Bounded Distortion Harmonic Shape Interpolation

Edward Chien*, Renjie Chen†, Ofir Weber*
*Bar Ilan University
†Max Planck Institute for Informatics

June 7, 2016
Interpolation in Animation

Step 1:
deform source shape for keyframes.

Step 2:
interpolate deformations for motion.
In recent years, many works have focused on bounded distortion methods for step 1.
In recent years, many works have focused on bounded distortion methods for step 1.

Key contributors: Lipman, Zorin, Weber, Chen, Schuller, Aigerman, Kovalksy, etc.
In recent years, many works have focused on bounded distortion methods for step 1. Key contributors: Lipman, Zorin, Weber, Chen, Schuller, Aigerman, Kovalksy, etc. Fewer works have focused on such methods for step 2. For comparison here, we consider four other methods:
In recent years, many works have focused on bounded distortion methods for step 1. Key contributors: Lipman, Zorin, Weber, Chen, Schuller, Aigerman, Kovalksy, etc. Fewer works have focused on such methods for step 2. For comparison here, we consider four other methods:

- Alexa et al. ’00 [ARAP] uses the polar decomposition of the Jacobian, interpolates the parts separately, and then reconstructs the map by finding integrable Jacobians that are close. No guarantees on distortion bounds.
Previous Work (cont.)

- Kircher/Garland '08 [FFMP] use differential trihedron connection coordinates, requiring a two-step reconstruction process. Also no guarantees on bounded distortion.
Previous Work (cont.)

- Kircher/Garland '08 [FFMP] use differential trihedron connection coordinates, requiring a two-step reconstruction process. Also no guarantees on bounded distortion.

- Chen et al. '13 [Chen et al. 13] interpolate edge lengths squared of the mesh. Equivalent to linear interpolation of the metric tensor. Bounded conformal distortion.
Kircher/Garland ’08 [FFMP] use differential trihedron connection coordinates, requiring a two-step reconstruction process. Also no guarantees on bounded distortion.

The Complex Derivatives

A useful decomposition for the Jacobian J_f of a C^1 planar map $f : \mathbb{R}^2 \to \mathbb{R}^2$:

$$J_f = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} c & d \\ d & -c \end{pmatrix}$$
Mathematical Background

The Complex Derivatives

A useful decomposition for the Jacobian J_f of a C^1 planar map $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$:

$$J_f = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} c & d \\ d & -c \end{pmatrix}$$

The first matrix applies a similarity transformation, while the second applies an anti-similarity transformation.
The Complex Derivatives

A useful decomposition for the Jacobian J_f of a C^1 planar map $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$:

$$J_f = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} c & d \\ d & -c \end{pmatrix}$$

The first matrix applies a similarity transformation, while the second applies an anti-similarity transformation.

Letting $z = x + iy$, $f_z = a + ib$, and $f_{\bar{z}} = c + id$, we get $J_f(x \ y)^T$ in \mathbb{C}:

$$J_f(z) = f_z z + f_{\bar{z}} \bar{z}$$
A useful decomposition for the Jacobian J_f of a C^1 planar map $f : \mathbb{R}^2 \to \mathbb{R}^2$:

$$J_f = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} c & d \\ d & -c \end{pmatrix}$$

The first matrix applies a similarity transformation, while the second applies an anti-similarity transformation.

Letting $z = x + iy$, $f_z = a + ib$, and $f_{\bar{z}} = c + id$, we get $J_f(x, y)^T$ in \mathbb{C}:

$$J_f(z) = f_z z + f_{\bar{z}} \bar{z}$$

Formulae for the complex derivatives: $f_z := (f_x - if_y)/2$ & $f_{\bar{z}} := (f_x + if_y)/2$.
Mathematical Background

Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which $f_z = 0$ everywhere and their Jacobians are similarity transformations everywhere.
Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which $f_z = 0$ everywhere and their Jacobians are similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the results of these operations are holomorphic as well.
Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which $f_z = 0$ everywhere and their Jacobians are similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the results of these operations are holomorphic as well.

They are also closed under sums, products, compositions, and quotients (only when the denominator does not vanish).
Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which $f_z = 0$ everywhere and their Jacobians are similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the results of these operations are holomorphic as well.

They are also closed under sums, products, compositions, and quotients (only when the denominator does not vanish).

Anti-holomorphic mappings f are those for which $f_z = 0$ everywhere, and they have analogous properties.
Holomorphic & Anti-holomorphic Mappings

Holomorphic mappings f are those for which $f_z = 0$ everywhere and their Jacobians are similarity transformations everywhere.

On a simply-connected domain, they are infinitely differentiable and integrable, and the results of these operations are holomorphic as well.

