(z)$, suggests a useful approach. Note that $f_z = \Phi_z$ and $f_{\overline{z}} = \overline{\Psi_z}$.

Beginning oo ooooo	Middle ००●० ०००००० ०००	End 00000 0000
Problem Statement & Basic Approach		
Basic Approach		

With harmonic input maps, the decomposition: $f(z) = \Phi(z) + \overline{\Psi}(z)$, suggests a useful approach. Note that $f_z = \Phi_z$ and $f_{\overline{z}} = \overline{\Psi_z}$.

If we holomorphically and anti-holomorphically interpolate f_z and $f_{\overline{z}}$, they remain automatically integrable.

Beginning oo ooooo	Middle 00●0 000000 000	End 00000 0000
Problem Statement & Basic Approach		
Basic Approach		

With harmonic input maps, the decomposition: $f(z) = \Phi(z) + \overline{\Psi}(z)$, suggests a useful approach. Note that $f_z = \Phi_z$ and $f_{\overline{z}} = \overline{\Psi_z}$.

If we holomorphically and anti-holomorphically interpolate f_z and $f_{\overline{z}}$, they remain automatically integrable.

Upon integration, we may sum the results and obtain a harmonic map.

_

Beginning oo ooooo	Middle ⊙⊙●⊙ ⊙⊙⊙⊙ ⊙⊖○	End 00000 0000
Problem Statement & Basic Approach		
Basic Approach		

With harmonic input maps, the decomposition: $f(z) = \Phi(z) + \overline{\Psi}(z)$, suggests a useful approach. Note that $f_z = \Phi_z$ and $f_{\overline{z}} = \overline{\Psi_z}$.

If we holomorphically and anti-holomorphically interpolate f_z and $f_{\bar{z}}$, they remain automatically integrable.

Upon integration, we may sum the results and obtain a harmonic map.

This approach basically interpolates the similarity and anti-similarity parts of the Jacobian separately.

Beginning oo ooooo	Middle 000● 000000 000	End 00000 0000
Problem Statement & Basic Approach		
Basic Approach (cont.)		

Edward Chien*, Renjie Chen † , Ofir Weber* *Bar IIan University † Max Planck Institute for Informatics

Beginning oo ooooo	Middle 000● 000000 000	End 00000 0000
Problem Statement & Basic Approach		
Basic Approach (cont.)		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

1 Interpolation is achieved with proper choices of integration constants.

Beginning oo oocoo	Middle 000 000000 000	End 00000 0000
Problem Statement & Basic Approach		
Basic Approach (cont.)		

- **1** Interpolation is achieved with proper choices of integration constants.
- **2** Harmonicity is automatic in our approach.

Beginning oo oocoo	Middle 000● 000000 000	End 00000 0000
Problem Statement & Basic Approach		
Basic Approach (cont.)		

- Interpolation is achieved with proper choices of integration constants.
- **2** Harmonicity is automatic in our approach.
- 3 Local injectivity follows as long as we maintain $|f_z| > |f_{\bar{z}}|$ throughout interpolation.

Beginning oo ooooo	Middle 000 000000 000	End 00000 0000
Problem Statement & Basic Approach		
Basic Approach (cont.)		

- Interpolation is achieved with proper choices of integration constants.
- **2** Harmonicity is automatic in our approach.
- 3 Local injectivity follows as long as we maintain $|f_z| > |f_{\bar{z}}|$ throughout interpolation.
- **4** Smoothness will result as long as f_z and $f_{\overline{z}}$ are smoothly interpolated with respect to time *t*.

Beginning
00000

Logarithmic Interpolation of f_z

$$f_z^t = (f_z^0)^{1-t} (f_z^1)^t$$

- ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ クタの

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning
00000

Logarithmic Interpolation of f_z

$$f_z^t = (f_z^0)^{1-t} (f_z^1)^t$$
$$= e^{(1-t)\log f_z^0} e^{t\log f_z^1}$$

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三回 ろんの

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning	
00000	

Logarithmic Interpolation of f_z

$$\begin{aligned} f_z^t &= (f_z^0)^{1-t} (f_z^1)^t \\ &= e^{(1-t)\log f_z^0} e^{t\log f_z^1} \\ &= \left| f_z^0 \right|^{1-t} \left| f_z^1 \right|^t e^{i\left((1-t)\arg(f_z^0) + t\arg(f_z^1)\right)} \end{aligned}$$

