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Abstract. Folding an n× n checkerboard pattern from a square of pa-
per that is white on one side and black on the other has been thought
for several years to require a paper square of semiperimeter n2. Indeed,
within a restricted class of foldings that match all previous origami mod-
els of this flavor, one can prove a lower bound of n2 (though a matching
upper bound was not known). We show how to break through this bar-
rier and fold an n×n checkerboard from a paper square of semiperimeter
1
2
n2 + O(n). In particular, our construction strictly beats semiperimeter

n2 for (even) n > 16, and for n = 8, we improve on the best seamless
folding.

1 Introduction

Within the world of origami, the use of two-colored paper (white on one side,
colored on the other) has been widespread for many years, leading to creation of
origami figures in which both colors are used for artistic effect. In the early days
of western origami, two-colored figures tended to have relatively simple patterns
(the penguin [11] has been a perennial favorite), but with the 1993 publication of
John Montroll’s Origami Inside-Out [10], the genre received a significant boost,
as this book displayed much more complex patterns: striped tigers, spotted cows,
and most notably, an 8×8 checkerboard with squares alternating in color—each
folded from a single square sheet with no cuts.

The checkerboard, in fact, has a long history as an origami subject. The
smaller sizes—2 × 2 and 3 × 3—make interesting puzzles, accessible even to
relative beginners at folding. Larger checkerboards, and in particular the 8 × 8
used for chess, are significant challenges to the origami designer. Even so, there
are several solutions in the origami literature. To the best of our knowledge, the
earliest chessboard from a single uncut square was folded by Max Hulme [7] in
1977, but several other designs exist by now [1, 8, 2, 5].

One of the most important attributes of complex origami designs such as
these is their efficiency, which is simply a measure of the size of the finished
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figure relative to the original sheet of paper. For the design of a checkerboard
with unit squares, a measure of the efficiency is the size, in the same units,
of the square (or other shape) of paper from which it is folded. For example,
among 8 × 8 boards, Hulme’s [7] is folded from a 64 × 64 square, Casey’s [1]
and Kirschenbaum’s [8] are folded from 40×40 squares, Montroll’s [10] is folded
from a 36×36 square, and Dureisseix’s [5] and Chen’s [2] are folded from 32×32
squares.

A secondary question, which plays more of an aesthetic role, is whether any
square of the folded board is crossed by a folded edge. The most aesthetically
pleasing checkerboards have seamless squares, in which each square is an unbro-
ken surface. If one or more squares is crossed by a folded edge, we call such a
solution unconstrained. The most common form of unconstrained square has a
folded edge crossing its diagonal.

We may then ask a general question: what is the smallest square of paper
required to fold an n× n checkerboard with unconstrained or seamless squares?

Origamists have experimented with this problem for specific values of n other
than just 8. Figure 1 shows sample foldings for n ∈ {2, 3, 4}. The 2 × 2 and
3 × 3 solutions are elegant and have been plausibly conjectured, although not
yet proved, to be optimal. Foldings become increasingly difficult as n grows.
Although the three examples in Figure 1 are all seamless, in the larger sizes both
seamless and unconstrained square solutions exist, with unconstrained solutions
often turning out to be slightly more efficient. In particular, an unconstrained
4× 4 checkerboard can be folded from an 8× 8 square [5, 7].

Perimeter limit. An interesting property of many examples is that the perimeter
of the square in the folded form follows the edges of the colored/white boundary
(or exterior boundary) in the pattern. Indeed, finding a way to map the boundary
of the square to the colored/white boundary of the surface pattern has been a
powerful and fruitful design approach for checkerboards (as well as many other
two-colored origami figures). However, in many of the folded examples not all
of the boundary of the square is used to create colored/white boundary in the
pattern; there are often small bits of boundary that double back on themselves
or that remain hidden from view as part of the folding design. The significance
of the square perimeter in the construction of checkerboards was first explicitly
identified by Dureisseix [5] in his construction of an unconstrained-square 8× 8
from a 32× 32 square. See also [4, sec. 15.4.2, pp. 238–239] for a discussion.

For an n × n checkerboard of unit squares viewed as a pattern of white
squares on a colored field, the total boundary of the n2/2 white squares (both
white/colored and white/boundary) is 4(n2/2) = 2n2, which leads directly to
the following conjectured relationship between the size of a checkerboard and
the minimum size square (or, in general, any other convex shape) required to
fold it:

Conjecture 1 (Checkerboard Perimeter Limit). The minimum scaling of a convex
polygon required to fold an n×n checkerboard of unit squares has semiperimeter
at least n2.