They are also closed under sums, products, compositions, and quotients (only when the denominator does not vanish).

Anti-holomorphic mappings f are those for which $f_{\overline{z}} = 0$ everywhere, and they have analogous properties.

Complex conjugation switches back and forth between the two classes of mappings.
Harmonic Planar Mappings

Harmonic mappings $f = (u, v)$ have components that satisfy the Laplace equation:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

The value of a harmonic mapping is intuitively the average of its surrounding values.
Mathematical Background

Harmonic Planar Mappings

Harmonic mappings $f = (u, v)$ have components that satisfy the Laplace equation:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

The value of a harmonic mapping is intuitively the average of its surrounding values.

If $f : \Omega \to \mathbb{R}^2$ has a simply-connected domain Ω, then it may be represented as the sum of a holomorphic and anti-holomorphic mapping:

$$f(z) = \Phi(z) + \overline{\Psi(z)}$$

This decomposition is akin to the decomposition of the Jacobian.
Harmonic mappings $f = (u, v)$ have components that satisfy the Laplace equation:

$$
\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.
$$

The value of a harmonic mapping is intuitively the average of its surrounding values.

If $f : \Omega \rightarrow \mathbb{R}^2$ has a simply-connected domain Ω, then it may be represented as the sum of a holomorphic and anti-holomorphic mapping:

$$
f(z) = \Phi(z) + \overline{\Psi(z)}
$$

This decomposition is akin to the decomposition of the Jacobian.

The converse is true as well with the sum of a holomorphic and anti-holomorphic mapping being harmonic.
Mathematical Background

Local Geometric Quantities

SVD: $J_f = U \Sigma V^T$

- $\det J_f = |f_z|^2 - |f_\bar{z}|^2$

Isometric distortion measures:

- $\sigma_a = |f_z| + |f_\bar{z}|$
- $\sigma_b = |f_z| - |f_\bar{z}|$

- Other isometric distortion measures:

 - $\tau := \max(\sigma_a, 1/2 \sigma_b, \sigma_a + 1/2 \sigma_b)$

Edward Chien*, Renjie Chen†, Ofir Weber*
*Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
Mathematical Background

Local Geometric Quantities

SVD: \(J_f = U \Sigma V^T \)

\[\det J_f = |f_z|^2 - |f_{\bar{z}}|^2, \text{ so locally injective and orientation-preserving equivalent to } |f_z| > |f_{\bar{z}}| \]
Mathematical Background

Local Geometric Quantities

SVD: \[J_f = U\Sigma V^T \]

- \(\text{det } J_f = |f_z|^2 - |f_{\bar{z}}|^2 \), so locally injective and orientation-preserving equivalent to \(|f_z| > |f_{\bar{z}}| \)
- Isometric distortion measures:
 \[\sigma_a = |f_z| + |f_{\bar{z}}|, \quad \sigma_b = |f_z| - |f_{\bar{z}}| \]

Edward Chien*, Renjie Chen†, Ofir Weber* *Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
Local Geometric Quantities

SVD: \[J_f = U \Sigma V^T \]

- \[\det J_f = |f_z|^2 - |f_{\bar{z}}|^2 \], so locally injective and orientation-preserving equivalent to \(|f_z| > |f_{\bar{z}}|\)
- Isometric distortion measures:
 - \[\sigma_a = |f_z| + |f_{\bar{z}}|, \quad \sigma_b = |f_z| - |f_{\bar{z}}| \]
- Other isometric distortion measures:
 - \[\tau := \max(\sigma_a, \frac{1}{\sigma_b}), \quad \sigma_a + \frac{1}{\sigma_b} \]

Edward Chien*, Renjie Chen†, Ofir Weber* †Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
Mathematical Background

Local Geometric Quantities (cont.)

\[SVD: \quad J_f = U \Sigma V^T \]

- \(\mu = \frac{f_x}{f_z} \), Beltrami coefficient

EBoundDistortion Harmonic Shape Interpolation

Edward Chien*, Renjie Chen†, Ofir Weber*
Bar Ilan University †Max Planck Institute for Informatics
Mathematical Background

Local Geometric Quantities (cont.)

SVD: $J_f = U\Sigma V^T$

- $\mu = \frac{f_z}{f_x}$, Beltrami coefficient

- Conformal distortion measure:
 $k = |\mu| \in [0, 1)$
Mathematical Background

Local Geometric Quantities (cont.)