<ロ> <回> <回> < 回> < 回> < 回> < 回</p>

Edward Chien*, Renjie Chen † , Ofir Weber * *Bar IIan University † Max Planck Institute for Informatics

Beginning	
00000	

Logarithmic Interpolation of f_z

$$f_z^t = (f_z^0)^{1-t} (f_z^1)^t$$

= $e^{(1-t)\log f_z^0} e^{t\log f_z^1}$
= $|f_z^0|^{1-t} |f_z^1|^t e^{i((1-t)\arg(f_z^0) + t\arg(f_z^1))}$

<ロ> (四) (四) (三) (三) (三) (三)

Clearly holomorphic, and note $f_z^t \neq 0$.

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning	
00000	

Logarithmic Interpolation of f_z

$$\begin{aligned} f_z^t &= (f_z^0)^{1-t} (f_z^1)^t \\ &= e^{(1-t)\log f_z^0} e^{t\log f_z^1} \\ &= \left| f_z^0 \right|^{1-t} \left| f_z^1 \right|^t e^{i\left((1-t)\arg(f_z^0) + t\arg(f_z^1)\right)} \end{aligned}$$

Clearly holomorphic, and note $f_z^t \neq 0$.

Branches of logarithm need to be determined.

Beginning oo ooooo	Middle ○○○○ ○●○○○○ ○○○	End 00000 0000
Methods: Fully Parallel Variants		
u variant		

As a norm on any vector space is convex, we might try to determine $f_{\bar{z}}^t$ by linearly interpolating μ . This would preserve bounds on conformal distortion.

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning oo ooooo	Middle	End 00000 0000
Methods: Fully Parallel Variants		

ν variant

As a norm on any vector space is convex, we might try to determine $f_{\bar{z}}^t$ by linearly interpolating μ . This would preserve bounds on conformal distortion.

Unfortunately, this may not be done while maintaining anti-holomorphic interpolation of $f_{\overline{z}}^t$. So we consider $\nu = \frac{(\overline{f_z})}{f_z}$, noting that $|\nu| = |\mu| = k$.

Beginning oo ooooo	Middle ⊙⊙⊙⊙ ⊙⊙⊙	End 00000 0000
Methods: Fully Parallel Variants		

ν variant

As a norm on any vector space is convex, we might try to determine $f_{\bar{z}}^t$ by linearly interpolating μ . This would preserve bounds on conformal distortion.

Unfortunately, this may not be done while maintaining anti-holomorphic interpolation of $f_{\overline{z}}^t$. So we consider $\nu = \frac{(\overline{f_z})}{f_z}$, noting that $|\nu| = |\mu| = k$.

$$u^t = (1-t)
u^0 + t
u^1 \implies f^t_{ar{z}} = \overline{
u^t f^t_z}$$

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation

Beginning oo ooooo	Middle ⊙⊙⊙⊙ ⊙⊙⊙⊙⊙ ⊙⊙○	End 00000 0000
Methods: Fully Parallel Variants		

ν variant

As a norm on any vector space is convex, we might try to determine $f_{\bar{z}}^t$ by linearly interpolating μ . This would preserve bounds on conformal distortion.

Unfortunately, this may not be done while maintaining anti-holomorphic interpolation of $f_{\overline{z}}^t$. So we consider $\nu = \frac{(\overline{f_z})}{f_z}$, noting that $|\nu| = |\mu| = k$.

$$u^t = (1-t)
u^0 + t
u^1 \implies f^t_{ar{z}} = \overline{
u^t f^t_z}$$

As ν^t is holomorphic, we see that we get an anti-holomorphic interpolation for $f_{\overline{z}}^t$.

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning oo ooooo	Middle 0000 0€0000 000	End 00000 0000
Methods: Fully Parallel Variants		

u variant

As a norm on any vector space is convex, we might try to determine $f_{\bar{z}}^t$ by linearly interpolating μ . This would preserve bounds on conformal distortion.

