
i
i

i
i

i
i

i
i

Universal Hinge Patterns

for Folding Orthogonal Shapes

Nadia M. Benbernou ∗ Erik D. Demaine∗†

Martin L. Demaine∗ Aviv Ovadya∗‡

1 Introduction

An early result in computational origami is that every polyhedral surface
can be folded from a large enough square of paper [DDM00]. A recent
algorithm for this problem even attains practical foldings [DT10]. But each
polyhedral surface induces a completely different crease pattern. Is there
a single hinge pattern for which different subsets fold into many different
shapes?

Our motivation is developing programmable matter out of a foldable
sheet [HAB+10]. The idea is to statically manufacture a sheet with spe-
cific hinges that can be creased in either direction, and then dynamically
program how much to fold each crease in the sheet. Thus a single man-
ufactured sheet can be programmed to fold into anything that the single
hinge pattern can fold.

We prove a universality result: an N × N square tiling of a simple
hinge pattern can fold into all face-to-face gluings of O(N) unit cubes
(polycubes). Thus, by setting the resolution N sufficiently large, we can
fold any 3D solid up to a desired accuracy.

The proof is algorithmic: we present the Cube Extrusion Algorithm
which converts a given polycube into a crease pattern (a subset of the
universal hinge pattern) and a 3D folded state in the shape of that polycube,
with seamless faces. Figure 1 shows a simple example.

At the core of our algorithm is the notion of a cube gadget, which folds
a cube in the middle of a sheet of paper. Such foldings of a single cube
∗MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cam-

bridge, MA 02139, USA, {nbenbern,edemaine,mdemaine,avivo}@mit.edu
†Partially supported by NSF CAREER award CCF-0347776, DOE grant DE-FG02-

04ER25647, and AFOSR grant FA9550-07-1-0538.
‡Corresponding Author

1

{nbenbern,edemaine,mdemaine,avivo}@mit.edu


i
i

i
i

i
i

i
i

Figure 1: Folding a bend-shaped polycube with a square base via the Cube
Extrusion Algorithm. For simplicity, the mountain-valley pattern in this
and other figures does not exactly show the reflected creases when multiple
layers are folded.

have been independently developed by origamists over the years; the first
documented design we are aware of was created by David A. Huffman
in 1978.1 The novelty is the way we combine multiple cube gadgets to
form a desired polycube. We present three different cube gadgets, one of
which is the gadget independently created by Huffman, each with its own
advantages and disadvantages when combined to fold a polycube.

We also describe an implementation of the algorithm which can be
used to automate experimentation and design of geometric origami using
a cutting plotter or laser cutter to score the paper.

2 Definitions

We start with a few definitions about origami, specified somewhat infor-
mally for brevity. For more formal definitions, see [DO07, ch. 11].

For our purposes, a piece of paper is a connected collection of flat poly-
gons in 3D joined along shared edges (a polyhedral complex; note that
we can have multiple polygons in the same place but with different con-
nections, and with a specified stacking order). A notable special case is
a single m × n rectangle of paper for integers m and n (but in general,
a piece of paper does not have to be flat; for example, a polyhedron is a
piece of paper). We index the unit squares of such a rectangle in the style

1Personal communication with the Huffman family. The fourth author independently
developed this gadget in middle school circa 2000.

2



i
i

i
i

i
i

i
i

of matrices: si,j refers to the unit square in the ith row and jth column,
and s1,1 is in the upper-left corner.

A hinge is a line segment drawn on a piece of paper which is capable of
being creased in either direction. A hinge pattern is a collection of hinges
drawn on a piece of paper. The hinge patterns we consider in this paper
are all based on subdivisions of the unit-square grid, adding a finite number
of hinges within each unit square. The unit squares of the hinge pattern
correspond to the unit squares of a rectangle of paper.

An example of a hinge pattern is the box-pleated pattern (known in
geometry as the tetrakis tiling) which is formed from the unit-square grid
by subdividing each square in half vertically, horizontally, and by the two
diagonals, forming eight right isosceles triangles. The upper-left corner of
Figure 3 shows an example for four unit-squares.

