
Open Problems from CCCG 2004
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The following is a list of the problems presented on
August 9, 2004 at the open-problem session of the 16th
Canadian Conference on Computational Geometry held
in Montréal, Québec, Canada.

Minimum-Bend Graph Drawing in Other Grids
Therese Biedl
U. Waterloo
biedl@uwaterloo.ca

What is the best worst-case guarantee one can
make on the number of bends required to em-
bed a graph into a particular grid, in particular,
the hexagonal and octagonal grids? A grid point-
drawing of a graph maps each vertex to a unique
point of the grid, and maps each edge to a path
in the grid connecting the endpoints; the paths are
allowed to intersect at common endpoints and at
proper crossings (points at which two or more paths
meet but do not bend), but must be edge-disjoint.
Such a drawing exists only for graphs whose maxi-
mum vertex degree is at most the maximum degree
∆ of a point in the grid. The goal of this problem
is to obtain a bound of the form “every graph on
n vertices of maximum vertex degree ∆ has a grid
point-drawing with at most f(n) bends” for various
grids.

In the usual square grid, 2D points have integral co-
ordinates and an edge connects every two points at
Euclidean distance exactly 1, so ∆ = 4. Here it is
known that every graph with maximum vertex de-
gree at most ∆ = 4 has a square-grid point-drawing
with at most 2n + 4 bends [BK98, LMS98].

The “8-way square grid” has the same set of points
but connects two points at Euclidean distance ei-
ther 1 or

√
2—that is, it draws two diagonals within

each square cell—so ∆ = 8. In this case, Biedl can
prove an upper bound of 6n+O(1) bounds, and the
proof is not too difficult. Is there a better bound?

The three tilings of the plane by identical regular
polygons are the square grid, the triangular grid
(∆ = 6), and the hexagonal grid (∆ = 3). For the
triangular grid, Biedl can prove an upper bound of
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4n + O(1) bends by a relatively easy proof, and an
upper bound of 3.5 n + O(1) bounds by a rather
complicated proof. Is there a better bound, or a
simpler proof of the latter bound? What about the
hexagonal grid?
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Cutting and Joining Matrices
John Iacono
Polytechnic U.
iacono@john.poly.edu

How quickly can one maintain a collection of rect-
angular matrices subject to the following opera-
tions?

Make: Create a new 1× 1 matrix with entry 0.

Get: Return A[i, j] for specified matrix A and in-
dices i and j.

Set: Set A[i, j] to a specified value x, for specified
matrix A and indices i and j.

Horizontal Cut: Cut specified m × n matrix A
below specified row i, resulting in one i × n
piece and one (m− i)× n piece.

Vertical Cut: Cut specified m×n matrix A right
of specified column j, resulting in one m × j
piece and one m× (n− j) piece.

Horizontal Join: Join the bottom edge of spec-
ified m1 × n matrix A1 to the top edge of
specified m2 × n matrix A2, resulting in one
(m1 + m2)× n matrix.

Vertical Join: Join the right edge of specified m×
n1 matrix A1 to the left edge of specified m×
n2 matrix A2, resulting in one m× (n1 + n2)
matrix.
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At the session, an O(
√

n) upper bound was claimed,
but such a bound no longer seems easy to obtain
(personal communication with Ilya Baran, John Ia-
cono, Stefan Langerman, and others). Is an O(

√
n)

bound, a o(
√

n) bound, or even a a polylogarithmic
bound, possible?

The analogous problem in 1D is solvable in O(log n)
time per operation, by a splittable concatenable
balanced search tree such as red-black trees, and
this time bound is the best possible [PD].
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Whitespace Management
Satyan Devadoss
Williams College
satyan.devadoss@williams.edu

Informally, we are given a set of objects on a map,
and we seek a method of continuously enlarging
the objects over time so that these objects are still
visible as the map continuously zooms out. A sim-
ple scaling of the objects is not a feasible solution
because it can lead to intersections of the objects,
making the map illegible. In this case, the objects
need to be moved away from each other as we en-
large them in such a way as to preserve topology.
Over time, the objects will use up the surrounding
whitespace until they fill the entire map. It is clear
that the shape of the objects will radically deform
over time as they begin to fill the whitespace.