Unfortunately, this may not be done while maintaining anti-holomorphic interpolation of $f_{\overline{z}}^t$. So we consider $\nu = \frac{(\overline{f_z})}{f_z}$, noting that $|\nu| = |\mu| = k$.

$$u^t = (1-t)
u^0 + t
u^1 \implies f^t_{ar{z}} = \overline{
u^t f^t_z}$$

As ν^t is holomorphic, we see that we get an anti-holomorphic interpolation for $f_{\overline{z}}^t$. Conformal distortion bounds are satisfied, as are bounds on σ_b . Bounds on σ_a are nearly achieved.

Beginning 00 00000	Middle ○○○○ ○○○○○○ ○○○	End 00000 0000
Methode: Fully Parallel Variante		

ν variant example

Edward Chien*, Renjie Chen † , Ofir Weber* *Bar IIan University † Max Planck Institute for Informatics

Beginning
00000

Stretch direction preservation

The ν variant doesn't always produce intuitive behavior, partially because the map does not preserve stretch direction.

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning
00000

Stretch direction preservation

The ν variant doesn't always produce intuitive behavior, partially because the map does not preserve stretch direction.

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation ・ロト・日本・山田・・田・・日・ シック

Beginning
00000

Stretch direction preservation

The ν variant doesn't always produce intuitive behavior, partially because the map does not preserve stretch direction.

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation ・ロト・日本・山田・・田・・日・ シック

Beginning oo ooooo	Middle ○○○○ ○○○○○ ○○○	End 00000 0000
Methods: Fully Parallel Variants		
n variant		

To preserve stretch direction, we introduce linear interpolation of $\eta = f_{\overline{z}} \overline{f_z}$. It shares an argument with μ and is anti-holomorphic.

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics

Beginning oo ooooo	Middle ○○○○ ○○○●○ ○○○	End 00000 0000
Methods: Fully Parallel Variants		

To preserve stretch direction, we introduce linear interpolation of $\eta = f_{\overline{z}} \overline{f_z}$. It shares an argument with μ and is anti-holomorphic.

$$\eta^t = (1-t)\eta^0 + t\eta^1 \implies f_{\bar{z}}^t = rac{\eta^t}{\overline{f_z^t}}$$

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning oo ooooo	Middle ○○○○ ○○○●○ ○○○	End 00000 0000
Methods: Fully Parallel Variants		

To preserve stretch direction, we introduce linear interpolation of $\eta = f_{\overline{z}} \overline{f_z}$. It shares an argument with μ and is anti-holomorphic.

$$\eta^t = (1-t)\eta^0 + t\eta^1 \implies f_{ar{z}}^t = rac{\eta^t}{ar{f}_z^t}$$

In most cases, this is enough to achieve bounded distortion. However, when the input mappings differ greatly, the linear interpolation must be scaled in order to guarantee bounds.

Beginning oo ooooo	Middle ○○○○ ○○○●○ ○○○	End 00000 0000
Methods: Fully Parallel Variants		

To preserve stretch direction, we introduce linear interpolation of $\eta = f_{\overline{z}} \overline{f_z}$. It shares an argument with μ and is anti-holomorphic.

$$\eta^t = (1-t)\eta^0 + t\eta^1 \implies f_{ar{z}}^t = rac{\eta^t}{ar{f}_z^t}$$

In most cases, this is enough to achieve bounded distortion. However, when the input mappings differ greatly, the linear interpolation must be scaled in order to guarantee bounds.

$$\tilde{\eta}^t :=
ho(t) \eta^t$$
, for some $ho \in [0, 1]$

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation

Beginning oo ooooo	Middle ○○○○ ○○○●○ ○○○	End 00000 0000
Methods: Fully Parallel Variants		

To preserve stretch direction, we introduce linear interpolation of $\eta = f_{\overline{z}} \overline{f_z}$. It shares an argument with μ and is anti-holomorphic.

$$\eta^t = (1-t)\eta^0 + t\eta^1 \implies f_{ar{z}}^t = rac{\eta^t}{ar{f}_z^t}$$

In most cases, this is enough to achieve bounded distortion. However, when the input mappings differ greatly, the linear interpolation must be scaled in order to guarantee bounds.

$$\tilde{\eta}^t := \rho(t)\eta^t$$
, for some $\rho \in [0, 1]$

This scaling of the linear interpolation is applied globally.

