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Abstract. Clobber is a new two-player board game. In this paper, we
introduce the 1-player variant Solitaire Clobber where the goal is to re-
move as many stones as possible from the board by alternating white
and black moves. We show that a checkerboard configuration on a single
row (or single column) can be reduced to about n/4 stones. For boards
with at least two rows and columns, we show that a checkerboard con-
figuration can be reduced to a single stone if and only if the number of
stones is not a multiple of three, and otherwise it can be reduced to two
stones. But in general it is NP-complete to decide whether an arbitrary
Clobber configuration can be reduced to a single stone.

1 Introduction

Clobber is a new two-player combinatorial board game with complete informa-
tion, recently introduced by Albert, Grossman, and Nowakowski (see [5]). It is
played with black and white stones occupying some subset of the squares of
an n × m checkerboard. The two players, White and Black, move alternately
by picking up one of their own stones and clobbering an opponent’s stone on a
horizontally or vertically adjacent square. The clobbered stone is removed from
the board and replaced by the stone that was moved. The game ends when one
player, on their turn, is unable to move, and then that player loses.

We say a stone is matching if it has the same color as the square it occupies on
the underlying checkerboard; otherwise it is clashing. In a checkerboard configu-
ration, all stones are matching, i.e., the white stones occupy white squares and
the black stones occupy black squares. And in a rectangular configuration, the
stones occupy exactly the squares of some rectangular region on the board. Usu-
ally, Clobber starts from a rectangular checkerboard configuration, and White
moves first (if the total number of stones is odd we assume that it is White who
has one stone less than Black).

At the recent Dagstuhl Seminar on Algorithmic Combinatorial Game Theory
[1], the game was first introduced to a broader audience. Tomáš Tichý from
Prague won the first Clobber tournament, played on a 5× 6 board, beating his
supervisor Jǐŕı Sgall in the finals. Not much is known about Clobber strategies,
even for small boards, and the computation of CGT game values is also only in
its preliminary stages.



In this paper we introduce Solitaire Clobber, where a single player (or two
cooperative players) tries to remove as many stones as possible from the board by
alternating white and black moves. If the configuration ends up with k immovable
stones, we say that the initial board configuration is reduced to k stones, or k-
reduced. Obviously, 1-reducibility can only be possible if half of the stones are
white (rounded down), and half of the stones are black (rounded up). But even
then it might not be possible.

We prove the following necessary condition for a Clobber position to be 1-
reducible: The number of stones plus the number of clashing stones cannot be
a multiple of three. Surprisingly, this condition is also sufficient for truly two-
dimensional rectangular checkerboard configurations (i.e., with at least two rows
and two columns). And if the condition is not true, then the board is 2-reducible
(with the last two stones separated by a single empty square), which is the next-
best possible. A similar 2-coloring argument can be used to solve Question 3 of
the 34th International Mathematical Olympiad 1993 [3] which asked to prove
that the peg solitaire game (a peg can jump over an adjacent peg onto an empty
square, and the jumped over peg is removed) on an n × n grid can be reduced
to a single peg when n ≡ 1 mod 3. However, in general, we show that it is
NP-complete to decide whether an arbitrary non-rectangular non-checkerboard
configuration is 1-reducible.

If we play one-dimensional Solitaire Clobber (i.e., the board consists of a sin-
gle row of stones) reducibility is more difficult. We show that the checkerboard
configuration can be reduced to dn/4e+ {1 if n ≡ 3 (mod 4)} stones, no matter
who moves first, and that this bound is best possible even if we do not have to al-
ternate between white and black moves. This result was obtained independently
by Grossman [2].

This paper is organized as follows. In Section 2, we analyze the reducibility
of checkerboard configurations on a line. In Section 3, we study reducibility of
two-dimensional rectangular checkerboard configurations. And in Section 4 we
show that deciding 1-reducibility is NP-complete in general. We conclude with
some open problems in Section 5.

2 One-Dimensional Solitaire Clobber

In this section we study Solitaire Clobber played on a board consisting of a single
row of stones. Let An denote the checkerboard configuration, i.e., an alternating
sequence of white and black stones. By symmetry, we can assume throughout this
section that An always starts with a black stone, so we have An = •◦•◦ · · ·. We
first show an upper bound on the k-reducibility of checkerboard configurations.

Theorem 1. However, in general, we show that it is NP-complete to decide
whether an arbitrary non-rectangular non-checkerboard configuration is 1-reducible.
If we play one-dimensional Solitaire Clobber (i.e., the board consists of a

single row of stones) reducibility is more difficult. We show that the checkerboard
configuration can be reduced to dn/4e+ {1 if n ≡ 3 (mod 4)} stones, no matter



who moves first, and that this bound is best possible even if we do not have to
alternate between white and black moves. This result was obtained independently
by Grossman [2].
For n ≥ 1, the configuration An can be reduced to dn/4e+{1 if n ≡ 3 (mod 4)}

stones by an alternating sequence of moves, no matter who is to move first.