An angle pattern is a hinge pattern together with an assignment of a real
number in [−180◦,+180◦] to each hinge, specifying a fold angle (negative
for valley, positive for mountain). We allow a hinge to be assigned an angle
of 0, in which case we call the hinge trivial, though we do not draw trivial
hinges in most figures. A hinge with a nonzero angle is called a crease.
The crease pattern is the subgraph of the hinge pattern consisting of only
the creases.

An angle pattern determines a 3D geometry called the folded geometry,
which maps each face of the crease pattern to a 3D polygon via a Euclidean
isometry (by the composition of rotations at creases). More explicitly, a
folded geometry is a map from all points of the piece of paper to R3 that
satisfies constraints as specified in [DO07, ch. 11]—and there is an obvious
mapping from angle patterns to folded geometries.

A folded state consists of such a folded geometry together with an or-
dering λ, which is a partial function over the touching points in the folded
geometry, in our case describing the stacking relationship among polygons
of the crease pattern that touch in the folded geometry. Define the starting
sheet of a folded state to be the original piece of paper, that is, the do-
main of the folded geometry. 2 A folding sequence is a sequence of folded
states F1, F2, . . . , Fk from the same starting sheet. The last folded state in
a folding sequence is called the final folded state.

Define the number of layers at a point q to be the number of noncrease
points in the piece of paper that get mapped to q by the folded geometry.
The number of layers of a folded state is the maximum number of layers
over all points.3

Next we define a notion of “coalescing” which lets us ignore certain
2Note that “sheet” is not to suggest that the piece of paper needs to be flat; it can

be any polyhedral complex.
3This measure is a simple way to bound the effect of paper thickness, but in practical

origami there are other quantities that could be measured.

3



i
i

i
i

i
i

i
i

details of a folded state. A coalesce folded state is a folded state augmented
with a coalesce set which is a subset of the starting sheet. If we take the
starting sheet and identify (glue together) all pairs of points in the coalesce
set that are collocated by the folded geometry, then we obtain a metric
space called the coalesce result. This coalesce result is also a piece of paper
under our definition and therefore can be the domain of a new coalesce
folded state. A coalesce sequence is a sequence C1, C2, . . . , Ck of coalesce
folded states, where each Ck is a folding of the coalesce result of Ck−1.

One can generate a folding sequence from a coalesce sequence by letting
F1 = C1 and Fk = Fk−1 ◦ Ck, and then composing the geometry and
ordering functions in the obvious way. Note that the starting sheet of each
Fk is the starting sheet of C1, while the starting sheets of the other Ck’s
can be any shape folded from that starting sheet. The final folded state of a
coalesce sequence is the final folded state of the generated folding sequence.
We say that a folding sequence or coalesce sequence folds a piece of paper
π into a shape σ if the starting sheet of the first folded state is the piece of
paper π and the image of the last folded geometry is the shape σ.

In this paper we allow all but the last folded state in a folding sequence
or coalesce sequence to have crossings. By [DDMO04], all folded states are
reachable from the starting sheet by the continuous folding motion, so the
final folded state is still reachable. We use folding sequences as a tool to
construct the final folded state, not as instructions for folding.

Now that we can describe how to fold a shape, we define our target
shapes. A polycube P is a union of unit cubes on the unit-cube lattice with
a connected dual graph; the dual graph has a vertex for each unit cube and
an edge between two vertices whose corresponding cubes share a face. The
faces of the polycube are the (square) faces of the individual cubes that
are not shared by any other cubes.

A folding of a polycube is a folded state that covers all faces of the
polycube, and nothing outside the polycube. In fact, some of our foldings
of polycubes will also include the internal squares, the faces shared by
multiple cubes, and some of our foldings will not put anything else interior
to cubes, but in general we do not require either property. A face of a
folded polycube is seamless if the outermost layer of paper covering it is
an uncreased unit square of paper. Our foldings will generally be seamless.