SVD: $J_f = U \Sigma V^T$

- $\mu = \frac{f_z}{f_x}$, Beltrami coefficient
- conformal distortion measure: $k = |\mu| \in [0, 1)$
- alternate conformal distortion measure: $K = \frac{\sigma_a}{\sigma_b} \in [1, \infty)$

$\theta = \frac{1}{2} \text{Arg} \mu$

Edward Chien*, Renjie Chen†, Ofir Weber∗ Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
Mathematical Background

Local Geometric Quantities (cont.)

- SVD: $J_f = U \Sigma V^T$

- $\mu = \frac{f_z}{f_x}$, Beltrami coefficient

- conformal distortion measure: $k = |\mu| \in [0, 1)$

- alternate conformal distortion measure: $K = \frac{\sigma_a}{\sigma_b} \in [1, \infty)$

- stretch direction: $\theta = \frac{1}{2} \text{Arg} \mu \in [0, \pi)$

Edward Chien*, Renjie Chen†, Ofir Weber* *Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
Problem Statement

Given: \(f^0, f^1 : \Omega \rightarrow \mathbb{R}^2 \) locally injective, orientation-preserving, harmonic; \(\Omega \) simply-connected
Problem Statement & Basic Approach

Problem Statement

Given: \(f^0, f^1 : \Omega \to \mathbb{R}^2 \) locally injective, orientation-preserving, harmonic; \(\Omega \) simply-connected

Want: interpolating function \(f : [0, 1] \times \Omega \to \mathbb{R}^2 \) satisfying basic conditions:
Problem Statement

Given: \(f^0, f^1 : \Omega \to \mathbb{R}^2 \) locally injective, orientation-preserving, harmonic; \(\Omega \) simply-connected

Want: interpolating function \(f : [0, 1] \times \Omega \to \mathbb{R}^2 \) satisfying basic conditions:

1. (interpolation) \(f|_{\{0\} \times \Omega} = f^0 \) and \(f|_{\{1\} \times \Omega} = f^1 \)
Problem Statement

Given: \(f^0, f^1 : \Omega \to \mathbb{R}^2 \) locally injective, orientation-preserving, harmonic; \(\Omega \) simply-connected

Want: interpolating function \(f : [0, 1] \times \Omega \to \mathbb{R}^2 \) satisfying basic conditions:

1. (interpolation) \(f|_{\{0\} \times \Omega} = f^0 \) and \(f|_{\{1\} \times \Omega} = f^1 \)

2. (harmonicity) \(f|_{\{t\} \times \Omega} \) harmonic \(\forall t \in [0, 1] \)
Problem Statement

Given: $f^0, f^1 : \Omega \to \mathbb{R}^2$ locally injective, orientation-preserving, harmonic; Ω simply-connected

Want: interpolating function $f : [0, 1] \times \Omega \to \mathbb{R}^2$ satisfying basic conditions:

1. (interpolation) $f|_{\{0\} \times \Omega} = f^0$ and $f|_{\{1\} \times \Omega} = f^1$

2. (harmonicity) $f|_{\{t\} \times \Omega}$ harmonic $\forall t \in [0, 1]$

3. (loc. inj.) $f|_{\{t\} \times \Omega}$ is loc. inj. orientation-preserving $\forall t \in [0, 1]$
Problem Statement

Given: \(f^0, f^1 : \Omega \rightarrow \mathbb{R}^2 \) locally injective, orientation-preserving, harmonic; \(\Omega \) simply-connected

Want: interpolating function \(f : [0, 1] \times \Omega \rightarrow \mathbb{R}^2 \) satisfying basic conditions:

1. (interpolation) \(f|_{\{0\} \times \Omega} = f^0 \) and \(f|_{\{1\} \times \Omega} = f^1 \)
2. (harmonicity) \(f|_{\{t\} \times \Omega} \) harmonic \(\forall t \in [0, 1] \)
3. (loc. inj.) \(f|_{\{t\} \times \Omega} \) is loc. inj. orientation-preserving \(\forall t \in [0, 1] \)
4. (smoothness) \(f|_{[0,1] \times \{z\}} \) is \(C^\infty \) for all \(z \in \Omega \)
Problem Statement & Basic Approach

Problem Statement (cont.)

\[f^t := f_{\{t\} \times \Omega} \] (analogous superscript notation used for other quantities)

Additionally, we'd like \(f \) to be bounded distortion:

- **Conf. distortion**: \(k_t \leq \max(k_0, k_1) \) for all \(t \in [0, 1] \)
- **Max scaling**: \(\sigma_t \leq \max(\sigma_0, \sigma_1) \) for all \(t \in [0, 1] \)
- **Min scaling**: \(\sigma_t \geq \min(\sigma_0, \sigma_1) \) for all \(t \in [0, 1] \)

Note: Can consider these desired bounds as pointwise or global.

