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Open Problems from CCCG 2006

Erik D. Demaine∗ Joseph O’Rourke†

The following is a list of the problems presented on
August 14, 2006 at the open-problem session of the 18th
Canadian Conference on Computational Geometry held
in Kingston, Ontario, Canada.

Edge Reconnections in Unit Chains
Anna Lubiw
University of Waterloo
alubiw@uwaterloo.ca

Is it possible to reconfigure between any two con-
figurations of a unit-length 3D polygonal chain, or
more generally unit-length 3D polygonal trees, by
“edge reconnections”?
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Figure 1: An edge reconnection.

An edge reconnection is an operation on a path
of three consecutive vertices (a, b, c) of a chain or
tree linkage; refer to Figure 1. If it is possible to
fold the linkage, preserving edge lengths and avoid-
ing self-intersection, to bring the two incident edges
ab and bc into coincidence, then the edge reconnec-
tion breaks the connection between the edges at b,
splits b into two vertices b1 and b2, and fuses a=c
together. This operation changes a chain into a
tree. If we apply this operation to a tree, there will
generally be attachments at b; allow them to at-
tach to either b1 or b2. Is it possible to reconfigure
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between any two unit-length 3D trees of the same
number of links using edge reconnections?

Update: At the conference, a related move was
defined: a tetrahedral swap alters consecutive ver-
tices (a, b, c, d) of a chain to either (a, c, b, d) or
(a, d, b, c), whichever of the two yields a chain. It
was established (by Erik Demaine, Anna Lubiw,
and Joseph O’Rourke) that, if tetrahedral swaps
are permitted without regard to self-intersection,
then they suffice to unlock any chain.

Edge Swaps in Planar Matchings
Ferran Hurtado (via Henk Meijer)
Univ. Politécnica de Catalunya
Ferran.Hurtado@upc.edu

Is the space of (noncrossing) plane matchings on
a set of n points in general position connected by
“two-edge swaps”? A two-edge swap replaces two
edges ab and cd of a plane matching M with a dif-
ferent pair of edges on the same vertices, say ac
and bd, to form another plane matching M ′. (The
swap is valid only if the resulting matching is non-
crossing.) Notice that ac and bd together with their
replacement edges form a length-4 alternating cycle
that does not cross any segments in M . Is it pos-
sible to reach any plane matching from any other
on the same point set by a sequence of such two-
edge swaps? In other words, if we form the graph
where vertices correspond to plane matchings and
edges correspond to two-edge swaps, is this graph
connected?

This is a reposing of one question from a series of
related questions posed at CCCG 2003 [DO04]; see
also [MR04]. It is known that k-edge swaps suffice
to connect the space of plane matchings, but only
if no bound is imposed on k [HHNR05]. The same
work also proved that a two-edge swap always ex-
ists, i.e., the two-edge-swap graph on plane match-
ings cannot have an isolated node. (The proof,
however, was not included in the journal version of
the paper.) For n = 2m points in convex position,
the two-edge-swap graph is well understood: its
vertex connectivity is m− 1, it contains no Hamil-
tonian path for m odd and greater than 3, and it
contains a Hamiltonian cycle for even values of m
greater than 2 [HHN02].
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Shortest Aspect Tour
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

How quickly can one compute an exterior tour of
a polyhedron that “views it from all different an-
gles”? More precisely, the aspect graph of a poly-
hedron P represents the cells of the arrangement of
planes containing the faces of P : from each cell, one
sees a different “aspect” of P . The aspect graph has
Θ(n6) nodes [PD90]. The goal is to find a closed
path π in R3 of minimum possible length that visits
every aspect, i.e., π meets every cell of the arrange-
ment, and does not penetrate the interior of the
polyhedron P .

The same problem may be posed in the plane,
and with or without the constraint that the path
be a closed tour.

Update: The problem is related to the external
watchman route problem, where the goal is to find
a tour exterior to the polyhedron such that every
point on the polyhedron’s surface is visible from
some point on the tour. This problem was first
posed and solved in [NG94]; details even for planar
convex polygons remain unresolved [AW06]. An
aspect tour is a more stringent requirement, so in
general is longer than the optimal external watch-
man route.
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The SS-Divide
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Fix a nonvertex point p on the surface of a convex
polyhedron P of n vertices. Draw shortest paths to
all vertices, breaking ties arbitrarily. Connect the
vertices by geodesics in the angular order of their
shortest paths from p. See Figure 2. This geodesic
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Figure 2: The ss-divide for a cube with respect to a point
3
4 up the middle of the front face.

polygon is called the ss-divide in [DO07], because it
divides the source unfolding from the star unfolding
with respect to p. It partitions the surface into two
halves, neither of which contains any vertices, and
both of which unfold without overlap.

1. Under what conditions are both unfolded
polygons convex?

2. Under what conditions are both unfolded
polygons congruent? (They are in the exam-
ple in Figure 2.)

3. It is established in [AAOS97] that there are
Θ(n4) distinct permutations of the vertices re-
alized by ss-divides for different points p. Can
the shortest ss-divide for a fixed polyhedron
be computed in o(n4) time?