Proof. Split the configuration An into dn/4e substrings, all but possibly one of
length four. Each substring of length one, two, or four can be reduced to one
stone by alternating moves, no matter which color moves first. And a substring
of size three can be reduced to two stones by one move, no matter which color
moves first. ut

In this move sequence, we end up with one isolated stone somewhere in the
middle of each block of four consecutive stones. One might wonder whether a
more clever strategy could end up with one stone at the end of each subblock,
and then we could clobber one more stone in each pair of adjacent stones from
the subblocks. Unfortunately, this is not possible, as shown by the following
matching lower bound. The lower bound holds even if we are not forced to
alternate between white and black moves. We give a simple proof for the theorem
due to Grossman [2].

Theorem 2. Let n ≥ 1. Even if we are not restricted to alternating white
and black moves, the configuration An cannot be reduced to fewer than dn/4e+
{1 if n ≡ 3 (mod 4)} stones.

Proof. First, it is not possible to reduce A3 or A5 to a single stone. Second, each
stone in the final configuration comes from some contiguous substring of stones
in the initial configuration. But each of these substrings can have only one, two,
or four stones. Thus, there are at least dn/4e stones left at the end, and even
one more if n ≡ 3 (mod 4). ut

Somewhat surprisingly, the tight bound of Theorems 1 and 2 is not monotone
in n, the number of stones in the initial configuration. See Table 1.

3 Rectangular Solitaire Clobber

In this section we study reducibility of rectangular checkerboard configurations
with at least two rows and two columns. We first show a general lower bound
on the reducibility that holds for arbitrary Clobber configurations. For a config-
uration C, we denote the quantity “number of stones plus number of clashing
stones” by δ(C).

As it turns out, δ(C) (mod 3) actually divides all clobber configurations
into three equivalence classes. Any configuration will stay in the same equiv-
alence class, after any number of moves. Because one of the three equivalence
classes (with δ(C) ≡ 0 (mod 3)) does not contain configurations with a single
stone, all configurations in this equivalence class are not 1-reducible. As in the
1-dimensional lower bound of Theorem 2, this is true even if we allow arbitrary
non-alternating move sequences.



Configuration Reducibility

A1 • 1
A2 •◦ 1
A3 •◦• 2
A4 •◦•◦ 1
A5 •◦•◦• 2
A6 •◦•◦•◦ 2
A7 •◦•◦•◦• 3
A8 •◦•◦•◦•◦ 2
A9 •◦•◦•◦•◦• 3
A10 •◦•◦•◦•◦•◦ 3
A11 •◦•◦•◦•◦•◦• 4
A12 •◦•◦•◦•◦•◦•◦ 3

Table 1. Reducibility of one-dimensional checkerboard Clobber configurations.

Theorem 3. For a configuration C, δ(C) (mod 3) does not change after an
arbitrary move sequence.

Proof. If we move a matching stone in C then δ drops by one because we clobber
another matching stone, and δ rises by one because our stone becomes clashing,
so δ actually does not change in this move. If we move a clashing stone then δ
drops by two because we clobber another clashing stone, and δ drops by another
one because our stone becomes matching, resulting in a total drop of three for
the move. ut

Corollary 1. A configuration C with δ(C) ≡ 0 (mod 3) is not 1-reducible.

Proof. A single stone can only have δ equal to one or two (depending on whether
it is a matching or clashing stone). Thus, by the previous theorem, configurations
C with δ(C) ≡ 0 (mod 3) are not 1-reducible. ut

The rest of this section is devoted to a proof that this bound is actually tight
for rectangular checkerboard configurations:

Theorem 4. For n,m ≥ 2, a rectangular checkerboard configuration with n rows
and m columns is 2-reducible if nm ≡ 0 (mod 3), and 1-reducible otherwise.

We present an algorithm that computes a sequence of moves that reduces
the given checkerboard configuration to one or two stones as appropriate.

We distinguish cases in a somewhat complicated way. There are finitely many
cases with 2 ≤ n,m ≤ 6; these cases can be verified trivially, as shown in
Appendix A. The remaining cases have at least one dimension with at least
seven stones; by symmetry, we ensure that the configuration has at least seven
columns. These cases we distinguish based on the parities of n and m:

• Case EE: Even number of rows and columns [Section 3.2]



• Case OE: Odd number of rows, even number of columns [Section 3.3]

• Case EO: Even number of rows, odd number of columns [Section 3.4]

• Case OO: Odd number of rows and columns [Section 3.4]

Cases OE and EO are symmetric for configurations with at least seven rows
and at least seven columns. By convention, we handle such situations in Case
EO. But when one dimension is smaller than seven, we require that dimension
to be rows, forcing us into Case OE or Case EO and breaking the symmetry.
In fact, we solve these instances of Case OE by rotating the board and solving
the simpler cases E3 and E5 (even number of rows, and three or five columns,
respectively).