More formally, let R =
⋃

Ri where the Ri’s are
pairwise disjoint, pairwise ε-separated, connected
regions inside a bounding region M ⊂ Rk. Define
two regions as adjacent if their Voronoi regions are
adjacent. Construct a homotopy ft : R → M , for
t ∈ [0, 1], having the following properties:

1. f0 is the inclusion map (i.e., the identity map
on each Ri) and ft is a homeomorphism onto
its image for all t.

2. ft is area-ratio preserving for all t.

3. ft(Ri) are pairwise ε-separated for all t.

4. ft preserves relative position for all t (i.e., the
adjacency graph does not change over t).

5. For all points x on the boundary of region Ri,
f1(x) is at distance exactly ε from f1(y) for
some point y on the boundary of either M or
another region Rj , j 6= i.

Constrained Higher-Order Delaunay Triangulations
Marc van Kreveld
Utrecht U.
marc@cs.uu.nl

What is the complexity of finding the lowest-order
triangulation of a planar point set S that includes
a given set of edges? The order of a triangula-
tion is the maximum order of any triangle; the or-
der of a triangle is the number of points from S
inside the circumcircle. Thus a triangulation has
order 0 if and only if it is the Delaunay triangu-
lation. This problem captures trying to find the
“most Delaunay” triangulation when constrained
to include a specified set of edges in the triangu-
lation. This class of Delaunay-like triangulations
is introduced in [GHK02] as higher-order Delaunay
triangulations.

It is also interesting to consider worst-case bounds
in terms of the order of the original set of edges.
Here the order of an edge set is the maximum order
of any edge, and the order of a line segment is the
minimum number of points contained in a circle
passing through the two endpoints. van Kreveld
can prove that, given a single constraint edge of
order k, there is always a constrained triangulation
of order at most 2k − 2, and that this is the best
possible such bound in the worst case. However,
given more than one constraint edge, the problem is
unsolved. van Kreveld can prove that the minimum
order of a triangulation constrained by two edges
is not always the maximum of the minimum order
for each constraint edge individually.
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Monochromatic Division by Parallel Lines
Carlos Seara
U. Politècnica de Catalunya
carlos.seara@upc.edu

Given a set R of red points and a set B of blue
points in the plane, what is the complexity of find-
ing the minimum number of parallel lines to sepa-
rate the plane into monochromatic regions (strips)?
The goal is to minimize the worst-case complexity
of an algorithm in terms of the total number of
points, n = |R|+ |B|.
A simple O(n3 log n)-time algorithm considers each
of the

(
n
2

)
slopes of interest (parallel to the line
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Figure 1: 1-to-4 refinement.

through two input points) and greedily constructs
the optimal separating set of lines with that slope
in O(n log n) by sorting the points in the perpendic-
ular direction. The same idea can be improved to
an O(n2 log n)-time algorithm by transforming the
problem into the dual according to the standard
mapping (a, b) ↔ ax + b = 1. The dual problem is
the following: Given a set of nonvertical red lines
and blue lines in the plane, find a set of points on
a vertical line that stabs the wedge enclosed by ev-
ery pair of red and blue lines. This problem can
be solved in O(n2 log n) time by constructing the
arrangement of lines and running a line sweep over
the arrangement.

Is there an algorithm with running time
o(n2 log n)? What if the minimum number k
of separating lines (the size of the output) is
known to be small? Is there an O(nk log n)-time
algorithm? For k ≤ 2, an O(n log n)-time algo-
rithm is presented in [HNRS01]. Seara further
claims an O(n log n)-time algorithm for k ≤ 4.
What about larger k?