Fig. 1: Top left: Seamless 2× 2 checkerboard from a 3× 3 square, crease pattern (left)
and folded form (right). Top right: Seamless 3 × 3 checkerboard from a 5 × 5 square.
Bottom: Seamless 4 × 4 checkerboard from a 10 × 10 square. Dashed lines are valley
folds; solid lines are mountain folds.

For folding from a square, the minimum size square would have a side length
of Lmin = dn2/2e. Thus, for example, the paper required to fold an 8×8 checker-
board would have a semiperimeter of 64, and so the minimum size square would
be at least 32 × 32. This conjectured limit would seem to be borne out by the
published examples of 8×8 checkerboards. In particular the designs of Chen and
Dureisseix achieve this bound. Also, while Montroll’s published board is folded
from a 36×36 grid, he has reported in personal communication with the authors
that he has an unpublished design for a checkerboard from a 32 × 32 grid. On
the other hand, the best known seamless 8 × 8 boards [1, 8] use 40 × 40 unit
squares.

Table 1 lists the conjectured lower bounds for n from 2 to 8 for square paper,
along with the best known unconstrained and seamless solutions.

Our results. After a certain amount of experimentation, we found that these
limits seemed plausible, and a challenge to even meet. To our knowledge, the



conjectured best previous example
n limit unconstrained seamless

2 2 3 3
3 5 5 5
4 8 8 10
5 13 ? ?
6 18 ? ?
7 25 ? ?
8 32 32 [2, 5] 40 [1, 8]

Table 1: Checkerboard size, conjectured limit on square size, and sizes of best previous
known unconstrained and seamless solutions.

only general construction for n×n checkerboards for arbitrary n is what follows
from a general construction of two-color patterns [3]. This construction starts
by accordion-folding a paper square into a long rectangular strip, and “flips”
the strip at each color reversal. This method requires a square of side length
2n2 +O(n), or semiperimeter 4n2 +O(n), though it is at least seamless.

An improvement we developed, shown in Figure 2, asymptotically approaches
the conjectured lower bound for unconstrained squares. In this approach, the
perimeter of the checkerboard is mapped precisely to the checkerboard, with a
bit effectively “wasted” in the turns at the end. However, this excess material
increases only linearly with n. For an n× n checkerboard (n even), the amount
of “square diagonal” needed, including turns, can be shown to be 1

2n
2 + 4n− 5,

which leads to a semiperimeter of

n2 + 8n− 10,

which, indeed, asymptotically approaches the limit of n2 for large n (though
exceeds n2 for all n ≥ 2). To our knowledge, this is the first construction for
general n other than the straightforward folding from a rectangular strip that
follows from a general construction of two-color patterns [3].

Based on these examples, algorithms, and many empirical folding tests, the
perimeter conjecture seemed to all of the present authors likely to be the true
limit for an n×n checkerboard. Thus, it was with some surprise that we discov-
ered a new approach to folding a checkerboard that beats the conjectured limit,
at least for sufficiently large n. This paper presents an algorithmic implementa-
tion of this approach and shows that it leads to a semiperimeter asymptotically
shorter than the conjectured limit by a factor of 2:

Theorem 1. A seamless n × n checkerboard can be folded from a square of
semiperimeter 1

2n
2 +O(n).

Our construction strictly beats semiperimeter n2 for all (even) n > 16. Along
the way, we present a seamless checkerboard construction from a rectangle of
semiperimeter 1

2n
2+O(n) but aspect ratio Θ(n). This construction achieves bet-

ter lower-order terms, in particular improving the best seamless 8 × 8 checker-
board folding from 40× 40 to 34 + ε× 34 + ε for any ε > 0.
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Fig. 2: Top: A square is pleated diagonally to realize a strip of squares and half-squares.
Bottom: The diagonal is wound back and forth across the desired checkerboard, with
folded turns at the ends.

Finally, our approach suggests a general technique for folding an arbitrary
two-color pattern. This technique is based on solving a TSP-with-neighborhoods
instance, which has the potential to beat the natural limit determined by perime-
ter length (an Euler tour). However, fully optimizing the construction does not
appear to be easy, and the TSP-with-neighborhoods solution provides only a
lower bound for the construction.