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation

eginning 0 0000	Middle ○○○○ ○○○○○● ○○○	End 00000 0000
ethods: Fully Parallel Variants		

η variant example

Edward Chien*, Renjie Chen † , Ofir Weber* *Bar IIan University † Max Planck Institute for Informatics

Beginning Midd	le End
	00000 0000 0000
Methods: Metric variant	

Metric background

For a planar mapping f, the metric tensor $M_f = J_f^T J_f$ is given by the following formula, where $\mathcal{A} := |f_z|^2 + |f_{\bar{z}}|^2$.

$$M_f = egin{pmatrix} \mathcal{A} & 0 \ 0 & \mathcal{A} \end{pmatrix} + 2 egin{pmatrix} \operatorname{Re}\left(\eta
ight) & \operatorname{Im}\left(\eta
ight) \ \operatorname{Im}\left(\eta
ight) & -\operatorname{Re}\left(\eta
ight) \end{pmatrix}.$$

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics
Beginning oo ooooo	Middle ○○○○ ○○○○○○ ○○○○○	End 00000 0000
Methods: Metric variant		

Metric background

For a planar mapping f, the metric tensor $M_f = J_f^T J_f$ is given by the following formula, where $\mathcal{A} := |f_z|^2 + |f_{\bar{z}}|^2$.

$$M_f = egin{pmatrix} \mathcal{A} & 0 \ 0 & \mathcal{A} \end{pmatrix} + 2 egin{pmatrix} \operatorname{Re}\left(\eta
ight) & \operatorname{Im}\left(\eta
ight) \ \operatorname{Im}\left(\eta
ight) & -\operatorname{Re}\left(\eta
ight) \end{pmatrix}.$$

In terms of A and η , the distortion quantities are easily expressed:

$$\sigma_{\mathbf{a}}^2 = \mathcal{A} + 2\left|\eta\right|, \quad \sigma_{b}^2 = \mathcal{A} - 2\left|\eta\right|, \quad \mathcal{K}^2 = \frac{\sigma_{\mathbf{a}}^2}{\sigma_{b}^2} = \frac{\mathcal{A} + 2\left|\eta\right|}{\mathcal{A} - 2\left|\eta\right|}$$

イロト 不得 トイヨト イヨト ニヨー

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation

Beginning oo ooooo	Middle ○○○○ ○○○○○ ○○○○	End 00000 0000
Methods: Metric variant		

Metric background

For a planar mapping f, the metric tensor $M_f = J_f^T J_f$ is given by the following formula, where $\mathcal{A} := |f_z|^2 + |f_{\bar{z}}|^2$.

$$M_f = egin{pmatrix} \mathcal{A} & 0 \ 0 & \mathcal{A} \end{pmatrix} + 2 egin{pmatrix} \operatorname{Re}\left(\eta
ight) & \operatorname{Im}\left(\eta
ight) \ \operatorname{Im}\left(\eta
ight) & -\operatorname{Re}\left(\eta
ight) \end{pmatrix}.$$

In terms of A and η , the distortion quantities are easily expressed:

$$\sigma_{\mathbf{a}}^2 = \mathcal{A} + 2\left|\eta\right|, \quad \sigma_{\mathbf{b}}^2 = \mathcal{A} - 2\left|\eta\right|, \quad \mathcal{K}^2 = \frac{\sigma_{\mathbf{a}}^2}{\sigma_{\mathbf{b}}^2} = \frac{\mathcal{A} + 2\left|\eta\right|}{\mathcal{A} - 2\left|\eta\right|}$$

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ●

The first two are convex in these variables, while the second is quasiconvex.

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning oo ooooo	Middle ○○○○ ○○○○○○ ○●○	End 00000 0000
Methods: Metric variant		
Metric variant		

Beginning oo ooooo	Middle 0000 000000 0●0	End 00000 0000
Methods: Metric variant		
Metric variant		

By the work in [Chen/Weber 15], this will achieve global bounds on the distortion quantities.

Beginning oo ooooo	Middle ○○○○ ○○○○○ ○●○	End 00000 0000
Methods: Metric variant		
Metric variant		

By the work in [Chen/Weber 15], this will achieve global bounds on the distortion quantities.

Effectively, linear interpolation of the metric tensor determines the magnitude of $|f_z^t|$ via a quadratic. We then reconstruct f_z^t on the domain with a Hilbert transform.

