
Fast Allocation and Deallocation

with an Improved Buddy System∗

Gerth Stølting Brodal†

BRICS‡, Department of Computer Science, University of Aarhus

IT-Parken, Åbogade 34, DK-8200 Århus N, Denmark

gerth@brics.dk

Erik D. Demaine§

MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, Cambridge, Massachusetts 02139, U.S.A.

edemaine@mit.edu

J. Ian Munro¶

School of Computer Science, University of Waterloo

Waterloo, Ontario N2L 3G1, Canada

imunro@uwaterloo.ca

Abstract

We propose several modifications to the binary buddy system for managing dynamic
allocation of memory blocks whose sizes are powers of two. The standard buddy system
allocates and deallocates blocks in Θ(lg n) time in the worst case (and on an amortized
basis), where n is the size of the memory. We present three schemes that improve the
running time to O(1) time, where the time bound for deallocation is amortized for the
first two schemes. The first scheme uses just one more word of memory than the standard
buddy system, but may result in greater fragmentation than necessary. The second and
third schemes have essentially the same fragmentation as the standard buddy system,

and use O(2(1+
√

lg n) lg lg n) bits of auxiliary storage, which is ω(lgk n) but o(nε) for all
k ≥ 1 and ε > 0. Finally, we present simulation results estimating the effect of the excess
fragmentation in the first scheme.

∗This paper includes several results that appeared in preliminary form in the Proceedings of the 19th
Conference on the Foundations of Software Technology and Theoretical Computer Science (FST & TCS’99) [8].

†Supported by the Carlsberg Foundation (contract number ANS-0257/20). Partially supported by the
Future and Emerging Technologies Programme of the EU under contract number IST-1999-14186 (ALCOM-
FT).

‡Basic Research in Computer Science, www.brics.dk, funded by the Danish National Research Foundation.
§Partially supported by the Natural Science and Engineering Research Council of Canada (NSERC).
¶Supported by the Natural Science and Engineering Research Council of Canada (NSERC) and the Canada

Research Chair in Algorithm Design.

1

gerth@brics.dk
edemaine@mit.edu
imunro@uwaterloo.ca

1 Introduction

The binary buddy system [14] is a well-known system for maintaining a dynamic collection of
memory blocks. Its main feature is the use of suitably aligned blocks whose sizes are powers
of two. This makes it easy to check whether a newly deallocated block can be merged with
an adjacent (unused) block, using bit operations on the block addresses. See Section 1.1 for
a more detailed description of the method.

While the buddy system is generally recognized as fast, we argue that it is much slower
than it has to be. Specifically, the time to allocate or deallocate a block of size 2k is Θ(1 −
k + lg n) in the worst case, where n is the size of the memory in bytes and lg n denotes
the binary logarithm of n. Not only is this a worst-case lower bound, but this much time
can also be necessary on an amortized basis. Once we encounter a block whose allocation
requires Θ(1 − k + lg n) time, we can repeatedly deallocate and reallocate that block, for a
total cost of Θ(m(1 − k + lg n)) over m operations. Such allocations and deallocations are
also not rare; for example, if the memory is completely free and we allocate a constant-size
block, then the buddy system uses Θ(lg n) time. Throughout this paper we assume standard
operations on a word of size 1 + lg n or so bits can be performed in constant time, including
addition, subtraction, shifting, and boolean operations. For a discussion of how to compute
the least-significant set bit of a word and the rôle of multiplication, we refer the reader to
Section 4.

1.1 Buddy System

The (binary) buddy system was originally described by Knowlton [12, 13]. It is much faster
than other heuristics for dynamic memory allocation, such as first-fit and best-fit. Its only
disadvantage being that blocks must be powers of two in size, the buddy system is used
in many modern operating systems, in particular most versions of UNIX/Linux, for small
block sizes. For example, BSD [19] uses the buddy system for blocks smaller than a page,
i.e., 4 kilobytes. Various implementations have their own particular twists. For example,
most versions of Linux try to avoid the potential amortized Θ(lg n) cost of allocating and
deallocating small blocks, by keeping deallocated small blocks on lists. While usually quite
effective, this practice can lead to the inability to allocate a large block even when all of
memory is free.

The classic description of the buddy system is Knuth’s [14]. Because our work is based
on the standard buddy system, we review the basic ideas now.

At any point in time, the memory consists of a collection of blocks of consecutive memory,
each of which is a power of two in size. Each block is marked either occupied or free, depending
on whether it is allocated to the user. For each block we also know its size (or the logarithm
of its size). The system provides two operations for supporting dynamic memory allocation:

1. Allocate (2k): Finds a free block of size 2k, marks it as occupied, and returns a pointer
to it.

2. Deallocate (B): Marks the previously allocated block B as free and may merge it with
others to form a larger free block.

The buddy system maintains a list of the free blocks of each size (called a free list), so that
it is easy to find a block of the desired size, if one is available. If no block of the requested

2

size is available, Allocate searches for the first nonempty list for blocks of at least the size
requested. In either case, a block is removed from the free list. This process of finding a large
enough free block will indeed be the most difficult operation for us to perform quickly.

If the found block is larger than the requested size, say 2k instead of the desired 2i, then
the block is split in half, making two blocks of size 2k−1. If this is still too large (k − 1 > i),
then one of the blocks of size 2k−1 is split in half. This process is repeated until we have
blocks of size 2k−1, 2k−2, . . . , 2i+1, 2i, and 2i. Then one of the blocks of size 2i is marked
as occupied and returned to the user. The others are added to the appropriate free lists. We
will modify this splitting process as the first step in speeding up the buddy system.