2 Construction

In the full paper, we give two efficient foldings of a checkerboard from paper
of semiperimeter 1

2n
2 + O(n). The first construction uses a rectangle of paper

of aspect ratio Θ(n). The second construction is from a square of paper. We
focus here on details of the square construction, but touch on the rectangle
construction to build intuition and for its smaller lower-order terms.

2.1 Rectangular Paper

Figure 3 shows the idea of our efficient checkerboard folding from a rectangular
piece of paper. We fold the paper into an n×n square with n square tabs sticking
up in alternate rows, and with strips of length n/2 hanging off the sides of each
row. The back sides of the strips are colored, while the n × n square and tabs
are white. Thus folding the strips to cover the n×n square turns it colored, and
folding the white tabs alternating up and down makes a checkerboard pattern.

The effect of this approach is that, instead of tracing the boundary of the
white (or colored) regions with the paper perimeter, we use the paper perimeter
to create strips of color that can visit all the squares in the checkerboard. The
tabs can be constructed from the pleats introduced by strip folding, without
increasing the demand on perimeter.
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Fig. 3: Efficient construction of a checkerboard from rectangular paper.

The folding uses a 1
2n

2 + 2 + ε × 4n + ε rectangle, for a semiperimeter of
1
2n

2 + 4n+ 2 + ε for any desired ε > 0. This bound beats the conjectured limit
for all n > 8. An 8 × 8 checkerboard would use a 34 + ε × 32 + ε rectangle,
better than the 40 × 40 of the best previous seamless checkerboards [1, 8] and
respectably close to the 32× 32 of the best unconstrained checkerboards [2, 5].

2.2 Square Paper
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Fig. 4: Dissection pattern for an n× n square (n even).

Our construction from
a square piece of pa-
per uses the same over-
all approach, but re-
balanced using a dif-
ferent arrangement of
strips shown in Fig-
ure 4. The arrange-
ment is parameterized
by an integer m which
we will set to mini-
mize the aspect ratio
of the paper. Along the
left and right, we place
m strips of width 2
and length n/2, which
folded inward cover the middle of the square from left to right. Along the top
and bottom, we place n/2 strips of width 2 and length n/2 −m, which folded
inward cover the remaining area.

Figure 5 shows the necessary gadgets to fold this pattern of strips. All pleats
fall on the half-integer grid. Each depth-L slot between two strips consumes a
perimeter segment of length 2L+ 2. Turning a corner between a horizontal strip



of length Lw and a vertical strip of length Lh happens at a corner of the paper,
and consumes Lw + Lh + 1 of the vertical perimeter and Lh of the horizontal
perimeter. (This corner gadget can be flipped to consume more horizontal than
vertical perimeter, but we use only the one orientation for simplicity; tuning here
would only improve by an additive constant.)

2L+2

L

Lh

Lw+Lh+1

Lw

Lh

Fig. 5: Left: crease pattern and folded form for a slot (here with L = 2). Right: crease
pattern and folded form for a corner (here with Lw = Lh = 2).

Although the construction is not yet complete, we compute the semiperimeter
used so far. The vertical edge consists of m strips of width 2, m−1 slots of depth
L = n/2, and two contributions from the upper and lower reflex corners with
Lw = n/2 and Lh = n− 2m, giving a total of

V1 = 2m+ (m− 1) (2(n/2) + 2) + 2 (n/2 + (n− 2m) + 1) = mn+ 2n.

The horizontal edge consists of n/2 strips of width 2, n/2 − 1 slots of depth
L = n/2−m, and two contributions from the left and right reflex corners with
Lw = n/2 and Lh = n− 2m, giving a total of

H1 = 2(n/2)+(n/2− 1) (2 (n/2−m) + 2)+2(n−2m) = 1
2n

2−mn+3n−2m−2.

In the middle of the square, we fold an n × n array of universal tabs as
shown in Figure 6. The universal tab creates a tab joined along a desired edge
of the square that it covers, with the additional feature that the crease pattern’s
interface is identical on all four sides, consisting of four pleats, two on each side
of the symmetry line, each pleat 1

2 unit wide. Thus, a universal tab, rotated into
any of the four possible orientations, can be folded from a 5×5 square (outlined
by the heavy dashed line in Figure 6) whose creases will mate with the creases
of adjacent universal tabs, no matter their orientations. Thus we can choose the
orientation of each universal tab independently.