Edward Chien*, Renjie Chen†, Ofir Weber* *Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
Problem Statement (cont.)

\[f^t := f|_{\{t\} \times \Omega} \] (analogous superscript notation used for other quantities)

Additionally, we’d like \(f \) to be bounded distortion:

\[
\begin{align*}
\text{(conf. distortion)} &\quad k_t \leq \max(k_0, k_1) \quad \text{for all } t \in [0, 1] \\
\text{(max scaling)} &\quad \sigma_{ta} \leq \max(\sigma_{0a}, \sigma_{1a}) \quad \text{for all } t \in [0, 1] \\
\text{(min scaling)} &\quad \sigma_{tb} \geq \min(\sigma_{0b}, \sigma_{1b}) \quad \text{for all } t \in [0, 1]
\end{align*}
\]

Note: Can consider these desired bounds as pointwise or global.
Problem Statement (cont.)

\[f^t := f|_{\{t\} \times \Omega} \] (analogous superscript notation used for other quantities)

Additionally, we’d like \(f \) to be bounded distortion:

5 \((\text{conf. distortion}) \quad k^t \leq \max(k^0, k^1) \) for all \(t \in [0, 1] \)
Problem Statement (cont.)

\[f^t := f|_{\{t\}\times\Omega} \] (analogous superscript notation used for other quantities)

Additionally, we’d like \(f \) to be bounded distortion:

5. (conf. distortion) \(k^t \leq \max(k^0, k^1) \) for all \(t \in [0, 1] \)

6. (max scaling) \(\sigma^t_a \leq \max(\sigma^0_a, \sigma^1_a) \) for all \(t \in [0, 1] \)
Problem Statement & Basic Approach

Problem Statement (cont.)

\[f^t := f|_{\{t\} \times \Omega} \text{ (analogous superscript notation used for other quantities)} \]

Additionally, we’d like \(f \) to be bounded distortion:

5. (conf. distortion) \(k^t \leq \max(k^0, k^1) \) for all \(t \in [0, 1] \)

6. (max scaling) \(\sigma_a^t \leq \max(\sigma_a^0, \sigma_a^1) \) for all \(t \in [0, 1] \)

7. (min scaling) \(\sigma_b^t \geq \min(\sigma_b^0, \sigma_b^1) \) for all \(t \in [0, 1] \)
Problem Statement & Basic Approach

Problem Statement (cont.)

\[f^t := f|_{\{t\} \times \Omega} \] (analogous superscript notation used for other quantities)

Additionally, we’d like \(f \) to be bounded distortion:

5 (conf. distortion) \(k^t \leq \max(k^0, k^1) \) for all \(t \in [0, 1] \)

6 (max scaling) \(\sigma^t_a \leq \max(\sigma^0_a, \sigma^1_a) \) for all \(t \in [0, 1] \)

7 (min scaling) \(\sigma^t_b \geq \min(\sigma^0_b, \sigma^1_b) \) for all \(t \in [0, 1] \)

Note: Can consider these desired bounds as pointwise or global.
Basic Approach

As with many other approaches, we aim to interpolate the Jacobians as these approximate the mapping locally.
As with many other approaches, we aim to interpolate the Jacobians as these approximate the mapping locally.

With harmonic input maps, the decomposition: $f(z) = \Phi(z) + \overline{\Psi}(z)$, suggests a useful approach. Note that $f_z = \Phi_z$ and $f_{\overline{z}} = \overline{\Psi}_z$.
Basic Approach

As with many other approaches, we aim to interpolate the Jacobians as these approximate the mapping locally.

With harmonic input maps, the decomposition: \(f(z) = \Phi(z) + \overline{\Psi}(z) \), suggests a useful approach. Note that \(f_z = \Phi_z \) and \(f_{\bar{z}} = \overline{\Psi_z} \).

If we holomorphically and anti-holomorphically interpolate \(f_z \) and \(f_{\bar{z}} \), they remain automatically integrable.
As with many other approaches, we aim to interpolate the Jacobians as these approximate the mapping locally.

With harmonic input maps, the decomposition: \(f(z) = \Phi(z) + \overline{\Psi}(z) \), suggests a useful approach. Note that \(f_z = \Phi_z \) and \(f_{\overline{z}} = \overline{\Psi}_z \).

If we holomorphically and anti-holomorphically interpolate \(f_z \) and \(f_{\overline{z}} \), they remain automatically integrable.

Upon integration, we may sum the results and obtain a harmonic map.
As with many other approaches, we aim to interpolate the Jacobians as these approximate the mapping locally.