Now when a block is deallocated, the buddy system checks whether the block can be
merged with any others, or more precisely whether we can undo any splits that were performed
to make this block. This is where the buddy system gets its name. Each block B (except
the initial blocks) was created by splitting another block into two halves; call them B1 (with
the same address but half the size) and B2. The other block, B2, created from this split is
called the buddy of B1, and vice versa. The merging process checks whether the buddy of a
deallocated block is also free, in which case the two blocks are merged; then it checks whether
the buddy of the resulting block is also free, in which case they are merged; and so on.

One of the main features of the buddy system is that buddies are very easy to compute
on a binary computer. First note that because of the way we split and merge blocks, blocks
stay aligned. More precisely, the address of a block of size 2k (which we always consider to
be written in binary) ends with k zeros. As a result, to find the address of the buddy of a
block of size 2k we simply flip the (k+1)st bit from the right.

Thus it is crucial for performance purposes to know, given a block address, the size of the
block and whether it is occupied. This is usually done by storing a block header in the first
few bits of the block. More precisely, we use headers in which the first bit is the occupied bit,
and the remaining bits specify the size of the block. Thus, for example, to determine whether
the buddy of a block is free, we compute the buddy’s address, look at the first bit at this
address, and also check that the two sizes match.

Because block sizes are always powers of two, we can just encode their logarithms in the
block headers. This uses only lg lg n bits, where n is the number of (smallest) blocks that
can be allocated. As a result, the smallest practical header of one byte long is sufficient to
address up to 2128 ≈ 3.4 · 1038 blocks. Indeed, if we want to use another bit of the header to
store some other information, the remaining six bits suffice to encode up to 264 ≈ 1.8 · 1019

blocks, which should be large enough for any practical purposes.

1.2 Related Work

Several other buddy systems have been proposed, which we briefly survey now. Of general
interest are the Fibonacci and weighted buddy systems, but none of the proposals theoretically
improve the running time of the Allocate and Deallocate operations.

In Exercise 2.5.31 of his book, Knuth [14] proposed the use of Fibonacci numbers as block
sizes instead of powers of two, resulting in the Fibonacci buddy system. This idea was detailed
by Hirschberg [10], and was optimized by Hinds [9] and Cranston and Thomas [7] to locate
buddies in time similar to the binary buddy system. Both the binary and Fibonacci buddy
systems are special cases of a generalization proposed by Burton [5].

Shen and Peterson [24] proposed the weighted buddy system which allows blocks of sizes
2k and 3 ·2k for all k. All of the above schemes are special cases of the generalization proposed

3

by Peterson and Norman [21] and a further generalization proposed by Russell [23]. Page and
Hagins [20] proposed an improvement to the weighted buddy system, called the dual buddy
system, which reduces the amount of fragmentation to nearly that of the binary buddy system.
Another slight modification to the weighted buddy system was described by Bromley [3, 4].
Koch [15] proposed another variant of the buddy system that is designed for disk-file layout
with high storage utilization.

The fragmentation of these various buddy systems has been studied both experimentally
and analytically by several papers [4, 6, 18, 21, 22, 23].

1.3 Results

In this paper we present three schemes that improve the running time of allocations and
deallocations in the standard buddy system to O(1) time, where the time bound for deallo-
cation is amortized for the first two schemes. The first scheme uses one word of extra storage
compared to the standard buddy system, but may fragment memory more than necessary.
The second and third schemes have essentially the same fragmentation as the standard buddy

system, and use O(2(1+
√

lg n) lg lg n) bits of auxiliary storage, which is ω(lgk n) but o(nε) for
all k ≥ 1 and ε > 0.

For all three presented schemes, the headers of allocated blocks are identical to the headers
of the standard buddy system, consisting of an occupied bit and lg lg n bits for the block size.
For the first two schemes, the headers of the free blocks are also identical to the standard
buddy scheme, consisting of an occupied bit, lg lg n bits for the block size, and two (lg n)-bit
pointers for linking the free blocks. The third scheme requires two headers in each free block,
which are 1 + 2 lg lg n + lg n and 1 + 2 lg lg n + 3 lg n bits long, respectively.

1.4 Outline

Sections 2 and 3 describe our primary modifications to the Allocate and Deallocate operations
of the binary buddy system. Finding an appropriate free block for Allocate is the hardest
part, so our initial description of Allocate assumes that such a block has been found, and only
worries about splitting. In Sections 4 and 5 we present two methods for finding a block to
use for allocation. Section 6 describes a variant of the binary buddy system with constant
worst-case time Allocate and Deallocate operations. Finally, Section 7 gives simulation results
comparing the fragmentation in our first method to the standard buddy system (or roughly
equivalently, to our other two methods).

2 Lazy Splitting

Recall that if we allocate a small block out of a large block, say 2i out of 2k units, then the
standard buddy system splits the large block k− i times, resulting in subblocks of sizes 2k−1,
2k−2, . . . , 2i+1, 2i, and 2i, and then uses one of the blocks of size 2i. The problem is that
if we immediately deallocate the block of size 2i, then all k − i + 1 blocks must be remerged
into the large block of size 2k. This is truly necessary in order to discover that a block of size
2k is available; the next allocation request may be for such a block.

To solve this problem, we do not explicitly perform the first k − i − 1 splits, and instead
jump directly to the last split at the bottom level. That is, the large block of size 2k is split
into two blocks, one of size 2i and one of size 2k − 2i. For k ≥ i + 2, the latter block has size

4

not equal to a power of two. We call the latter block a superblock, and it contains allocatable
blocks of sizes 2i, 2i+1, . . . , 2k−2, and 2k−1 (which sum to the total size 2k−2i). For simplicity
of the algorithms, we always remove the small block of size 2i from the left side of the large
block of size 2k, and hence the allocatable blocks contained in a superblock are always in
order of increasing size.