3 Cube Gadgets

We now introduce the notion of a cube gadget; refer to Figure 2. For
positive integers r and c, an [r, c]-cube gadget is a method of extruding a
cube from a rectangular piece of paper at a specified location. The input
to the cube gadget is an m×n rectangle of paper, for integers m > 2r and

4



i
i

i
i

i
i

i
i

s 3,3

s1,1

m’ = m – 2c = 3

n’
 =

 n
 –

 2
r 

=
 4

s1,1

s3,3

s1,1

s4,5

c = 2 c = 2

r = 1

r = 1

n = 6

m = 7

Before cube gadget application After cube gadget application

1 + 2r = 3 layers
1 + 2c = 5 layers

Figure 2: Abstract effect of applying a [1, 2]-cube gadget at square s4,5 of
a 6× 7 rectangle of paper. The two leftmost diagrams are top views before
and after folding. The right diagram is a stylized perspective view of the
folded state.

n > 2c, as well as a unit square si,j on the paper, where r < i < m− r and
c < j < n − c. The output of the cube gadget is a folding of the m × n
rectangle into the shape of a cube sitting on a smaller, (m− 2r)× (n− 2c)
rectangle of paper. The cube sits on the square si−r,j−c in the smaller sheet
of paper. All six faces of the cube are seamless except for the bottom face.
The top face of the cube is covered by square si,j from the original piece
of paper. The boundary of the original m × n rectangle paper is mapped
onto the boundary of the smaller (m− 2r)× (n− 2c) rectangle.

The cube gadgets in this paper achieve the folding by making horizontal
pleats in the r rows above and below row i, and making vertical pleats in
the c columns left and right of column j. The pleats are called half-square
pleats because they are composed of unit squares folded in half.

Each pleat adds two layers to the row or column it is under, so the
number of layers of the folded state is at least 1 + 2 max{r, c} (one for the
row or column plus two for each pleat). Another property of our foldings
is that all folding is within the 2r+ 1 rows and 2c+ 1 columns surrounding
square si,j . Thus, the quadrant of paper consisting of rows < i − r and
columns < j − c is not folded and is incident to the top-left corner of the
cube, and similarly for the other four quadrants.

In this paper, we give three different cube gadgets based on three dif-
ferent hinge patterns, as shown in Figure 3. The three cube gadgets are
based, respectively, on the box-pleated pattern, the slit pattern, and the
arctan 1

2 pattern.
The arctan 1

2 gadget and slit gadget are [1, 1]-cube gadgets, while the
box-pleated gadget is a [1, 2]-cube gadget. The advantage of the box-

5



i
i

i
i

i
i

i
i

Mountain
Valley
Slit

Hinge
Unit Square Border
(also Hinge)

1 unit square

Box-Pleat Gadget

Box-Pleat Pattern Arctan(½) Pattern Slit Cube Pattern

Arctan(½) Gadget Slit Cube Gadget

Figure 3: The hinge patterns (top), mountain-valley patterns (middle),
and semitransparent folded states (bottom) for the three cube gadgets.
The highlighted region of each mountain-valley pattern has dimensions
2r+ 1× 2c+ 1 and is the region used to actually fold the cube (half-square
pleats extend out from those regions).

pleated and slit gadgets is that the hinge pattern is simpler: box pleating
has all creases with angles at integer multiples of 45◦. The slit gadget
attains higher efficiency than seems possible with regular box pleating by
adding a regular pattern of slits in the paper. The arctan 1

2 gadget attains
higher efficiency using more hinges some of which are at angles of arctan 1

2 .
We use the arctan 1

2 gadget in all figures for consistency.
Next, we show how a cube gadget can be used to modify an existing

folding, which will be the key construction in our folding of general poly-
cubes. Figure 4 provides some intuition for how existing cubes move as
new cubes are folded and Figure 5 provides a formal example of the lemma
below.

Lemma 1 (Gadget Application) Let CP be a coalesce sequence for a
polycube P from an m×n rectangle of paper. Let f be a face of the polycube

6



i
i

i
i

i
i

i
i

Before Folding

During Folding

After Folding

Figure 4: Given a piece of paper with a cube already folded on it, this
diagram shows in an abstract manner how the paper moves when a new
cube is folded depending on whether the old cube is on the top face (above),
or a side face (below) of the new cube.

P that is seamless in the final folded state of CP . Then there is a coalesce
sequence CP ′

for the polycube P ′, consisting of P plus a cube extruded from
face f , from an (m + 2r) × (n + 2c) rectangle of paper. The construction
is parameterized by a cube gadget.