With harmonic input maps, the decomposition: \(f(z) = \Phi(z) + \overline{\Psi}(z) \), suggests a useful approach. Note that \(f_z = \Phi_z \) and \(f_{\overline{z}} = \overline{\Psi}_z \).

If we holomorphically and anti-holomorphically interpolate \(f_z \) and \(f_{\overline{z}} \), they remain automatically integrable.

Upon integration, we may sum the results and obtain a harmonic map.

This approach basically interpolates the similarity and anti-similarity parts of the Jacobian separately.

Edward Chien*, Renjie Chen†, Ofir Weber* *Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
Within this approach, we may see that most of the basic conditions are easily satisfied:

1. Interpolation is achieved with proper choices of integration constants.
2. Harmonicity is automatic in our approach.
3. Local injectivity follows as long as we maintain $|f_z| > |f_{\bar{z}}|$ throughout interpolation.
4. Smoothness will result as long as f_z and $f_{\bar{z}}$ are smoothly interpolated with respect to time t.
Basic Approach (cont.)

Within this approach, we may see that most of the basic conditions are easily satisfied:

1. Interpolation is achieved with proper choices of integration constants.
Within this approach, we may see that most of the basic conditions are easily satisfied:

1. Interpolation is achieved with proper choices of integration constants.
2. Harmonicity is automatic in our approach.
Within this approach, we may see that most of the basic conditions are easily satisfied:

1. Interpolation is achieved with proper choices of integration constants.
2. Harmonicity is automatic in our approach.
3. Local injectivity follows as long as we maintain $|f_z| > |f_{\bar{z}}|$ throughout interpolation.
Within this approach, we may see that most of the basic conditions are easily satisfied:

1. Interpolation is achieved with proper choices of integration constants.
2. Harmonicity is automatic in our approach.
3. Local injectivity follows as long as we maintain $|f_z| > |\bar{f}_z|$ throughout interpolation.
4. Smoothness will result as long as f_z and \bar{f}_z are smoothly interpolated with respect to time t.
Methods: Fully Parallel Variants

Logarithmic Interpolation of f_z

$$f_z^t = (f_z^0)^{1-t}(f_z^1)^t$$

Clearly holomorphic, and note $f_z^t \neq 0$. Branches of logarithm need to be determined.
Logarithmic Interpolation of f_z

Methods: Fully Parallel Variants

$$f_z^t = (f_z^0)^{1-t}(f_z^1)^t$$

$$= e^{(1-t) \log f_z^0} e^{t \log f_z^1}$$

Edward Chien*, Renjie Chen†, Ofir Weber* *Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
Methods: Fully Parallel Variants

Logarithmic Interpolation of f_z

$$f_z^t = (f_z^0)^{1-t}(f_z^1)^t$$

$$= e^{(1-t)\log f_z^0} e^{t\log f_z^1}$$

$$= |f_z^0|^{1-t} |f_z^1|^t e^{i((1-t)\arg(f_z^0)+t\arg(f_z^1))}$$
Logarithmic Interpolation of f_z

$$f_z^t = (f_z^0)^{1-t}(f_z^1)^t$$

$$= e^{(1-t) \log f_z^0} e^{t \log f_z^1}$$

$$= |f_z^0|^{1-t} |f_z^1|^t e^{i(1-t) \arg(f_z^0) + t \arg(f_z^1))}$$

Clearly holomorphic, and note $f_z^t \neq 0$.
Methods: Fully Parallel Variants

Logarithmic Interpolation of f_z

$$f^t_z = \left(f^0_z \right)^{1-t} \left(f^1_z \right)^t$$

$$= e^{(1-t) \log f^0_z} e^{t \log f^1_z}$$

$$= \left| f_z \right|^{1-t} \left| f^1_z \right|^t e^{i \left((1-t) \text{arg}(f^0_z) + t \text{arg}(f^1_z) \right)}$$

Clearly holomorphic, and note $f^t_z \neq 0$.

Branches of logarithm need to be determined.

Edward Chien*, Renjie Chen†, Ofir Weber* *Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
Methods: Fully Parallel Variants

*\(\nu \) variant

As a norm on any vector space is convex, we might try to determine \(f^t_z \) by linearly interpolating \(\mu \). This would preserve bounds on conformal distortion.

\[
\nu_t = (1 - t) \nu_0 + t \nu_1 = \Rightarrow f^t_z = \nu_t f_z
\]

As \(\nu_t \) is holomorphic, we see that we get an anti-holomorphic interpolation for \(f^t_z \).

Conformal distortion bounds are satisfied, as are bounds on \(\sigma_b \). Bounds on \(\sigma_a \) are nearly achieved.