Beginning oo ooooo	Middle ○○○○ ○○○○○○ ●●○	End 00000 0000
Methods: Metric variant		
Metric variant		

By the work in [Chen/Weber 15], this will achieve global bounds on the distortion quantities.

Effectively, linear interpolation of the metric tensor determines the magnitude of $|f_z^t|$ via a quadratic. We then reconstruct f_z^t on the domain with a Hilbert transform.

Linear interpolation of η then determines $f_{\bar{z}}^t$. This ensures preservation of stretch direction.

Beginning	Middle	
00 00000	0000 000000 00 ●	00000 0000
Methods: Metric variant		

Metric variant example

◆□ → ◆□ → ◆目 → ◆目 → ● ● ● ● ● ●

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics

Beginning oo ooooo	Middle 0000 000000 000	End ●0000 0000
Implementation & Results		
Some Implementation Details		

For results here, input generated with methods of [Chen/Weber 15], i.e., discretized with Cauchy barycentric coordinates.

Beginning oo ooooo	Middle 0000 000000 000	End ●0000 0000
Implementation & Results		

Some Implementation Details

For results here, input generated with methods of [Chen/Weber 15], i.e., discretized with Cauchy barycentric coordinates.

$$\Phi(z) = \sum_{j=1}^n C_j(z)\varphi_j, \quad \Psi(z) = \sum_{j=1}^n C_j(z)\psi_j$$

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics

0000 000000 000	•0000 •••••
	1000 100000 1000

Some Implementation Details

For results here, input generated with methods of [Chen/Weber 15], i.e., discretized with Cauchy barycentric coordinates.

$$\Phi(z) = \sum_{j=1}^n C_j(z) \varphi_j, \quad \Psi(z) = \sum_{j=1}^n C_j(z) \psi_j$$

The Hilbert transform also performed with Cauchy barycentric coordinates, requiring a multiplication by a small dense matrix.

Beginning	Middle	End
00 00000	0000 000000 000	• 0000 0000
Implementation & Results		

Some Implementation Details

For results here, input generated with methods of [Chen/Weber 15], i.e., discretized with Cauchy barycentric coordinates.

$$\Phi(z) = \sum_{j=1}^n C_j(z) \varphi_j, \quad \Psi(z) = \sum_{j=1}^n C_j(z) \psi_j$$

The Hilbert transform also performed with Cauchy barycentric coordinates, requiring a multiplication by a small dense matrix.

Otherwise, quantities are blended per vertex in parallel (fineness of mesh can be arbitrarily high), and the integration of f_z and $f_{\overline{z}}$ is done numerically, which turns out to be quite accurate.

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation

Beginning oo ooooo	Middle 0000 000000 000	End ○●000 ○○○○
Implementation & Results		

Results

・ロト ・四ト ・ヨト ・ヨト

æ

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics

Beginning oo ooooo	Middle 0000 000000 000	End ⊙⊙⊙⊙⊙ ○○○○
Implementation & Results		

More Results

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation

Beginning	Middle	End
00 00000	0000 000000 000	00000 0000

Implementation & Results

And More Results

Ξ.

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning oo ooooo	Middle 0000 000000 000	End 0000● 0000
Implementation & Results		

Moar Results

◆□ → ◆□ → ◆目 → ◆目 → ● ● ● ● ● ●

Edward Chien*, Renjie Chen[†], Ofir Weber^{*} *Bar IIan University [†]Max Planck Institute for Informatics

Beginning oo ooooo	Middle 0000 000000 000	End ○○○○○ ●○○○
Summary, Limitations & Future Work		
Summary		

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\overline{z}}$.

Beginning oo ooooo	Middle 0000 000000 000	End 00000 ●000
Summary, Limitations & Future Work		

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\overline{z}}$.

integrability of Jacobians automatic

Beginning oo ooooo	Middle 0000 000000 000	End ○○○○○ ●○○○○	
Summary, Limitations & Future Work			

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\overline{z}}$.

- integrability of Jacobians automatic
- harmonicity of result automatic

Beginning oo ooooo	Middle 0000 000000 000	End 00000 ●000	
Summary, Limitations & Future Work			

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\overline{z}}$.

- integrability of Jacobians automatic
- harmonicity of result automatic
- guaranteed distortion bounds

Beginning oo ooooo	Middle 0000 000000 000	End 00000 ●000	
Summary, Limitations & Future Work			

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\overline{z}}$.