In general, we maintain the size of each allocated block as a power of two, while the size
of a free block is either a power of two or a difference of two powers of two. Indeed, we can
view a power of two as the difference of two consecutive powers of two. Thus, every free block
can be viewed as a superblock, containing one or more allocatable blocks each of a power of
two in size.

To see how the free superblocks behave, let us consider what happens when we allocate
a subblock of size 2j out of a free superblock of size 2k − 2i. The free block is the union of
allocatable blocks of sizes 2i, 2i+1, . . . , 2k−1, and hence i ≤ j ≤ k−1. Removing the allocatable
block of size 2j leaves two consecutive sequences: 2i, 2i+1, . . . , 2j−1 and 2j+1, 2j+2, . . . , 2k−1.
Thus, we split the superblock into the desired block of size 2j and two new superblocks of
sizes 2j − 2i and 2k − 2j+1.

2.1 Block Headers

As described in Section 1.1, to support fast access to information about a block given just
its address (for example when the user requests that a block be deallocated) it is common to
have a header on every block that contains basic information about the block. Recall that
block headers in the standard buddy system store a single bit specifying whether the block
is occupied (which is used to test whether a buddy is occupied), together with a number
specifying the logarithm of the size of the block (which is used to find the buddy).

With our modifications, superblocks are no longer powers of two in size. The obvious
encoding that uses Θ(lg n) bits causes the header to be quite large—a single byte is insufficient
even for the levels at which the buddy system is applied today (for example, smaller than
4,096 bytes in BSD 4.4 UNIX [19]). Fortunately, there are two observations which allow us
to leave the header at its current size. The first is that allocated blocks are a power of two
in size, and hence the standard header suffices for them. The second is that free blocks are a
difference of two powers of two in size, and hence two bytes suffice; the second byte can be
stored in the data area of the block (which is unused because the block is free). Actually, the
standard header also suffices for free superblocks. The observation needed is that superblocks
of size 2k − 2i have the property that they always start at an address of the form x · 2k + 2i,
except for i = k − 1 where the superblocks are of size 2k−1 and the address is of the form
x · 2k−1. We have that i can be computed as min{lsb(a), k − 1}, where a is the start address
of the superblock and lsb(a) denotes the least-significant set bit of a (see Section 4 for further
details on the computation of lsb).

2.2 Split Algorithm

To allocate a block of size 2j , we first require a free superblock containing a properly aligned
block of at least that size, that is, a superblock of size 2k − 2i where k > j. Finding this
superblock will be addressed in Sections 4 and 5. The second half of the Allocate algorithm
is to split that superblock down to the appropriate size, and works as follows. Assume the
superblock B at address a has an appropriate size. First examine the header of the block at

5

2k − 2i

︷ ︸︸ ︷

︸ ︷︷ ︸

2j − 2i

︸ ︷︷ ︸

2j

︸ ︷︷ ︸

2k − 2j+1

2k − 2i

︷ ︸︸ ︷

︸ ︷︷ ︸

2j

︸ ︷︷ ︸

2i − 2j

︸ ︷︷ ︸

2k − 2i+1

Figure 1: Allocating a block of size 2j in a superblock of size 2k − 2i, where i ≤ j < k (left)
and j < i < k (right).

address a. By assumption, the occupied bit must be clear, i.e., B must be free. The next two
numbers of the header are k and i and specify that B has size 2k − 2i. In other words, B is
a superblock containing allocatable blocks of size 2i, 2i+1, . . . , 2k−1, in that order.

There are two cases to consider; see Figure 1. The first case is that one of the blocks in
B has size 2j , that is, i ≤ j ≤ k − 1. The address of this block is a +

∑j−1
m=i 2m = a + 2j − 2i.

First we initialize the header of this block, by setting the occupied bit and initializing the
logarithm of the size to j. The address of this block is also returned as the result of the Allocate

operation. Next B has to be split into the allocated block and, potentially, a superblock on
either side of it. If j < k − 1 (in other words, we did not allocate the last block in the
superblock), then we need a superblock on the right side. Thus, we must initialize the block
header at address a + 2j+1 − 2i with a clear occupied bit followed by k and j + 1. (That is,
the block has size 2k − 2j+1.) Similarly, if j > i (in other words, we did not allocate the first
block in the superblock), then we need a superblock on the left side. Thus, we modify the
first number in the header at address a from k to j, thereby specifying that the block now
has size 2j − 2i.

The second case is the undesirable case in which i > j, in other words we must subdivide
one of the blocks in superblock B to make the allocation. The smallest block in B, of size 2i,
is adequate. It is broken off and the remainder of B is initialized as a free superblock of size
2k − 2i+1. The block of size 2i is broken into the allocated block of size 2j , and a superblock
of size 2i − 2j which is returned to the structure for future use.

An immediate consequence of the above modification to the split operation is the following:

Lemma 1 The cost of a split is constant.

3 Unaggressive Merging

This section describes how merging works in combination with blocks whose sizes are not
powers of two. Our goal is for merges to undo already performed splits, because the conditions
that caused the split no longer hold. However, we are not too aggressive about merging: we
do not merge adjacent superblocks into larger superblocks. Instead, we wait until a collection
of superblocks can be merged into a usual block of a power of two in size. This is because we
will only use superblocks to speed up splits. An amortized constant time bound for merges
follows immediately. Figure 2 shows an example where a single deallocation causes Θ(lg n)
merges.