Edward Chien*, Renjie Chen†, Ofir Weber* *Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
As a norm on any vector space is convex, we might try to determine f^t_z by linearly interpolating μ. This would preserve bounds on conformal distortion.

Unfortunately, this may not be done while maintaining anti-holomorphic interpolation of f^t_z. So we consider $\nu = \frac{(f^t_z)}{f_z}$, noting that $|\nu| = |\mu| = k$.
ν variant

As a norm on any vector space is convex, we might try to determine $f_{\bar{z}}^t$ by linearly interpolating μ. This would preserve bounds on conformal distortion.

Unfortunately, this may not be done while maintaining anti-holomorphic interpolation of $f_{\bar{z}}^t$. So we consider $\nu = \frac{(f_{\bar{z}})}{f_z}$, noting that $|\nu| = |\mu| = k$.

$$\nu^t = (1 - t)\nu^0 + t\nu^1 \implies f_{\bar{z}}^t = \overline{\nu^t f_{\bar{z}}^t}$$
ν variant

As a norm on any vector space is convex, we might try to determine f_{z}^t by linearly interpolating μ. This would preserve bounds on conformal distortion.

Unfortunately, this may not be done while maintaining anti-holomorphic interpolation of f_{z}^t. So we consider $\nu = \frac{(f_{z})}{f_{z}}$, noting that $|\nu| = |\mu| = k$.

$$\nu^t = (1 - t)\nu^0 + t\nu^1 \implies f_{z}^t = \nu^t f_{z}$$

As ν^t is holomorphic, we see that we get an anti-holomorphic interpolation for f_{z}^t.
As a norm on any vector space is convex, we might try to determine f_z^t by linearly interpolating μ. This would preserve bounds on conformal distortion.

Unfortunately, this may not be done while maintaining anti-holomorphic interpolation of f_z^t. So we consider $\nu = \left(\frac{f_z}{f_z}\right)$, noting that $|\nu| = |\mu| = k$.

$$\nu^t = (1 - t)\nu^0 + t\nu^1 \implies f_z^t = \nu^t f_z^t$$

As ν^t is holomorphic, we see that we get an anti-holomorphic interpolation for f_z^t. Conformal distortion bounds are satisfied, as are bounds on σ_b. Bounds on σ_a are nearly achieved.
Methods: Fully Parallel Variants

\(\nu\) variant example

\(\nu\) variant example

\(\text{Source} \quad \text{ARAP} \quad \text{Ours}/\nu \quad \text{Ours}/\eta \quad \text{Ours}/\text{metric}\)

Edward Chien*, Renjie Chen†, Ofir Weber* *Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
Methods: Fully Parallel Variants

Stretch direction preservation

The ν variant doesn’t always produce intuitive behavior, partially because the map does not preserve stretch direction.
The ν variant doesn’t always produce intuitive behavior, partially because the map does not preserve stretch direction.

The diagram illustrates the difference in behavior between $f^0(\Omega)$, $f^{0.8}(\Omega)$, and $f^1(\Omega)$, showing how the stretch direction is preserved in $f^0(\Omega)$ but not in the other two cases.
The ν variant doesn’t always produce intuitive behavior, partially because the map does not preserve stretch direction.
To preserve stretch direction, we introduce linear interpolation of $\eta = f_z^* \bar{f}_z$. It shares an argument with μ and is anti-holomorphic.
To preserve stretch direction, we introduce linear interpolation of $\eta = f_z \overline{f_z}$. It shares an argument with μ and is anti-holomorphic.

$$\eta^t = (1 - t)\eta^0 + t\eta^1 \implies f_z^t = \frac{\eta^t}{f_z}$$
Methods: Fully Parallel Variants

η variant

To preserve stretch direction, we introduce linear interpolation of $\eta = f_z \bar{f}_z$. It shares an argument with μ and is anti-holomorphic.

$$\eta^t = (1 - t)\eta^0 + t\eta^1 \implies f_z^t = \frac{\eta^t}{f_z}$$

In most cases, this is enough to achieve bounded distortion. However, when the input mappings differ greatly, the linear interpolation must be scaled in order to guarantee bounds.
Methods: Fully Parallel Variants

η variant

To preserve stretch direction, we introduce linear interpolation of $\eta = f_z \overline{f_z}$. It shares an argument with μ and is anti-holomorphic.

$$\eta^t = (1 - t)\eta^0 + t\eta^1 \implies f_z^t = \frac{\eta^t}{f_z}$$

In most cases, this is enough to achieve bounded distortion. However, when the input mappings differ greatly, the linear interpolation must be scaled in order to guarantee bounds.

$$\tilde{\eta}^t := \rho(t)\eta^t, \text{ for some } \rho \in [0, 1]$$
Methods: Fully Parallel Variants