We orient universal tabs covered by horizontal strips to join along a horizontal
edge (top or bottom), and we orient universal tabs covered by vertical strips to
join along a vertical edge (left or right). This choice enables the strips to thread
alternately above and below each universal tab it visits, forming the desired
checkerboard color pattern.
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Fig. 6: (a) Crease pattern for the left-oriented universal tab. (b) Collapse the crease
pattern to this, then spread two layers and fold the flap to the left. (c) Fold two layers
to the center line. (d) Fold the flap back to the right. (e) The completed universal tab
with hinge along the left side. The heavy dashed line in the crease pattern maps to the
boundary of the tab in the last figure.

It may seem wasteful to fold n2 universal tabs when we need only half that
many, but the perimeter consumed by these tabs is only linear in n (in particular,
at most 5n). We also obtain the feature that the same model can form any n×n
bitmap of colored and white pixels: without changing the crease pattern, and just
changing the overlap order, the strips can go either over or under each universal
tab, resulting in the two possible colors. This idea of a universal pixel display
was introduced to us by Masashi Tamaka4 who designed a 4× 4 model.

We can optimize the construction by re-using the pleats from the slots and
reflex corners in the folding of the tabs. Each slot creates at least two pleats
on either side of the slot, with the important property that the pleats have the
correct parity to join up with the pleats in the universal tabs. Figure 7 shows
where additional pleats must be added; each heavy dashed line indicates a single
pair of pleats at that location, contributing two units to the perimeter along
that side. Looking first at the vertical direction, we see that each of the m strips
requires four additional pleats running down the middle of the strip, adding 4m
to the vertical dimension. There are also 4(n/2 −m) horizontal pleats in each
of the sections above and below the horizontal strips, for a total of V2 = 2n
units added to the vertical edge length. In the other dimension, we must add
four vertical pleats running down the middle of each of the n/2 strips, plus two
pleats along the left and right boundary, for a total of H2 = 2n+ 2 units added
to the horizontal edge length.

4 Personal communication, June 2009.
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Fig. 7: Where pleats must be added to create uni-
versal tabs. Each heavy dashed line indicates a
pair of pleats added at that location.

One loose end to tie
up: each universal tab re-
quires exactly four pleats
in each direction, two on
each side of the vertical and
horizontal symmetry lines.
For the sets of pleats that
come from slots or reflex
corners, there will in general
be more than four pleats
running in one, the other, or
both directions. This issue
does not create any prob-
lems: we can put into place
all but two pleats, then
overlay the universal tab
crease pattern on the “sand-
wich” of layers to complete
the tab.

Therefore the entire crease pattern requires a rectangle of size

V = V1 + V2 = mn+ 2n+ 4m
H = H1 +H2 = 1

2n
2 −mn+ 3n− 2m− 2 + 2n+ 2

= 1
2n

2 −mn+ 5n− 2m

Setting V = H, we obtain

m =
n(n+ 6)
4(n+ 3)

= 1
4n+ 3

4 −O(1/n)

But m must be an integer, so we use either m = b 14 (n+ 3)c or m = d 14 (n+ 3)e.
In the first case, H dominates, while in the second case, V dominates. The best
construction is the minimum of these two options, which (for n even) works out
to a side length of

1
4n

2 + 4n+ 4− 5
2 (n mod 4).

The resulting semiperimeter is

1
2n

2 + 8n+ 8− 5(n mod 4),

which beats n2 for all (even) n > 16. For n = 8, this construction uses a 52 ×
52 square, worse than our rectangle construction, but for n > 16 the square
construction wins.

3 More General Patterns

Our construction can be generalized to arbitrary two-color patterns. We fold
the perimeter of the sheet into strips of lengths sufficient to reach every colored



region of the final design. In case the pleats formed during the strip folding
suffice to generate the tabs, we are done. Otherwise, we must make additional
pleats first, before folding the strips.

There are multiple new ingredients that would be necessary for an optimal
solution here. One issue is that these initial pleats and the strips together de-
termine the width of the strips. Another is that with an irregular design, it may
be necessary to run a complex optimization procedure to determine an optimal
solution. A first attempt at formulating this optimization might be to notice
that every colored region in the design must be reached by a strip, and therefore
also by a point on the perimeter of the original sheet. Thus, in a solution, the
perimeter will hit every colored region. In other words, the perimeter will form
a solution to an instance of TSP with neighborhoods (also known as one-of-a-set
TSP and group TSP).

However, finding such a tour will not be enough in general. Namely, colored
regions of the folded design must be covered by the strips, not just touched by
them. Thus larger colored regions in the design may require special wider strips,
or multiple strips. We leave a more rigorous formulation of this optimization
problem as a topic for future research.
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