Hence, our problem reduces to detecting mergeable buddies in the standard sense, except
that buddies may not match in size: the left or right buddy may be a much larger superblock.
This can be done as follows. Suppose we have just deallocated a block B and want to merge

6

32

merge
superblocksuperblock

merge

merge

merge

32

superblocksuperblock

8 4

8

1 2 16

superblock superblock
just deallocated by the user

8 16

superblocksuperblock

16

superblock

16

64

32

32

8 4 16

superblock

4

1

Figure 2: An example where a single deallocation causes Θ(lg n) merges.

it with any available buddies. First we clear the occupied bit in the header of B. Next we
read the logarithm of the size of the block, call it i, and check whether B can be merged with
any adjacent blocks, or in other words whether it can be merged with its buddy, as follows.

Because of the alignment of allocated blocks, the last i bits of the address of B must be
zeros. If the (i+1)st bit from the right is a zero, then our block is a left buddy of some other
block; otherwise, it is a right buddy. In either case, we can obtain the address of B’s buddy
by flipping the (i+1)st bit of B’s address, that is, by taking a bitwise exclusive-or applied to
1 shifted left i positions. Furthermore, the header of an unallocated buddy is guaranteed to
be the header of a superblock.

If the header of B’s buddy has the occupied bit clear, we read its size 2k − 2j . If B’s size
equals the lacking size 2j (i.e, i = j), we merge the buddies and update the header to specify
a size of 2k. In this case, we repeat the process to see whether the buddy of the merged block
is also free.

Lemma 2 The cost of a sequence of merges is constant amortized.

Proof: Each allocation increases the number of superblocks by at most two because the
split algorithm divides one superblock into at most three superblocks. Because each merging
reduces the number of superblocks by one, the total number of merges of superblocks is at
most twice the total number of allcations. It follows that a sequence of merge operations
takes O(1) amortized time. 2

4 Finding a Large Enough Free Block: Fragmentation

This section presents our first approach to the remaining part of the Allocate algorithm, which
is to find a block to return (if it is of the correct size) or split (if it is too large). More precisely,
we need to find a block that is at least as large as the desired size. The standard buddy system
maintains a doubly linked list of free blocks of each size for this purpose. Indeed, the free
list is usually stored as a doubly linked list whose nodes are the free blocks themselves (since
they have free space to use). The list must be doubly linked to support removal of a block in
the middle of the list as the result of a merge.

7

We do the same, where a superblock of size 2k − 2i is placed on the free list for blocks of
size 2k−1, corresponding to the largest allocatable block contained within it. This will give
us the smallest superblock that is large enough to handle the request.

The difficulty in finding the smallest large-enough superblock is that when (for example)
there is a single, large block and we request the smallest possible block, it takes Θ(lg n) time
to do a linear scan for the appropriate free list. To find the appropriate list in O(1) worst-
case time, we maintain a bitvector of length blg nc, whose (i+1)st bit from the right is set
precisely if the list for blocks of size 2i is nonempty. Then the next nonempty list after or at a
particular size 2k can be found by first shifting the bitvector right by k, and then computing
the least-significant set bit.

The latter operation is included as an instruction in many modern machines. Newer
Pentium chips do it as quickly as an integer addition. It can also be computed in constant
time using boolean and basic arithmetic operations including multiplication [2]. Another
very simple method avoiding multiplication is to store a lookup table of the solutions for all
bitstrings of length ε lg n for some constant ε > 0, using Θ(nε) words of space. To find the
least-significant set bit in a bitstring of length lg n, we conceptually divide it into d1/εe chunks
each at most ε lg n bits long. We identify the first nonzero chunk by repeatedly shifting the
(lg n)-bit word ε lg n bits to the right, stopping before the next shift would result in a zero
word. Then we apply the lookup table to this first nonzero chunk, and identify the overall
least-significant set bit by adding the appropriate multiple of ε lg n. The Θ(nε) extra space
for the lookup table is justified because many data structures require this operation, and
it is perfectly reasonable for the operating system to provide a common static table for all
processes to access. From Lemmas 1 and 2 and the above discussion, we have the following
theorem.

Theorem 1 The described modifications to the buddy system cause Allocate to run in con-
stant worst-case time and Deallocate in constant amortized time.

5 Finding a Large Enough Free Block: Extra Storage

One unfortunate property of the method described above is that even if a block of the desired
size is available as part of a superblock, it may not be used because preference is given to a
larger block. The reason is that our method prefers a superblock whose largest allocatable
block is minimal. Unfortunately, such a superblock may not contain an allocatable block of
exactly (or even close to) the desired size, whereas a superblock containing a larger largest
block might. Furthermore, even if there is no block of exactly the desired size, our method
will not find the smallest one to split. As a result, unnecessary splits may be performed,
slightly increasing memory fragmentation. We have not performed a statistical analysis of
the effect in fragmentation as a result of this property, but simulation results are presented
in Section 7.

In this section, we present a further modification that solves this problem and leaves the
fragmentation in essentially the same state as does the standard buddy system. Specifically,
we abstract the important properties of the standard buddy system’s procedure for finding
a large enough free block into the following minimum-splitting requirement : the free block
chosen must be the smallest block that is at least the desired size. In particular, if there
is a block of exactly the desired size, it will be chosen. This requirement is achieved by the

8

standard buddy system, and the amount of block splitting is locally minimized by any method
achieving it.

Of course, there may be ties in “the smallest block that is at least the desired size,”
so different “minimum-splitting” methods may result in different pairs of blocks becoming
available for remerging, and indeed do a different amount of splitting on the same input
sequence. However, we observe that even different implementations of the “standard buddy
system” will make different choices. Furthermore, if we view all blocks of the same size as
being equally likely to be deallocated at any given time, then all minimum-splitting systems
will have identical distributions of fragmentation.