\(\eta \) variant

To preserve stretch direction, we introduce linear interpolation of \(\eta = f_z f_{\bar{z}} \). It shares an argument with \(\mu \) and is anti-holomorphic.

\[
\eta^t = (1 - t)\eta^0 + t\eta^1 \implies f^t_z = \frac{\eta^t}{f_z}
\]

In most cases, this is enough to achieve bounded distortion. However, when the input mappings differ greatly, the linear interpolation must be scaled in order to guarantee bounds.

\[
\tilde{\eta}^t := \rho(t)\eta^t, \text{ for some } \rho \in [0, 1]
\]

This scaling of the linear interpolation is applied globally.
Methods: Fully Parallel Variants

\(\eta\) variant example

Source \hspace{2cm} ARAP \hspace{2cm} Ours/\nu \hspace{2cm} Ours/\eta \hspace{2cm} Ours/metric

Edward Chien∗, Renjie Chen†, Ofir Weber∗ ∗Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
For a planar mapping f, the metric tensor $M_f = J_f^T J_f$ is given by the following formula, where $A := |f_z|^2 + |f_{\bar{z}}|^2$.

$$M_f = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix} + 2 \begin{pmatrix} \text{Re}(\eta) & \text{Im}(\eta) \\ \text{Im}(\eta) & -\text{Re}(\eta) \end{pmatrix}.$$
For a planar mapping f, the metric tensor $M_f = J_f^T J_f$ is given by the following formula, where $\mathcal{A} := |f_z|^2 + |f_{\bar{z}}|^2$.

$$M_f = \begin{pmatrix} \mathcal{A} & 0 \\ 0 & \mathcal{A} \end{pmatrix} + 2 \begin{pmatrix} \text{Re}(\eta) & \text{Im}(\eta) \\ \text{Im}(\eta) & -\text{Re}(\eta) \end{pmatrix}.$$

In terms of \mathcal{A} and η, the distortion quantities are easily expressed:

$$\sigma_a^2 = \mathcal{A} + 2|\eta|, \quad \sigma_b^2 = \mathcal{A} - 2|\eta|, \quad K^2 = \frac{\sigma_a^2}{\sigma_b^2} = \frac{\mathcal{A} + 2|\eta|}{\mathcal{A} - 2|\eta|}.$$
Method: Metric variant

Metric background

For a planar mapping f, the metric tensor $M_f = J_f^T J_f$ is given by the following formula, where $A := |f_z|^2 + |f_{\bar{z}}|^2$.

$$M_f = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix} + 2 \begin{pmatrix} \text{Re} (\eta) & \text{Im} (\eta) \\ \text{Im} (\eta) & -\text{Re} (\eta) \end{pmatrix}.$$

In terms of A and η, the distortion quantities are easily expressed:

$$\sigma_a^2 = A + 2|\eta|, \quad \sigma_b^2 = A - 2|\eta|, \quad K^2 = \frac{\sigma_a^2}{\sigma_b^2} = \frac{A + 2|\eta|}{A - 2|\eta|}.$$

The first two are convex in these variables, while the second is quasiconvex.
Given these facts, we linearly blend the metric tensor on the boundary, which bounds the distortion pointwise on the boundary.
Given these facts, we linearly blend the metric tensor on the boundary, which bounds the distortion pointwise on the boundary.

By the work in [Chen/Weber 15], this will achieve global bounds on the distortion quantities.
Given these facts, we linearly blend the metric tensor on the boundary, which bounds the distortion pointwise on the boundary.

By the work in [Chen/Weber 15], this will achieve global bounds on the distortion quantities.

Effectively, linear interpolation of the metric tensor determines the magnitude of $|f^t_z|$ via a quadratic. We then reconstruct f^t_z on the domain with a Hilbert transform.
Methods: Metric variant

Metric variant

Given these facts, we linearly blend the metric tensor on the boundary, which bounds the distortion pointwise on the boundary.

By the work in [Chen/Weber 15], this will achieve global bounds on the distortion quantities.

Effectively, linear interpolation of the metric tensor determines the magnitude of $|f_t^z|$ via a quadratic. We then reconstruct f_t^z on the domain with a Hilbert transform.