Proof: Let CP = CP
1 , C

P
2 , . . . , C

P
q , and let FP

q be the final folded state
(for P ). Let si,j be the square in the starting sheet of FP

q that is mapped to
f via FP

q . We use σ to refer to this square in an abstract sense—when we
add rows or columns to the start sheet σ will move with the insertions—so
the square coordinates referred to by σ may change.

We construct a new coalesce folded state CP ′

1 that we will prepend to
CP . Define CP ′

1 to have the same starting sheet as that of FP
q , except

that we insert r rows above σ, r rows below σ, c columns left of σ, and
c columns right of σ. So the starting sheet is a rectangle of paper of size
(m + 2r) × (n + 2c) and σ refers to the square si+r,j+c in this enlarged
sheet of paper. Define this entire enlarged rectangle to be the coalesce set
of CP ′

1 . Now we define the folded state of CP ′

1 to be the given cube gadget
applied at σ. The result looks like a cube sitting on the square si,j of an

7



i
i

i
i

i
i

i
i

О

Δ

f

О
Δ

σ

О
Δ

C P
1

C P
2

CP
q

ПО
Δ

σ

П
О

Δ

О
Δ П

О

Δ
П

C P’
1

CP’
q

CP’
2

C P’
3

Figure 5: Given a coalesce sequence CP , shows the application of Lemma
1 to generate CP ′

with an additional cube. The purple regions show where
additional rows and columns are inserted. We use the arctan 1

2 cube gadget
in all figures from here onwards for consistency.

m× n rectangle of paper. (The paper does have additional layers in some
places from the pleats, but it folds flat except at the cube, and these layers
are all coalesced because the entire sheet is in the coalesce set.)

Now, for each coalesce folded state CP
k , we create a modified coalesce

folded state CP ′

k+1 with σ replaced by a cube of paper. Here we use the
fact that σ never gets folded throughout the sequence (since it is always
the face of a cube), and thus corresponds to a seamless square of paper
in the starting sheet of each coalesce folded state CP

k . Note that we add
the five new faces of the cube to the starting sheet, but we do not add
these faces to the coalesce set of CP ′

k+1; the latter will remain a rectangle.
We also add any polygons of paper internal to the cube that appear in
CP ′

1 , in the same orientation. Because the coalesce result of CP ′

k is the
starting sheet of CP ′

k+1, we have thus generated a new coalesce sequence

8



i
i

i
i

i
i

i
i

Figure 6: This sequence of folded states for a particular coalesce sequence
shows an example of self intersection in part of a coalesce folding sequence.
The self intersection occurs at the highlighted cube and is resolved in the
final step. The self intersection can be avoided in this case by making
additional simple folds.

CP ′
= CP ′

1 , CP ′

2 , . . . CP ′

q , CP ′

q+1.
Note that these added cubes may create intersections in the coalesce

folded states CP ′

k (as mentioned in Section 2). However, the final folded
state FP ′

q+1 of CP ′
(as well as CP ′

q+1 itself) is guaranteed not to have inter-
sections. This follows because FP

q had no self intersections, the application
CP ′

1 of the cube gadget has no self intersections, and adding the cube of
paper to make P into P ′ cannot create intersections.

�

4 Folding Polycubes

Our Cube Extrusion Algorithm for folding any polycube is parameterized
by an arbitrary cube gadget, and consists of repeated application of the
gadget according to Lemma 1. We describe the recursive algorithm by way
of an inductive proof:

Theorem 2 (Cube Extrusion Algorithm) Any polycube of N cubes can
folded with all faces seamless from a (2rN+1)×(2cN+2) rectangle of paper
by a sequence of N applications of an [r, c]-cube gadget plus one additional
fold.

Proof: We prove by induction that any polycube P ′ of N cubes can be
folded seamlessly by a coalesce sequence from a (2rN + 1) × (2cN + 2)
rectangle of paper. Arbitrarily choose a “bottom face” fb of P ′, and let b
be the unique (bottom) cube having fb as a face.