In the context of the method described so far, the minimum-splitting requirement specifies
that we must find a superblock containing a block of the appropriate size if one exists, and
if none exists, it must find the superblock containing the smallest block that is large enough.
This section describes how to solve the following more difficult problem in constant time: find
the superblock whose smallest contained block is smallest, over all superblocks whose largest
contained block is large enough to serve the query.

Recall that superblocks have size 2k − 2j for 1 ≤ k ≤ blg nc + 1 and 0 ≤ j ≤ k − 1. For
each of the possible (k, j) pairs, we maintain a doubly linked list of all free superblocks of size
2k − 2j (where “superblock” includes the special case of “block”). By storing the linked list
in the free superblocks themselves, the auxiliary storage required is only Θ(lg2 n) pointers or
Θ(lg3 n) bits.

For each value of k, we also maintain a bitvector Vk of length blg nc, whose jth bit indicates
whether there is at least one superblock of size 2k −2j. This vector can clearly be maintained
in constant time subject to superblock allocations and deallocations. By finding the least-
significant set bit, we can also maintain the minimum set j in Vk for each k, in constant time
per update.

The remaining problem is to find some superblock of size 2k − 2j for which, subject
to the constraint k > i, j is minimized. This way, if j ≤ i, this superblock contains a
block of exactly the desired size; and otherwise, it contains the smallest block adequate for
our needs. The problem is now abstracted into having a vector Vmin, whose kth element
(1 ≤ k ≤ blg nc) is the minimum j for which there is a free superblock of size 2k −2j ; in other
words, Vmin[k] = min{j | Vk[j] > 0}. Given a value i, we are to find the smallest value of j in
the last blg nc − i positions of Vmin; in other words, we must find min{Vmin[k] | k > i}.

The basic idea is that, because each element of Vmin value takes only lg lg n bits to rep-
resent, “many” can be packed into a single (1 + lg n)-bit word. Indeed, we will maintain a
dynamic multiway search tree of height 2. The blg nc elements of Vmin are split into roughly√

lg n groups of roughly
√

lg n elements each. The pth child of the root stores the elements in
the pth group. The root contains roughly

√
lg n elements, the pth of which is the minimum

element in the pth group. As a consequence, each node occupies
√

lg n lg lg n bits.
A query for a given i is answered in two parts. First we find the minimum of the first

bi/√lg nc elements of the root node, by setting the remaining elements to infinities, and using
a table of answers for all possible root nodes. The second part in determining the answer
comes from inspecting the di/

√
lg neth branch of the tree, which in general will contain some

superblocks (or j values) that are valid for our query and some that are not. We must,
then, make a similar query there, and take the smallest j value of the two. The extra space
required is dominated by the table that gives the value and position of the smallest element,

for all possible
√

lg n tuples of lg lg n bits each. There are 2
√

lg n lg lg n entries in this table,

9

28

︷ ︸︸ ︷

︸ ︷︷ ︸

26

︸ ︷︷ ︸

24

︸ ︷︷ ︸

24

︸ ︷︷ ︸

25

︸ ︷︷ ︸

27

a
h2 h1

Figure 3: A generalized superblock of size 28 − 24. The shaded block is not part of the
superblock, and can contain other superblocks.

and each entry requires 2 lg n bits, for a total of 2(1+
√

lg n) lg lg n+1 bits. As a consequence,
the total space required beyond the storage we are managing is o(nε) but ω(lgk n). Updating
the structure to keep track of the minimum j for each k, in constant time after each memory
allocation or deallocation, is straightforward.

Theorem 2 The described modifications to the buddy system satisfy the minimum-splitting
requirement, and cause Allocate to run in constant worst-case time and Deallocate in constant
amortized time.

6 Constant Time Allocation and Deallocation

The variants of the standard buddy system presented in the previous sections support alloca-
tion in constant worst-case time and deallocations in constant amortized time. In this section
we devise a generalized notion of superblocks enabling both allocations and deallocations in
constant worst-case time, the cost being slightly bigger headers for free blocks.

In Section 2 a superblock is defined to be a block of size 2k − 2i, which consists of aligned
blocks of size 2i, 2i+1, . . . , 2k−1. The requirement being that these allocatable blocks are con-
secutive and appear in the above order. In this section we consider the following generalized
notion of a superblock: A superblock of size 2k − 2i is an aligned block of size 2k with one
aligned subblock of size 2i excluded, i.e. it consists of a set of aligned and allocatable blocks of
size 2i, 2i+1, . . . , 2k−1, but not necessarily in that order; see Figure 3. If the excluded subblock
starts at position a, then the superblock is uniquely identified by the triple 〈k, i, a〉. The start
position of the size 2k block equals a with the k least significant bits cleared. Note that the
excluded block can be at 2k−i distinct positions within a block of size 2k, whereas the defi-
nition of superblocks in Section 2 requires the excluded subblock to precede the allocatable
blocks in the superblock.

The available memory is partitioned into occupied blocks and superblocks of free blocks.
For the superblocks we will have the invariant that both halves of the excluded block span at
least one occupied cell, i.e. neither half is a free block of size 2i−1. The invariant guarantees
that we maintain the minimum possible number of superblocks. To see this, view the memory
as the binary tree defined by the blocks of the buddy system, leafs being the individual memory
cells. Mark all nodes which correspond to allocated blocks, or where both children contain at
least one allocated cell in their subtrees. The maintained superblocks then correspond to the
unmarked children of marked nodes, and the excluded blocks to the unique highest marked
descendants in these subtree.