References

[HNRS01] Ferran Hurtado, Marc Noy, Pedro A.
Ramos, and Carlos Seara. Separat-
ing objects in the plane by wedges and
strips. Discrete Applied Math. 109(1–
2):109–138, Apr. 2001.

Edge-Unfolding via Refinement
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

How many times must a convex polyhedron’s sur-
face be refined before it becomes edge-unfoldable?
A polyhedron is edge-unfoldable if there is a set
of edges that can be cut such that the result is
connected and can be isometrically flattened into
the plane with no overlap. Any successive, regu-
lar refinement process is of interest. One particular
process, shown in Figure 1, is to first triangulate
the surface, and then at each successive refinement
level, partition each triangle into four subtriangles
by dividing at the midpoint of each edge (1-to-4
refinement).

The goal is to obtain a worst-case upper bound,
perhaps dependent on the combinatorial complex-

ity n of the polyhedron (the total number of ver-
tices, edges, and faces). Interesting possible an-
swers are 0, 1, O(1), o(n), O(n), nO(1), 2O(n),
and ∞. An upper bound of 0 (or a lower bound
of 1) would solve a much harder problem, edge-
unfolding of convex polyhedra or triangulated con-
vex polyhedra, which has been unsolved for hun-
dreds of years [TOPP9]: an upper bound of 0 would
mean that no refinement is needed for any con-
vex polyhedron, and a lower bound of 1 would
mean that some convex polyhedron needs refine-
ment before it is edge-unfoldable. Obtaining an
upper bound of more than 0 is potentially easier
than the classic problem, by giving the flexibility
of a (limited amount of) refinement.

Without any restriction on the refinement, it is
known that adding O(n2) additional edges can
make any convex polyhedron edge-unfoldable, via
the standard source unfolding or star unfolding
(see [DO05]). Refinement would permit approxi-
mating these unfoldings. So the problem can be
viewed as asking whether some finite approxima-
tion suffices to avoid overlap.
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Wrapping a Box with a Rectangle
Robert Dawson
Saint Mary’s U.
rdawson@husky1.stmarys.ca

Given a rectangle of paper and a box, can the box
be wrapped by folding the rectangle? There are
only five real inputs: the dimensions of the rectan-
gle and of the box. Characterize when this prob-
lem has a solution. There are examples where an
“axis-parallel wrapping” (initially placing the rect-
angle with sides parallel to the box) is impossible,
but rotating the rectangle relative to the box en-
ables a wrapping. Another form of the problem
from the computational origami literature is as fol-
lows: given the dimensions of a rectangle and a
box, what is the smallest scaling of the rectangle
that can wrap the box?
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Although this decision problem captures the
essence, of more practical interest is some form of
optimization. One suggestion of Dawson is to find
the smallest-perimeter rectangle that wraps a box
with specified dimensions. (The smallest-area rect-
angle is ill-defined: the area can be arbitrarily close
to the surface area of the polyhedron [DDM00].)
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Moving Coins
David Rappaport
Queen’s U.
daver@cs.queensu.ca

What is the minimum possible number of straight-
line translations without self-intersection to re-
arrange n unlabeled equal-radius disks from one
configuration to another? Here one disk is moved
at a time, by translating along a straight line seg-
ment, and throughout each such move, the set of
coins must be interior-disjoint. The goal is to find
the best worst-case bound in terms of n, over all
pairs of configurations of n coins (in which the coins
are interior-disjoint).

An easy upper bound is 2n− 1 [AHORT04]. First,
order the coins according to their projection onto a
generic axis. Second, move each coin in this order,
except the last, far in that direction (and so that
the first is substantially farther than the second,
and so on). Third, move the last coin to the target
position with minimum coordinate along the axis.
Fourth, move each of the other coins, in reverse
order, to target positions of increasing coordinate
along the axis.

On the other hand, a 3n/2 lower bound is
known [AHORT04]. What is the correct bound?
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