9



i
i

i
i

i
i

i
i

The base case is N = 1, when P ′ consists of the single cube b. We can
use the cube gadget directly at square sr+1,c+1 to obtain a folding of the
single cube from a (2r + 1)× (2c+ 2) rectangle of paper. The folded state
is a cube next to a (pleated) unit square of paper. Note that the bottom
face of the cube corresponds to fb, and is adjacent to the square of paper.
By definition of cube gadgets, all faces of the cube except the bottom face
are seamless. We fold the extra square of paper over to seamlessly cover
the bottom face, thus making a seamless one-cube polycube. The resulting
folded state forms the first and only step in a coalesce sequence.

It remains to prove the inductive step. Let T be a spanning tree of the
dual graph of P ′. Because every tree has at least two leaves, T has a leaf
corresponding to a cube l 6= b. Let u be the unique cube sharing a face
with l, and let ful be the face shared by u and l.

Now consider the polycube P = P ′ \ {l}, with N − 1 cubes. Because
l 6= b, fb remains a face of P . By induction, there is a coalesce sequence CP

that folds a (2r(N −1)+1)× (2c(N −1)+2) rectangle of paper into P . By
Lemma 1, we extrude from ful to obtain a new coalesce sequence CP ′

for
P ′ from a rectangle of size ((2r(N −1)+1)+2r)× ((2c(N −1)+2)+2c) =
(2rN + 1)× (2cN + 2).

The final folded state of the inductively obtained coalesce sequence is
the desired folded state from the rectangle of paper into the polycube. �

Without the concern for a seamless bottom face, we can reduce the +2
in the rectangle bound down to +1.

The algorithm runs in polynomial time. The bottleneck is in converting
the coalesce sequence into its final folded state. Each of the N cube gadgets
causes the creation of at most O(N) creases, because the piece of paper at
that point has size O(N)×O(N) with O(1) existing creases per square.

The size bound of an O(N) × O(N) rectangle of paper is tight up to
constant factors for square paper. Specifically, folding a 1 × 1 × N tower
of cubes requires starting from a square of side length N in order to have
diameter N , as folding can only decrease diameter.

4.1 Hinge Pattern Completeness

Next we show that the Cube Extrusion Algorithm does not create creases
that stray from the given hinge pattern.

For a rectangular piece of paper, the tile ti,j of a crease pattern is the
set of creases within the unit square si,j . The tile set of a cube gadget is
the set of all distinct tiles that can be generated by the cube gadget. The
hinge pattern generated by a tile is the result of replicating the tile in a
unit-square grid.

Proposition 3 Given a cube gadget with a finite tile set and half-square

10



i
i

i
i

i
i

i
i

pleats as the only folded structure outside of the cube, if we add to an
empty tile a hinge for every crease of each tile in the tile set for every
2D orthogonal orientation (rotations and reflections), then the resulting
tile generates the hinge pattern required to fold a polycube with the Cube
Extrusion Algorithm.

This proposition is nontrivial as it is possible that some combination
of cube gadgets would create new tiles that are not present in any single
gadget which are thus not in the tile set.

Proof: We prove that no other hinges are needed beyond those found in
the constructed generator tile.

There are two types of folded tiles used by cube gadgets to make poly-
cubes as described in the proposition: inner tiles which make up the non-
visible parts inside the cubes and pleat tiles that make up the non-visible
part of the pleats (outside of the cube). Inner tiles are never folded once
they are made part of a cube as our foldings never modify the inner struc-
ture of an existing cube, so they do not require any additional hinges beyond
those in the tile set. Pleat tiles may be folded again — but they are all
half-square pleats, which means that they simply reflect a crease along the
midline of the tile — but each of the reflected halves would already have
existed in reflections of that tile of the cube gadget, so this also does not
create additional hinges. �

4.2 Paper Dimensions

We now show the specific bounds on the dimensions of the required rect-
angle of paper for each of the three cube gadgets considered in this paper.

Corollary 4 (arctan 1
2 Universality Lemma) Any polycube of N cubes

can be folded with all faces seamless from an arctan 1
2 hinge pattern on a

(2N+1)×(2N+2) rectangle of paper using the Cube Extrusion Algorithm.