- integrability of Jacobians automatic
- harmonicity of result automatic
- guaranteed distortion bounds
- method is parallel

Beginning oo oocoo	Middle 0000 000000 000	End 00000 ●000
Summary, Limitations & Future Work		

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\overline{z}}$.

- integrability of Jacobians automatic
- harmonicity of result automatic
- guaranteed distortion bounds
- method is parallel

In comparison with other methods,

no automatic integrability of Jacobians

3

Beginning	Middle
00 00000	0000 000000 000

End 00000 ●000

Summary

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\overline{z}}$.

- integrability of Jacobians automatic
- harmonicity of result automatic
- guaranteed distortion bounds
- method is parallel

In comparison with other methods,

no automatic integrability of Jacobians

イロト 不得 トイヨト イヨト ニヨー

 [Chen et al. 13] has only bounded conformal distortion, and [Chen/Weber 15] may fail due to infeasibility

Beginning			
00000			

Summary, Limitations & Future Work

Summary

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\overline{z}}$.

- integrability of Jacobians automatic
- harmonicity of result automatic
- guaranteed distortion bounds
- method is parallel

In comparison with other methods,

no automatic integrability of Jacobians

- [Chen et al. 13] has only bounded conformal distortion, and [Chen/Weber 15] may fail due to infeasibility
- are all slower than our variants

Beginning oo ooooo	Middle 0000 000000 000	End ○○○○○ ○●○○
Summary, Limitations & Future Work		
Limitations & Future Work		

The main limitations of this work are in the domain of applicability.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics

Beginning oo ooooo	Middle 0000 000000 000	End ○○○○○ ○●○○
Summary, Limitations & Future Work		

Limitations & Future Work

The main limitations of this work are in the domain of applicability.

In the current setup, we are limited to smooth harmonic input. However, some experiments have already been conducted on discrete harmonic and non-harmonic mesh-based mappings:

Beginning oo ooooo	Middle 0000 000000 000	End ○○○○○ ○●○○
Summary, Limitations & Future Work		

Limitations & Future Work

The main limitations of this work are in the domain of applicability.

In the current setup, we are limited to smooth harmonic input. However, some experiments have already been conducted on discrete harmonic and non-harmonic mesh-based mappings:

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics

Beginning oo ooooo	Middle 0000 000000 000	End ○○○○○ ○●○○
Summary, Limitations & Future Work		

Limitations & Future Work

The main limitations of this work are in the domain of applicability.

In the current setup, we are limited to smooth harmonic input. However, some experiments have already been conducted on discrete harmonic and non-harmonic mesh-based mappings:

We are also limited to simply-connected domains and to planar mappings. Investigations on extensions beyond both these domains has begun as well (though collaboration would be welcomed!).

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar Ilan University [†]Max Planck Institute for Informatics Bounded Distortion Harmonic Shape Interpolation

Beginning oo ooooo	Middle 0000 000000 000	End ○○○○○ ○○●○
Summary, Limitations & Future Work		
References		

- Alexa, M.; Cohen-Or, D.; Levin, D. 2000. As-rigid-as possible shape interpolation. *In Proceedings* of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 157164.
- Chen, R.; Weber, O. 2015. Bounded distortion harmonic mappings in the plane. ACM *Transactions on Graphics (TOG) 34*, 4, 73.
- Chen, R.; Weber, O.; Keren, D.; Ben-Chen, M. 2013. Planar shape interpolation with bounded distortion. *ACM Transactions on Graphics (TOG) 32*, 4, 108.
- Kircher, S.; Garland, M. 2008. Free-form motion processing. ACM Transactions on Graphics (TOG) 27, 2, 12.

 $Music \ credits: \ "Tafi \ Maradi," \ by \ Kevin \ MacLeod \ (incompetech.com). \ Licensed \ under \ Creative \ Commons: \ By \ Attribution \ 3.0 \ License \ (http://creativecommons.org/licenses/by/3.0/)$

Beginning		
00		
00000		

э

Summary, Limitations & Future Work

Thank you for your attention!

Questions?

Edward Chien*, Renjie Chen[†], Ofir Weber* *Bar IIan University [†]Max Planck Institute for Informatics