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Interpolation in Animation

Step 1:
deform source
shape for
keyframes.

Step 2:
interpolate
deformations
for motion.
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Beginning Middle End

Previous work

Previous work

In recent years, many works have focused on bounded distortion methods for step 1.

Key contributors: Lipman, Zorin, Weber, Chen, Schuller, Aigerman, Kovalksy, etc.

Fewer works have focused on such methods for step 2. For comparison here, we
consider four other methods:

Alexa et al. ’00 [ARAP] uses the polar decomposition of the Jacobian,
interpolates the parts separately, and then reconstructs the map by finding
integrable Jacobians that are close. No guarantees on distortion bounds.
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Previous work

Previous Work (cont.)

Kircher/Garland ’08 [FFMP] use differential trihedron connection coordinates,
requiring a two-step reconstruction process. Also no guarantees on bounded
distortion.

Chen et al. ’13 [Chen et al. 13] interpolate edge lengths squared of the mesh.
Equivalent to linear interpolation of the metric tensor. Bounded conformal
distortion.

Chen/Weber ’15 [Chen/Weber 15] computes bounded distortion harmonic
mappings with positional constraints. Interpolation of handles offers an easy
extension to interpolation.
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Mathematical Background

The Complex Derivatives

A useful decomposition for the Jacobian Jf of a C 1 planar map f : R2 → R2:

Jf =

(
a −b
b a

)
+

(
c d
d −c

)

The first matrix applies a similarity transformation, while the second applies an
anti-similarity transformation.

Letting z = x + iy , fz = a + ib, and fz̄ = c + id , we get Jf (x y)T in C:

Jf (z) = fzz + fz̄ z̄

Formulae for the complex derivatives: fz := (fx − ify )/2 & fz̄ := (fx + ify )/2.
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Mathematical Background

Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which fz̄ = 0 everywhere and their Jacobians are
similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the
results of these operations are holomorphic as well.

They are also closed under sums, products, compositions, and quotients (only when
the denominator does not vanish).

Anti-holomorphic mappings f are those for which fz = 0 everywhere, and they have
analogous properties.

Complex conjugation switches back and forth between the two classes of mappings.

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Mathematical Background

Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which fz̄ = 0 everywhere and their Jacobians are
similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the
results of these operations are holomorphic as well.

They are also closed under sums, products, compositions, and quotients (only when
the denominator does not vanish).

Anti-holomorphic mappings f are those for which fz = 0 everywhere, and they have
analogous properties.

Complex conjugation switches back and forth between the two classes of mappings.

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Mathematical Background

Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which fz̄ = 0 everywhere and their Jacobians are
similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the
results of these operations are holomorphic as well.

They are also closed under sums, products, compositions, and quotients (only when
the denominator does not vanish).

Anti-holomorphic mappings f are those for which fz = 0 everywhere, and they have
analogous properties.

Complex conjugation switches back and forth between the two classes of mappings.

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Mathematical Background

Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which fz̄ = 0 everywhere and their Jacobians are
similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the
results of these operations are holomorphic as well.

They are also closed under sums, products, compositions, and quotients (only when
the denominator does not vanish).

Anti-holomorphic mappings f are those for which fz = 0 everywhere, and they have
analogous properties.

Complex conjugation switches back and forth between the two classes of mappings.

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Mathematical Background

Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which fz̄ = 0 everywhere and their Jacobians are
similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the
results of these operations are holomorphic as well.

They are also closed under sums, products, compositions, and quotients (only when
the denominator does not vanish).

Anti-holomorphic mappings f are those for which fz = 0 everywhere, and they have
analogous properties.

Complex conjugation switches back and forth between the two classes of mappings.

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Mathematical Background

Harmonic Planar Mappings

Harmonic mappings f = (u, v) have components that satisfy the Laplace equation:

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0.

The value of a harmonic mapping is intuitively the average of its surrounding values.

If f : Ω→ R2 has a simply-connected domain Ω, then it may be represented as the
sum of a holomorphic and anti-holomorphic mapping:

f (z) = Φ(z) + Ψ(z)

This decomposition is akin to the decomposition of the Jacobian.

The converse is true as well with the sum of a holomorphic and anti-holomorphic
mapping being harmonic.
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Mathematical Background

Local Geometric Quantities

SVD: Jf = UΣV T
det Jf = |fz |2 − |fz̄ |2,

so locally
injective and orientation-preserving
equivalent to |fz | > |fz̄ |

isometric distortion measures:
σa = |fz |+ |fz̄ |, σb = |fz | − |fz̄ |

other isometric distortion measures:
τ := max(σa,

1
σb

), σa + 1
σb
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Mathematical Background

Local Geometric Quantities (cont.)