Linear interpolation of η then determines f_t^Z. This ensures preservation of stretch direction.
Methods: Metric variant

Metric variant example
Some Implementation Details

For results here, input generated with methods of [Chen/Weber 15], i.e., discretized with Cauchy barycentric coordinates.
Some Implementation Details

For results here, input generated with methods of [Chen/Weber 15], i.e., discretized with Cauchy barycentric coordinates.

\[
\Phi(z) = \sum_{j=1}^{n} C_j(z) \varphi_j, \quad \Psi(z) = \sum_{j=1}^{n} C_j(z) \psi_j
\]

The Hilbert transform also performed with Cauchy barycentric coordinates, requiring a multiplication by a small dense matrix. Otherwise, quantities are blended per vertex in parallel (fineness of mesh can be arbitrarily high), and the integration of \(f_z\) and \(f_{\bar{z}}\) is done numerically, which turns out to be quite accurate.
Some Implementation Details

For results here, input generated with methods of [Chen/Weber 15], i.e., discretized with Cauchy barycentric coordinates.

\[
\Phi(z) = \sum_{j=1}^{n} C_j(z) \varphi_j, \quad \Psi(z) = \sum_{j=1}^{n} C_j(z) \psi_j
\]

The Hilbert transform also performed with Cauchy barycentric coordinates, requiring a multiplication by a small dense matrix.
Some Implementation Details

For results here, input generated with methods of [Chen/Weber 15], i.e., discretized with Cauchy barycentric coordinates.

\[
\Phi(z) = \sum_{j=1}^{n} C_j(z) \varphi_j, \quad \Psi(z) = \sum_{j=1}^{n} C_j(z) \psi_j
\]

The Hilbert transform also performed with Cauchy barycentric coordinates, requiring a multiplication by a small dense matrix.

Otherwise, quantities are blended per vertex in parallel (fineness of mesh can be arbitrarily high), and the integration of \(f_z \) and \(f_{\bar{z}} \) is done numerically, which turns out to be quite accurate.
Results

Edward Chien*, Renjie Chen†, Ofir Weber*
*Bari Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
And More Results

Edward Chien*, Renjie Chen†, Ofir Weber* *Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
Moar Results
Summary

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\overline{z}}$.

Edward Chien*, Renjie Chen†, Ofir Weber*
*Bar Ilan University †Max Planck Institute for Informatics

Bounded Distortion Harmonic Shape Interpolation
Summary

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\bar{z}}$.

- integrability of Jacobians automatic
Summary

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\bar{z}}$.

- integrability of Jacobians automatic
- harmonicity of result automatic
Summary

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\bar{z}}$.

- integrability of Jacobians automatic
- harmonicity of result automatic
- guaranteed distortion bounds
Summary

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\bar{z}}$.

- integrability of Jacobians automatic
- harmonicity of result automatic
- guaranteed distortion bounds
- method is parallel
Summary

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\bar{z}}$.

- integrability of Jacobians automatic
- harmonicity of result automatic
- guaranteed distortion bounds
- method is parallel

In comparison with other methods,

- no automatic integrability of Jacobians
Summary

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and $f_{\bar{z}}$.

- Integrability of Jacobians automatic
- Harmonicity of result automatic
- Guaranteed distortion bounds
- Method is parallel

In comparison with other methods,

- No automatic integrability of Jacobians
- [Chen et al. 13] has only bounded conformal distortion, and
- [Chen/Weber 15] may fail due to infeasibility
Summary

Our methods interpolate bounded distortion harmonic input via holomorphic and anti-holomorphic interpolation of f_z and \bar{f}_z.

- integrability of Jacobians automatic
- harmonicity of result automatic
- guaranteed distortion bounds
- method is parallel

In comparison with other methods,

- no automatic integrability of Jacobians
- [Chen et al. 13] has only bounded conformal distortion, and [Chen/Weber 15] may fail due to infeasibility
- are all slower than our variants
Limitations & Future Work

The main limitations of this work are in the domain of applicability.
Limitations & Future Work

The main limitations of this work are in the domain of applicability.

In the current setup, we are limited to smooth harmonic input. However, some experiments have already been conducted on discrete harmonic and non-harmonic mesh-based mappings:
Summary, Limitations & Future Work

Limitations & Future Work

The main limitations of this work are in the domain of applicability.

In the current setup, we are limited to smooth harmonic input. However, some experiments have already been conducted on discrete harmonic and non-harmonic mesh-based mappings:
Limitations & Future Work

The main limitations of this work are in the domain of applicability. In the current setup, we are limited to smooth harmonic input. However, some experiments have already been conducted on discrete harmonic and non-harmonic mesh-based mappings:

We are also limited to simply-connected domains and to planar mappings. Investigations on extensions beyond both these domains has begun as well (though collaboration would be welcomed!).
References

Music credits: “Tafi Maradi,” by Kevin MacLeod (incompetech.com). Licensed under Creative Commons: By Attribution 3.0 License (http://creativecommons.org/licenses/by/3.0/)
Thank you for your attention!

Questions?