Proof: The arctan 1
2 gadget has r = 1 and c = 1. Plugging these constants

into Theorem 2 yields a process for folding the polycube from a rectangle
of paper of size (2N + 1)× (2N + 2). �

Corollary 5 (Slit Universality Lemma) Any polycube of N cubes can
be folded with all faces seamless from a slit hinge pattern on a (2N + 1)×
(2N + 2) rectangle of paper using the Cube Extrusion Algorithm.

Proof: Same as Corollary 4. �

The previously discussed gadgets create foldings from a rectangle of
paper that is within an additive constant of being square. As we show

11



i
i

i
i

i
i

i
i

now, directly applying the Cube Extrusion Algorithm with the tetrakis
cube gadget generates a folding with a ratio within a constant of 1 × 2,
but a slight modification allows us to use an approximately square sheet of
paper.

Corollary 6 (Box-Pleated Universality Lemma) Any polycube P of
N cubes can be folded with all faces seamless from a box-pleated (tetrakis)
hinge pattern on a (2N+1)×(4N+2) rectangle of paper using the Cube Ex-
trusion Algorithm. A slight modification of the Cube Extrusion Algorithm
uses a (3n+1)×(3n+2) rectangle of paper for even N and a (3N)×(3N+3)
rectangle of paper for odd N .

Proof: The box-pleated gadget has r = 1 and c = 2. Plugging these
constants into Theorem 2 yields a process for folding P from a rectangle of
paper of size (2N + 1)× (4N + 2).

Now we describe the modified approach. Define the transpose of a cube
gadget to be the cube gadget with r and c interchanged, so that now we
insert r columns to the left and right of the column and c rows below
and above the specified row. We alternate the box-pleated gadget and its
transpose for a polycube of N cubes such that the box-pleated gadget is
applied dN/2e times and its transpose is applied bN/2c times. This yields
a final folded state Fn with a starting sheet of size (2r · dN

2 e + 2c · bN
2 c +

1)× (2c · dN
2 e+ 2r · bN

2 c+ 2) which simplifies slightly to (2 · dN
2 e+ 4 · bN

2 c+
1)× (4 · dN

2 e+ 2 · bN
2 c+ 2). For even N , this bound is (3N + 1)× (3N + 2),

and for odd N , it is (3N)× (3N + 3). �

4.3 Number of Layers

Proposition 7 For any polycube of N cubes, the Cube Extrusion Algo-
rithm produces a folding that uses O(N2) layers.

Proof: The folded state produced by Theorem 2 has a starting sheet of
size (2rN + 1) × (2cN + 2), which is clearly O(N2) for constants r and
c. And because each square of a hinge pattern contains O(1) hinges (by
definition), there can be at most O(N2) layers in the folding (even if we
folded the paper up into the smallest unit of area allowable by the hinge
pattern). �

Unfortunately, this quadratic bound on the number of layers is tight in
the worst case:

Proposition 8 For any N and any cube gadget G, there exists a poly-
cube of N cubes for which the Cube Extrusion Algorithm yields a folding
requiring Ω(N2) layers.

12



i
i

i
i

i
i

i
i

fb

fb

Figure 7: This horizontal L-shaped polycube uses Ω(N2) layers when folded
by the Cube Extrusion Algorithm.

Proof: Without loss of generality, assume that N is odd. The example we
use is a horizontal L-shaped polycube, as shown in Figure 7. To construct
it, take a single cube b and two faces which share an edge of the cube.
Extrude (N−1)/2 cubes from each of the faces. (If N were even, we would
extrude (N/2) − 1 cubes from one of the faces and N/2 cubes from the
other face).

We now show that our folding algorithm would construct a folding hav-
ing Ω(N2) layers.

Let the bottom cube of the folding algorithm be b, and take the bottom
face fb to be one of the faces parallel the plane spanned by the legs of the L.