SVD: Jf = UΣV T

µ = fz̄
fz
, Beltrami coefficient

conformal distortion measure:
k = |µ| ∈ [0, 1)

alternate conformal distortion
measure: K = σa

σb
∈ [1,∞)

stretch direction: θ = 1
2Argµ ∈ [0, π)
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Problem Statement & Basic Approach

Problem Statement

Given: f 0, f 1 : Ω→ R2 locally injective, orientation-preserving, harmonic; Ω
simply-connected

Want: interpolating function f : [0, 1]× Ω→ R2 satisfying basic conditions:

1 (interpolation) f |{0}×Ω = f 0 and f |{1}×Ω = f 1

2 (harmonicity) f |{t}×Ω harmonic ∀t ∈ [0, 1]

3 (loc. inj.) f |{t}×Ω is loc. inj. orientation-preserving ∀t ∈ [0, 1]

4 (smoothness) f |[0,1]×{z} is C∞ for all z ∈ Ω
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Problem Statement & Basic Approach

Problem Statement (cont.)

f t := f |{t}×Ω (analogous superscript notation used for other quantities)

Additionally, we’d like f to be bounded distortion:

5 (conf. distortion) kt ≤ max(k0, k1) for all t ∈ [0, 1]

6 (max scaling) σta ≤ max(σ0
a , σ

1
a) for all t ∈ [0, 1]

7 (min scaling) σtb ≥ min(σ0
b, σ

1
b) for all t ∈ [0, 1]

Note: Can consider these desired bounds as pointwise or global.
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6 (max scaling) σta ≤ max(σ0
a , σ

1
a) for all t ∈ [0, 1]

7 (min scaling) σtb ≥ min(σ0
b, σ

1
b) for all t ∈ [0, 1]

Note: Can consider these desired bounds as pointwise or global.
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Problem Statement & Basic Approach

Basic Approach

As with many other approaches, we aim to interpolate the Jacobians as these
approximate the mapping locally.

With harmonic input maps, the decomposition: f (z) = Φ(z) + Ψ(z), suggests a useful
approach. Note that fz = Φz and fz̄ = Ψz .

If we holomorphically and anti-holomorphically interpolate fz and fz̄ , they remain
automatically integrable.

Upon integration, we may sum the results and obtain a harmonic map.

This approach basically interpolates the similarity and anti-similarity parts of the
Jacobian separately.
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Problem Statement & Basic Approach

Basic Approach (cont.)

Within this approach, we may see that most of the basic conditions are easily satisfied:

1 Interpolation is achieved with proper choices of integration constants.

2 Harmonicity is automatic in our approach.

3 Local injectivity follows as long as we maintain |fz | > |fz̄ | throughout
interpolation.

4 Smoothness will result as long as fz and fz̄ are smoothly interpolated with respect
to time t.
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Methods: Fully Parallel Variants

Logarithmic Interpolation of fz

f tz = (f 0
z )1−t(f 1

z )t

= e(1−t) log f 0
z et log f 1

z

=
∣∣f 0
z

∣∣1−t ∣∣f 1
z

∣∣t e i((1−t) arg(f 0
z )+t arg(f 1

z ))

Clearly holomorphic, and note f tz 6= 0.

Branches of logarithm need to be
determined.

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Methods: Fully Parallel Variants

Logarithmic Interpolation of fz

f tz = (f 0
z )1−t(f 1

z )t

= e(1−t) log f 0
z et log f 1

z

=
∣∣f 0
z

∣∣1−t ∣∣f 1
z

∣∣t e i((1−t) arg(f 0
z )+t arg(f 1

z ))

Clearly holomorphic, and note f tz 6= 0.

Branches of logarithm need to be
determined.

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Methods: Fully Parallel Variants

Logarithmic Interpolation of fz

f tz = (f 0
z )1−t(f 1

z )t

= e(1−t) log f 0
z et log f 1

z

=
∣∣f 0
z

∣∣1−t ∣∣f 1
z

∣∣t e i((1−t) arg(f 0
z )+t arg(f 1

z ))

Clearly holomorphic, and note f tz 6= 0.

Branches of logarithm need to be
determined.

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Methods: Fully Parallel Variants

Logarithmic Interpolation of fz

f tz = (f 0
z )1−t(f 1

z )t

= e(1−t) log f 0
z et log f 1

z

=
∣∣f 0
z

∣∣1−t ∣∣f 1
z

∣∣t e i((1−t) arg(f 0
z )+t arg(f 1

z ))

Clearly holomorphic, and note f tz 6= 0.

Branches of logarithm need to be
determined.