4. Given a set of permutations of vertices cor-
responding to all the ss-divides for some un-
known polyhedron, how difficult is it to con-
struct some polyhedron P that realizes those
permutations?
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Divide-and-Conquer: The Game
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

What is the outcome of the following two-player
combinatorial game? The board is the 3D integer
lattice, and a board position is a set S of unit-
cube lattice cells marked as solid. For example,
these cells might form an orthogonal polyhedron.
The two-player game is impartial: both players can
make the same moves from the same board posi-
tion. In a move, a player chooses an integral co-
ordinate plane that has at least one cube of S to
either side, and removes from S all the cubes in one
half-space bounded by the plane. The player who
reduces S to the empty set (i.e., who cannot choose
a plane with at least one cube on either side) loses.
For which S can the first player force a win?

The problem should first be analyzed in 2D, as it
is always an option for either player to reduce the
problem to 2D at any step. The game generalizes
to arbitrary dimensions.

Update: It was pointed out (by Erik Demaine)
that this game is similar to the classic combinato-
rial game of Chomp [BCH03]. The initial configu-
ration in Chomp is usually a solid box in the integer
lattice. (Chomp is often played in the plane, but
it has been analyzed in all dimensions.) One cor-
ner cube of the box, with minimum coordinates in
all dimensions, is special and considered poisoned.
In a move, a player chooses a solid cube c and re-
moves all cubes whose coordinates are all at least
the corresponding coordinates of c. This operation
corresponds to removing all cubes in a nonempty
octant (or quarter-plane in 2D) that extends to +∞
in all coordinate axes. The player to eat the poi-
soned corner, and thus remove all remaining cubes,
loses. Chomp has been studied extensively; one
simple result is that the box initial configuration is
always a first-player win. Of course, these results
have no direct impact on Divide-and-Conquer.

On the other hand, the Sprague-Grundy theory
of impartial games gives a polynomial-time algo-
rithm for determining the winner from a position
of Divide-and-Conquer. Specifically, a board posi-
tion fitting in a x × y × z box has at most x2y2z2

future board positions; each can be associated with
a “nimber” describing the game-theoretic value of
the position; and the nimber of a position can be
computed from the nimber of all its possible moves
using the “mex rule”. See [Dem01]. Is there a sim-
pler characterization of the winner?
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Blokus
Erik Demaine
MIT
edemaine@mit.edu

What is the computational complexity of the pop-
ular board game, Blokus1? Blokus is made by
Sekkoia Sarl, based in France. In its original form,
four players take turns placing colored polyomi-
noes onto an initially empty 20 × 20 board. Each
player starts with exactly one copy of each n-
omino (edge-to-edge joining of n unit squares) for
all n ∈ {1, 2, 3, 4, 5}. The first move of a player can
place any polyomino in any position that overlaps
the designated square for that player. Every sub-
sequent move must place a polyomino (1) corner-
adjacent to a piece of the same player, (2) not edge-
adjacent to a piece of that player, and (3) disjoint
from other players’ pieces. A player can pass if and
only if no piece can be placed. The game ends when
no player can place any more pieces. A player’s
score is the total number of unit squares placed,
plus small bonuses (+5 if the last piece placed is
the monomino, +15 if all pieces are placed). The
player with the maximum score wins.

This game can be generalized and simplified in
many directions, making it suitable for complex-
ity analysis. First, the number of players can be
reduced to two (and indeed real-life Blokus has

1http://www.blokus.com
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such variations). Second, the board size and piece-
set size must be generalized to be part of the in-
put. Third, the pieces can be chosen to be any de-
sired set of polyominoes (or other polyforms such
as polyiamonds). For example, each player may
simply start with exactly n dominoes.

All such versions of Blokus are certainly in
PSPACE, because the number of moves in poly-
nomial in the input size. Are they PSPACE-
complete?

Weighted-Region Shortest Path
Sada Nayanappa
University of Denver
snarayan@cs.du.edu

Is there a combinatorial solution to the weighted-
region shortest-path problem when there are just
two convex weighted regions? More precisely, sup-
pose that the plane is divided into two regions ac-
cording to a convex polygon P . The interior of
P has weight w > 1, while the exterior of P has
weight 1. Given two points s and t exterior to P ,
the goal is to find the shortest weighted path from
s to t. Can an exact solution be computed in poly-
nomial time? The problem already seems difficult
when P is a triangle.

The general weighted-region shortest-path prob-
lem was considered and solved, up to a desired error
factor of 1+ε, in [MP91]. What is desired here is a
combinatorial algorithm with an exact solution for
this simple special case.
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Optimal Perfect Matching
Jeff Phillips
Duke University
jeffp@cs.duke.edu

Given two point sets A and B in the plane, each
of n points, how efficiently can we find a perfect
matching between A and B and a rigid motion of
A that together minimize the sum of the squared
distances between matched points? We can fac-
tor out translation by aligning the centroids of A
and B; then the rigid motion only needs to rotate.

Two related problems are easy to solve. If no
rigid motions (rotations) are permitted, the prob-
lem reduces to minimum-weight bipartite match-
ing in Kn,n, which the Hungarian Method solves in

O(n3) time. On the other hand, if the matching
is known, finding the rotation is easy. The Iter-
ated Closest Point (ICP) algorithm is a heuristic
for this problem, but it does not guarantee an op-
timal matching.