We will assume that the collection of superblocks is handled by the data structure de-
scribed in Section 5, in the following denoted by S. The pointers for the linked lists of free

10

superblocks are stored in the buddies of the excluded blocks. The address we store to a
superblock is the address of the buddy of the excluded block. Alternatively, we could use
the simpler data structure from Section 4, but which does not guarantee a fragmentation
comparable to the standard buddy system.

6.1 Block Headers

Allocated blocks will have the standard one byte header. For a superblock of size 2k − 2i we
will have one or two identical headers. Consider a superblock of size 2k − 2i. Let A be the
excluded block of size 2i, starting at address a. Let A′ at address a′ be the buddy of A, and
let C at address c be the block of size 2k containing A, where a′ equals a with the (i+1)st bit
flipped and c equals a with the k least significant bits cleared. The headers of the superblock
have the occupancy bit cleared, and store the triple 〈k, i, a〉. Each header requires two bytes
plus dlg ne bits. The headers of the superblock are stored at a′ and c (possibly a′ = c), except
if a = c in which case we store the headers at a′ and c + 2k−1.

6.2 Allocation

To allocate a block of size 2j we assume that S provides us with a superblock of size 2k − 2i

by the triple 〈k, i, a〉. Similar to Section 2.2 we have the cases j ≥ i and j < i.
First we consider the case i ≤ j < k. Let A, A′, C, a, a′, and c be as defined above.

Let B at b be the block of size 2j containing A, and let B ′ at b′ be the buddy of B, where b
equals a with the j least significant bits cleared and b′ equals b with the (j+1)st bit flipped.
We return the block B ′, and reinsert into the data structure the superblocks C \ (B ∪B ′) and
B \ A of size 2k − 2j+1 and 2j − 2i, respectively. We update the headers accordingly: For B ′

we set the occupancy bit at b′ and store j. If j > i, then for B \A we clear the occupancy bits
at a′ and b̂ and store 〈j, i, a〉, where b̂ = b + 2j−1 if a = b and otherwise b̂ = b. If k > j + 1,
then for C \ (B ∪ B ′) we clear the occupancy bits at b̂ at ĉ and store 〈k, j + 1, c〉, where b̂ is
the buddy of B ∪ B ′ of size 2j+1, i.e. b̂ equals b with the (j+1)st bit cleared and the j + 2nd
bit flipped, and ĉ = c + 2k−1 if c = min{a, a′} and otherwise ĉ = c.

Next consider the case j < i < k. Let A, A′, C, a, a′, and c be as before. Let B be the
leftmost block in A′ of size 2j . We return the block B and reinsert into S the superblocks
C \ (A ∪ A′) and A′ \ B. We update the headers accordingly: For B we set the occupancy
bits at a′ and store j. For A′ \ B, at a′ + 2j and a′ + 2i−1 we clear the occupancy bits and
store 〈i, j, a′〉. If k > i + 1, then for C \ (A ∪ A′) we clear the occupancy bits and store
〈k, i + 1,min{a, a′}〉 at â and ĉ, where â is the buddy of A ∪ A′ of size 2i+1, i.e. â equals a
with the (i+1)st bit cleared and the j + 2nd bit flipped, and ĉ = c + 2k−1 if c = min{a, a′}
and otherwise ĉ = c.

6.3 Deallocation

Given an address a to a block A that should be deallocated, we first look up the value j in
the header of a to determine its size 2j . We then free the block A and merge it with up to
three superblocks to form a new superblock as described below.

Consider the buddy A′ of A with size 2j and starting at address a′ equaling a with the
(j+1)st bit flipped.

If A′ is a free block, then it is part of a superblock of size 2k − 2j where A is the excluded
block. This case is identified by checking if the header of A′ has the occupancy bit cleared and

11

stores 〈k, j, a〉 for some k > j (if k > j then j and a are unique). Let C be the block at c of
size 2k containing A, where c equals a with the k least-significant bits cleared. The superblock
C \ A is removed from S and C is now a free block that can be viewed as being deallocated.
By our invariant on superblocks we know that the buddy of C contains an allocated cell,
i.e. the succeeding actions to be performed correspond to the case where the buddy of the
block to be deallocated contains at least one allocated cell.

The second case is when A′ contains at least one allocated cell, which is identified by the
header of A′ having the occupancy bit set (a prefix of A′ is an allocated block) or the occupancy
bit is cleared and a header 〈k′, ·, ·〉 where k′ ≤ j (a prefix of A′ is a free superblock). If there
exists a nonempty superblock A′ \ A′′, we join A with this superblock to form (A ∪ A′) \ A′′

and remove A′ \ A′′ from S. There exists such an A′′ if and only if either a′ or a′ + 2j−1

has the occupancy bit cleared and stores 〈j, i′′, a′′〉, where i′′ and a′′ determine the size and
start location of A′′ as 2i′′ and a′′, respectively. Otherwise A is a superblock by itself, namely
the superblock (A ∪ A′) \ A′′ where A′′ = A′. Finally, if there exists a nonempty superblock
C \ (A ∪ A′), we remove C \ (A ∪ A′) from S and join the superblocks (A ∪ A′) \ A′′ and
C \ (A ∪ A′) to form the superblock C \ A′′. There exists such a C if and only if the buddy
of A ∪ A′ has the occupancy bit cleared and a header 〈k ′′, j + 1,min{a, a′}〉 where 2k′′

is the
size of C. Otherwise let C = A∪A′. Having established the new superblock C \A′′ we create
the headers for it as described in Section 6.1 and insert it into S.

Theorem 3 The described modifications to the buddy system cause Allocate and Deallocate

to run in constant worst-case time.