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Methods: Fully Parallel Variants

Logarithmic Interpolation of fz

f tz = (f 0
z )1−t(f 1

z )t

= e(1−t) log f 0
z et log f 1

z

=
∣∣f 0
z

∣∣1−t ∣∣f 1
z

∣∣t e i((1−t) arg(f 0
z )+t arg(f 1

z ))

Clearly holomorphic, and note f tz 6= 0.

Branches of logarithm need to be
determined.

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Methods: Fully Parallel Variants

ν variant

As a norm on any vector space is convex, we might try to determine f tz̄ by linearly
interpolating µ. This would preserve bounds on conformal distortion.

Unfortunately, this may not be done while maintaining anti-holomorphic interpolation

of f tz̄ . So we consider ν =
(fz̄)
fz

, noting that |ν| = |µ| = k .

νt = (1− t)ν0 + tν1 =⇒ f tz̄ = νt f tz

As νt is holomorphic, we see that we get an anti-holomorphic interpolation for f tz̄ .

Conformal distortion bounds are satisfied, as are bounds on σb. Bounds on σa are
nearly achieved.
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Methods: Fully Parallel Variants

ν variant example

Source

Target

ARAP Ours/metric

0.5 10

2

4

0 0.5 1

0.5
1
1.5

0 0.5 1

0.5

1

0 0.5 1

0.5

1

0 0.5 1

0.5
1
1.5

0 0.5 1

0.5

1

0 0.5 1

0.5

1

0 0.5 1

0.5

1

Ours/Ours/
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Methods: Fully Parallel Variants

Stretch direction preservation

The ν variant doesn’t always produce intuitive behavior, partially because the map
does not preserve stretch direction.

(a) (b) (c) (d) (e)
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Methods: Fully Parallel Variants

η variant

To preserve stretch direction, we introduce linear interpolation of η = fz̄ fz . It shares an
argument with µ and is anti-holomorphic.

ηt = (1− t)η0 + tη1 =⇒ f tz̄ =
ηt

f tz

In most cases, this is enough to achieve bounded distortion. However, when the input
mappings differ greatly, the linear interpolation must be scaled in order to guarantee
bounds.

η̃t := ρ(t)ηt , for some ρ ∈ [0, 1]

This scaling of the linear interpolation is applied globally.
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Methods: Fully Parallel Variants

η variant example

Source

Target

ARAP Ours/metric

0.5 10

2

4

0 0.5 1

0.5
1
1.5

0 0.5 1

0.5

1

0 0.5 1

0.5

1

0 0.5 1

0.5
1
1.5

0 0.5 1

0.5

1

0 0.5 1

0.5

1

0 0.5 1

0.5

1

Ours/Ours/

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Methods: Metric variant

Metric background

For a planar mapping f , the metric tensor Mf = JTf Jf is given by the following

formula, where A := |fz |2 + |fz̄ |2.

Mf =

(
A 0
0 A

)
+ 2

(
Re (η) Im (η)
Im (η) −Re (η)

)
.

In terms of A and η, the distortion quantities are easily expressed:

σ2
a = A+ 2 |η| , σ2

b = A− 2 |η| , K 2 =
σ2
a

σ2
b

=
A+ 2 |η|
A − 2 |η|

The first two are convex in these variables, while the second is quasiconvex.
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Methods: Metric variant

Metric variant

Given these facts, we linearly blend the metric tensor on the boundary, which bounds
the disortion pointwise on the boundary.

By the work in [Chen/Weber 15], this will achieve global bounds on the distortion
quantities.

Effectively, linear interpolation of the metric tensor determines the magnitude of |f tz |
via a quadratic. We then reconstruct f tz on the domain with a Hilbert transform.

Linear interpolation of η then determines f tz̄ . This ensures preservation of stretch
direction.
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Methods: Metric variant

Metric variant example
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Beginning Middle End

Implementation & Results

Some Implementation Details

For results here, input generated with methods of [Chen/Weber 15], i.e., discretized
with Cauchy barycentric coordinates.

Φ(z) =
n∑

j=1

Cj(z)ϕj , Ψ(z) =
n∑

j=1

Cj(z)ψj

The Hilbert transform also performed with Cauchy barycentric coordinates, requiring a
multiplication by a small dense matrix.

Otherwise, quantities are blended per vertex in parallel (fineness of mesh can be
arbitrarily high), and the integration of fz and fz̄ is done numerically, which turns out
to be quite accurate.
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multiplication by a small dense matrix.