Now consider the face in the resulting folded state opposite to fb: it is
seamless, but hidden beneath it are pleats from prisms of both legs of the
L. There are Ω(N) pleats from each leg, and the pleats are orthogonal to
each other. This results in Ω(N2) layers. �

5 Implementation

A simplification of this algorithm was implemented in Ruby. It allows the
user to define a polycube through extrusions and displays the corresponding
folding sequence to the screen as a series of angle patterns, but it does not
generate a final folded state. It can also show a simplified composition of
the folding sequence which can be saved to a PostScript file. The simplified
composition just shows the original angle pattern for each square tile on
the full sheet of paper (that is, the angle pattern from the step when the

13



i
i

i
i

i
i

i
i

1.68 in

Abstract Polycube Ruby Implementation Cutting Plotter
(Graphtec/CraftROBO)

Folded ModelPostScript 

Figure 8: The process by which paper origami can be constructed using
the described algorithms.

square was inserted as part of a row or column), and does not take into
account any non-orthogonal creases made as a result of later steps.

The PostScript file can be sent to a cutting plotter, which can etch the
simplified composition onto a sheet of paper. Alternatively, one can use a
laser cutter to score the paper. See Figure 8. Only a single cube gadget is
foldable at each step when folding along visible etchings of the simplified
composition, so one can simply fold cube gadgets until there are no visible
etchings.

If the foldings generated by the Cube Extrusion Algorithm are applied
to a larger sheet of paper, it appears that the polycubes are “lying of top of”
or “extruded” from the sheet. Artistically this effect is generally preferable
to having a polycube closed off by a small flap. In particular, it prevents
the pleats from expanding as much, and in some cases enables multiple
polycubes to be extruded from a single sheet.

6 Rigid Foldability and Self-Folding Sheets

The Cube Extrusion Algorithm can be used to make artistic paper origami,
but to get from one folded state to the next may require curving the paper
or introducing temporary nonhinge creases. This becomes an issue for
controlling a self-folding programmable matter sheet, where the polygons
of a hinge pattern are (nearly) rigid.

It is an open question which polycubes are rigidly foldable from a par-
ticular cube gadget, though it seems through simple empirical testing that
our cube gadgets fold rigidly in isolation (when making one-cube poly-
cubes). Polycubes with more than one cube may nonetheless not be rigidly
foldable, and polycubes with intermediary folded states that self-intersect
are almost certainly not rigidly foldable. Our intuition suggests that the
slit pattern has the broadest potential for programmable matter.

14



i
i

i
i

i
i

i
i

Acknowledgments

A. Ovadya would like to thank a host of friends who have not complained
about his incessant folding of cubes, and in particular Simone Agha, Tucker
Chan, Lyla Fischer, Andrea Hawksley, Robert Johnson, and Maria Monks
for being sounding boards, folding, and/or commenting. E. Demaine thanks
the Huffman family—Elise, Linda, and Marilyn—for access to David A.
Huffman’s notes, which include the arctan 1

2 cube gadget. We also thank
Jason Ku and Scott Macri for assisting with Figure 3 and Figure 4 respec-
tively.

References

[DDM00] Erik D. Demaine, Martin L. Demaine, and Joseph S. B.
Mitchell. Folding flat silhouettes and wrapping polyhedral
packages: New results in computational origami. Computa-
tional Geometry: Theory and Applications, 16(1):3–21, 2000.

[DDMO04] Erik D. Demaine, Satyan L. Devadoss, Joseph S. B. Mitchell,
and Joseph O’Rourke. Continuous foldability of polygonal pa-
per. In Proceedings of the 16th Canadian Conference on Com-
putational Geometry, pages 64–67, Montréal, Canada, August
2004.

[DO07] Erik D. Demaine and Joseph O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge Uni-
versity Press, July 2007.

[DT10] Erik D. Demaine and Tomohiro Tachi. Origamizer: A practical
algorithm for folding any polyhedron. Manuscript, 2010.

[HAB+10] E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D.
Demaine, D. Rus, and R. J. Wood. Programmable matter by
folding. Proceedings of the National Academy of Sciences of
the United States of America, 2010. To appear. http://www.
pnas.org/cgi/doi/10.1073/pnas.0914069107.

15

http://www.pnas.org/cgi/doi/10.1073/pnas.0914069107
http://www.pnas.org/cgi/doi/10.1073/pnas.0914069107

	Introduction
	Definitions
	Cube Gadgets
	Folding Polycubes
	Hinge Pattern Completeness
	Paper Dimensions
	Number of Layers

	Implementation
	Rigid Foldability and Self-Folding Sheets