7 Simulation

To help understand the effect of the excess block splitting in the first method (Section 4), we
simulated it together with the standard buddy system for various memory sizes and “load
factors.” Since the second and third method leave the fragmentation in essentially the same
state as does the standard buddy system, we did not simulate these methods. Our simulation
attempts to capture the spirit of the classic study by Knuth [14] that compares various
dynamic allocation schemes. In each time unit of his and our simulations, a new block is
allocated with randomly chosen size and lifetime according to various distributions, and old
blocks are checked for lifetime expiry which causes deallocations. If there is ever insufficient
memory to perform an allocation, the simulation halts.

While Knuth periodically examines memory snapshots by hand to gain qualitative insight,
we compute various statistics to help quantify the difference between the two buddy systems.
To reduce the effect of the choice of random numbers, we run the two buddy schemes on
exactly the same input sequence, repeatedly for various sequences. We also simulate an
“optimal” memory allocation scheme, which continually compacts all allocated blocks into
the left fraction of memory, as a sort of baseline for comparison. (In fact, the simulation of
this scheme only influences the notion of “equilibrium” defined below.)

Few experimental results seem to be available on typical block-size and lifetime distri-
butions, so any choice is unfortunately guesswork. Knuth’s block sizes are either uniformly
distributed, exponentially distributed, or distributed according to a hand-selection of prob-
abilities. We used the second distribution (choosing size 2i with probability 1/(1 + blg nc)),
and what we guessed to be a generalization of the third distribution (choosing size 2i with
probability 2−i−1, roughly). We dropped the first distribution because we believe it weights

12

large blocks too heavily—blocks are typically quite small. Note that because the two main
memory-allocation methods we simulate are buddy systems, we assume that all allocations
ask for sizes that are powers of two. Also, to avoid rapid overflow in the second distribution,
we only allow block sizes up to n3/4, i.e., logarithms of block sizes up to 3

4 lg n.
Knuth’s lifetimes are uniformly distributed according to one of three ranges. We also use

uniform distribution but choose our range based on a given parameter called the load factor.
The load factor L represents the fraction of memory that tends to be used by the system.
Given one of the distributions above on block size, we can compute the expected block size
E, and therefore compute a lifetime Ln/E that will on average keep the amount of memory
used equal to Ln (where n is the size of memory). To randomize the situation, we choose a
lifetime uniformly between 1 and 2Ln/E − 1, which has the same expected value Ln/E.

The next issue is what to measure. To address this it is useful to define a notion of the
system reaching an “equilibrium.” Because the simulation starts with an empty memory, it
will start by mostly allocating blocks until it reaches the expected memory occupancy, Ln.
Suppose it takes t time steps to reach that occupancy. After t more steps (a total of 2t),
we say that the system has reached an equilibrium; at that point, it is likely to stay in a
similar configuration. (Of course, it is possible for the simulation to halt before reaching an
equilibrium, in which case we discard that run.)

One obvious candidate for a quantity to measure is the amount of fragmentation (i.e.,
the number of free blocks) for each method, once every method has reached an equilibrium.
However, this is not really of interest to the user: the user wants to know whether her/his block
can be allocated, or whether the system will fail by being unable to service the allocation.
This suggests a more useful metric, the time to failure, frequently used in the area of fault
tolerance.

A related metric is to wait until all systems reach an equilibrium (ignoring the results
if the system halts before that), and then measure the largest free allocatable block in each
system. For the standard buddy system, this is the largest block of size a power of two; for
our modified buddy system, it is the largest block in any superblock; and for the optimal
system, it is simply the amount of free memory. This measures, at the more-or-less arbitrary
time of all systems reaching equilibrium, the maximum-size block that could be allocated.

We feel that these two metrics capture some notion of what users of a memory-allocation
system are interested in. For each input and each metric, we compute the relative error as
the difference of the standard buddy system’s performance under the metric minus the first
method’s performance, divided by the standard buddy system’s performance. This relative
error is positive whenever the standard buddy system has a higher (better) performance,
according to either metric, and is negative in the rare cases when the standard buddy system
is worse. Our experiments averages the relative error over 100 runs for each case. Memory
size ranges between 24 (the smallest power-of-two size for which a difference between the two
buddy systems is noticeable) and 212 (the size used by BSD 4.4 UNIX [19]). The tested load
factors are 50%, 75%, and 90%.

The results are shown in Figure 4. The relative errors are for the most part quite small
(typically under 10%). Indeed, our first method occasionally does somewhat better than the
standard buddy system, because its different choices of blocks to split cause some fortunate
mergings. Further evidence is that, for the exponential distribution, less than 10% of the
runs showed any difference in time-to-failure between the two buddy systems. (However, the
number of differences is greater for the uniform distribution.)

Thus, the difference in distributions of fragmentation between the two buddy systems

13

-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03

 4 5 6 7 8 9 10 11 12

R
el

at
iv

e
er

ro
r

Logarithm of memory size

Time to failure, exponential dist.

Load 50%
Load 75%
Load 90%

-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

 4 5 6 7 8 9 10

R
el

at
iv

e
er

ro
r

Logarithm of memory size

Equilibrium max. block size, exponential dist.

Load 50%
Load 75%
Load 90%

-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

 4 5 6 7 8 9 10 11 12

R
el

at
iv

e
er

ro
r

Logarithm of memory size

Time to failure, uniform dist.

-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

 4 5 6 7 8 9 10 11 12

R
el

at
iv

e
er

ro
r

Logarithm of memory size

Equilibrium max. block size, uniform dist.