Otherwise, quantities are blended per vertex in parallel (fineness of mesh can be
arbitrarily high), and the integration of fz and fz̄ is done numerically, which turns out
to be quite accurate.
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Results

Source
t=0

Target
t=1

Ours/Metric
t=0.5

[Chen15]
t=0.5

ARAP
t=0.5

Linear
t=0.5

Ours/
 t=0.5
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More Results

Source ARAP Ours/metricFFMP
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And More Results

[Chen13]

Ours/metric
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Summary, Limitations & Future Work

Summary

Our methods interpolate bounded
distortion harmonic input via holomorphic
and anti-holomorphic interpolation of fz
and fz̄ .

integrability of Jacobians automatic

harmonicity of result automatic

guaranteed distortion bounds

method is parallel

In comparison with other methods,

no automatic integrability of Jacobians

[Chen et al. 13] has only bounded
conformal distortion, and
[Chen/Weber 15] may fail due to
infeasibility

are all slower than our variants

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Summary, Limitations & Future Work

Summary

Our methods interpolate bounded
distortion harmonic input via holomorphic
and anti-holomorphic interpolation of fz
and fz̄ .

integrability of Jacobians automatic

harmonicity of result automatic

guaranteed distortion bounds

method is parallel

In comparison with other methods,

no automatic integrability of Jacobians

[Chen et al. 13] has only bounded
conformal distortion, and
[Chen/Weber 15] may fail due to
infeasibility

are all slower than our variants

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Summary, Limitations & Future Work

Summary

Our methods interpolate bounded
distortion harmonic input via holomorphic
and anti-holomorphic interpolation of fz
and fz̄ .

integrability of Jacobians automatic

harmonicity of result automatic

guaranteed distortion bounds

method is parallel

In comparison with other methods,

no automatic integrability of Jacobians

[Chen et al. 13] has only bounded
conformal distortion, and
[Chen/Weber 15] may fail due to
infeasibility

are all slower than our variants

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Summary, Limitations & Future Work

Summary

Our methods interpolate bounded
distortion harmonic input via holomorphic
and anti-holomorphic interpolation of fz
and fz̄ .

integrability of Jacobians automatic

harmonicity of result automatic

guaranteed distortion bounds

method is parallel

In comparison with other methods,

no automatic integrability of Jacobians

[Chen et al. 13] has only bounded
conformal distortion, and
[Chen/Weber 15] may fail due to
infeasibility

are all slower than our variants

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Summary, Limitations & Future Work

Summary

Our methods interpolate bounded
distortion harmonic input via holomorphic
and anti-holomorphic interpolation of fz
and fz̄ .

integrability of Jacobians automatic

harmonicity of result automatic

guaranteed distortion bounds

method is parallel

In comparison with other methods,

no automatic integrability of Jacobians

[Chen et al. 13] has only bounded
conformal distortion, and
[Chen/Weber 15] may fail due to
infeasibility

are all slower than our variants

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Summary, Limitations & Future Work

Summary

Our methods interpolate bounded
distortion harmonic input via holomorphic
and anti-holomorphic interpolation of fz
and fz̄ .

integrability of Jacobians automatic

harmonicity of result automatic

guaranteed distortion bounds

method is parallel

In comparison with other methods,

no automatic integrability of Jacobians

[Chen et al. 13] has only bounded
conformal distortion, and
[Chen/Weber 15] may fail due to
infeasibility

are all slower than our variants

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Summary, Limitations & Future Work

Summary

Our methods interpolate bounded
distortion harmonic input via holomorphic
and anti-holomorphic interpolation of fz
and fz̄ .

integrability of Jacobians automatic

harmonicity of result automatic

guaranteed distortion bounds

method is parallel

In comparison with other methods,

no automatic integrability of Jacobians

[Chen et al. 13] has only bounded
conformal distortion, and
[Chen/Weber 15] may fail due to
infeasibility

are all slower than our variants

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Summary, Limitations & Future Work

Summary

Our methods interpolate bounded
distortion harmonic input via holomorphic
and anti-holomorphic interpolation of fz
and fz̄ .

integrability of Jacobians automatic

harmonicity of result automatic

guaranteed distortion bounds

method is parallel

In comparison with other methods,

no automatic integrability of Jacobians

[Chen et al. 13] has only bounded
conformal distortion, and
[Chen/Weber 15] may fail due to
infeasibility

are all slower than our variants

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation



Beginning Middle End

Summary, Limitations & Future Work

Limitations & Future Work

The main limitations of this work are in the domain of applicability.

In the current setup, we are limited to smooth harmonic input. However, some
experiments have already been conducted on discrete harmonic and non-harmonic
mesh-based mappings:

Source t=0.25 Targett=0.5 t=0.75

We are also limited to simply-connected domains and to planar mappings.
Investigations on extensions beyond both these domains has begun as well (though
collaboration would be welcomed!).
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Music credits: “Tafi Maradi,” by Kevin MacLeod (incompetech.com). Licensed under Creative Commons: By Attribution 3.0 License
(http://creativecommons.org/licenses/by/3.0/)
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Thank you!

Thank you for your attention!

Questions?
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