Figure 4: Simulation results. “Relative error” measures (standard buddy − first method)/
standard buddy. “Dist.” refers to the distribution of the logarithms of the block sizes, and
“load” refers to the load factor.

seems reasonably small. The simplicity of our first method may make it attractive for imple-
mentation.

8 Conclusion

We have presented three enhancements to the buddy system that improve the running time of
Allocate to constant worst-case time, and Deallocate to constant amortized time for the first
two schemes and constant worst-case time for the third scheme. The more complex methods
keep the distribution of fragmentation essentially the same as the standard method, while the
simpler approach leads to a different and slightly worse distribution. It would be of interest
to specify this difference mathematically.

We note that it is crucial for Allocate to execute as quickly as possible (and in particular
fast in the worst case), because the executing process cannot proceed until the block allocation
is complete. In contrast, it is reasonable for the Deallocate time bound to be amortized,
because the result of the operation is not important and the actual work can be delayed until
the CPU is idle (or the memory becomes full). Indeed, this delay idea has been used to

14

improve the cost of the standard buddy system’s Deallocate [1, 11, 16, 17].

References

[1] R. E. Barkley and T. Paul Lee. A lazy buddy system bounded by two coalescing delays
per class. Operating Systems Review, pages 167–176, Dec. 1989.

[2] Andrej Brodnik. Computation of the least significant set bit. In Proceedings of the 2nd
Electrotechnical and Computer Science Conference, Portoroz, Slovenia, 1993.

[3] Allan G. Bromley. An improved buddy method for dynamic storage allocation. In
Proceedings of the 7th Australian Computer Conference, pages 708–715, 1976.

[4] Allan G. Bromley. Memory fragmentation in buddy methods for dynamic storage allo-
cation. Acta Informatica, 14:107–117, 1980.

[5] Warren Burton. A buddy system variation for disk storage allocation. Communications
of the ACM, 19(7):416–417, July 1976.

[6] Shyamal K. Chowdhury and Pradip K. Srimani. Worst case performance of weighted
buddy systems. Acta Informatica, 24(5):555–564, 1987.

[7] Ben Cranston and Rick Thomas. A simplified recombination scheme for the Fibonacci
buddy system. Communications of the ACM, 18(6):331–332, June 1975.

[8] Erik D. Demaine and J. Ian Munro. Fast Allocation and Deallocation with an Improved
Buddy System. In Proceedings of the 19th Conference on the Foundations of Software
Technology and Theoretical Computer Science (FST & TCS’99), Lecture Notes in Com-
puter Science, volume 1738, Chennai, India, December 13-15, 1999, pages 84-96.

[9] James A. Hinds. Algorithm for locating adjacent storage blocks in the buddy system.
Communications of the ACM, 18(4):221–222, Apr. 1975.

[10] Daniel S. Hirschberg. A class of dynamic memory allocation algorithms. Communications
of the ACM, 16(10):615–618, Oct. 1973.

[11] Arie Kaufman. Tailored-list and recombination-delaying buddy systems. ACM Transac-
tions on Programming Languages and Systems, 6(1):118–125, Jan. 1984.

[12] Kenneth C. Knowlton. A fast storage allocator. Communications of the ACM, 8(10):623–
625, Oct. 1965.

[13] Kenneth C. Knowlton. A programmer’s description of L6. Communications of the ACM,
9(8):616–625, Aug. 1966.

[14] Donald E. Knuth. Dynamic storage allocation. In The Art of Computer Programming,
volume 1, section 2.5, pages 435–455. Addison-Wesley, 1968.

[15] Philip D. L. Koch. Disk file allocation based on the buddy system. ACM Transactions
on Computer Systems, 5(4):352–370, Nov. 1987.

15

[16] T. Paul Lee and R. E. Barkley. Design and evaluation of a watermark-based lazy buddy
system. Performance Evaluation Review, 17(1):230, May 1989.

[17] T. Paul Lee and R. E. Barkley. A watermark-based lazy buddy system for kernel memory
allocation. In Proceedings of the 1989 Summer USENIX Conference, pages 1–13, June
1989.

[18] Errol L. Lloyd and Michael C. Loui. On the worst case performance of buddy systems.
Acta Informatica, 22(4):451–473, 1985.

[19] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman. The
Design and Implementation of the 4.4 BSD Operating System. Addison-Wesley, 1996.

[20] Ivor P. Page and Jeff Hagins. Improving the performance of buddy systems. IEEE
Transactions on Computers, C-35(5):441–447, May 1986.

[21] James L. Peterson and Theodore A. Norman. Buddy systems. Communications of the
ACM, 20(6):421–431, June 1977.

[22] Paul W. Purdom, Jr. and Stephen M. Stigler. Statistical properties of the buddy system.
Journal of the ACM, 17(4):683–697, Oct. 1970.

[23] David L. Russell. Internal fragmentation in a class of buddy systems. SIAM Journal on
Computing, 6(4):607–621, Dec. 1977.

[24] Kenneth K. Shen and James L. Peterson. A weighted buddy method for dynamic stor-
age allocation. Communications of the ACM, 17(10):558–562, Oct. 1974. See also the
corrigendum in 18(4):202, Apr. 1975.

16

	1 Introduction
	1.1 Buddy System
	1.2 Related Work
	1.3 Results
	1.4 Outline

	2 Lazy Splitting
	2.1 Block Headers
	2.2 Split Algorithm

	3 Unaggressive Merging
	4 Finding a Large Enough Free Block: Fragmentation
	5 Finding a Large Enough Free Block: Extra Storage
	6 Constant Time Allocation and Deallocation
	6.1 Block Headers
	6.2 Allocation
	6.3 Deallocation

	7 Simulation
	8 Conclusion