Section 3.1 gives an overview of our general approach. Section 3.2 considers
Case EE, which serves as a representative example of the procedure. Section
3.3 extends this reduction to Case OE (when the number of rows is less than
seven), which is also straightforward. Finally, Section 3.4 considers the remaining
more-tedious cases in which the number of columns is odd.

3.1 General Approach

In each case, we follow the same basic strategy. We eliminate the stones on the
board from top to bottom, two rows at a time. More precisely, each step reduces
the topmost two rows down to O(1) stones (usually one or two) arranged in a
fixed pattern that touches the rest of the configuration through the bottom row.

There are usually four types of steps, repeated in the order

(1), (2), (3), (4)
︸ ︷︷ ︸

, (2), (3), (4)
︸ ︷︷ ︸

, (2), (3), (4)
︸ ︷︷ ︸

, . . . .

Step (1) leaves a small remainder of stones from the top two rows in a fixed
pattern. Step (2) absorbs this remainder and the next two rows, in total reducing
the top four rows down to a different pattern of remainder stones. Step (3) leaves
yet another pattern of remainder stones from the top six rows. Finally, step (4)
leaves the same pattern of remainder stones from step (1), so the sequence can
repeat (2), (3), (4), (2), (3), (4), . . . .

In some simple cases, steps (1) and (2) leave the same pattern of remainder
stones. Then just two types of steps suffice, repeating in the order (1), (2), (2), (2), . . ..
In other cases, three steps suffice.

In any case, the step sequence may terminate with any type of step. Thus,
we must also show how to reduce each pattern of remainder stones down to one
or two stones as appropriate; when needed, these final reductions are enclosed
by parentheses because they are only used at the very end. In addition, if the
total number of rows is odd, the final step involves three rows instead of two
rows, and must be treated specially.

In the description below, a single move is denoted by → . But we often do not
show long move sequences completely. Instead, we usually ‘jump’ several moves
at a time, denoted by

a
→ or →

a
, depending on whether White or Black moves

first, where a denotes the number of moves we jump.



3.2 Case EE: Even Number of Rows and Columns

We begin with the case in which both n and m are even. This case is easier than
the other cases: the details are fairly clean. It serves as a representative example
of the general approach.

Because the number of columns is even and at least seven, it must be at
least eight. Every step begins by reducing the two involved rows down to a
small number of columns. First, we clobber a few stones to create the following
configuration in which the lower row has two more stones than the upper row,
one on each side:

•◦
◦•· · ·

•◦
◦•

3
→ •◦
◦•· · ·

. .
◦ . →

3

. .

.•· · ·
. .
◦ .

Then we repeatedly apply the following reduction, in each step removing six
columns, three on each side:

.•◦•
•◦•◦· · ·

◦•◦ .
•◦•◦

4
→

.◦ .•.••◦· · ·
◦ .• .
•◦◦ .

4
→

. . .•. .◦◦· · ·
◦ . . .
•• . .

2
→

. . . .

. . .◦· · ·
. . . .
• . . .

We stop applying this reduction when the bottom row has just six, eight, or
ten columns left, and the top row has four, six, or eight columns, depending on
whether m ≡ 2, 1, or 0 (mod 3), respectively.

The resulting two-row configuration has either a black stone in the lower-left

and a white stone in the lower-right
(
.•
•◦ · · ·

◦ .
•◦

)

, or vice versa
(
.◦
◦• · · ·

• .
◦•

)

. We

show reductions for the former case; the latter case is symmetric.

Case 1: m ≡ 2 (mod 3)

(1)
.•◦•◦ .
•◦•◦•◦

3
→

. . .•◦ ..◦•◦•◦ →
3

. . . . . .

.◦•◦• .
2
→

. . . . . .

. .◦• . .

(

→
. . . . . .
. . .◦ . .

)
1

(2)
. .◦• . ..•◦•◦ .
•◦•◦•◦

2
→

. .◦ . . ..•◦• . .
•◦•◦•◦

2
→

. .◦ . . .. .•• . .
•◦•◦◦ .

2
→

. . . . . .

. .◦• . ..••◦◦ .
2
→

. . . . . .

. . . . . .

.•◦•◦ .
3
→

. . . . . .

. . . . . .

. .◦ . . .

(3)
. .◦ . . ..•◦•◦ .
•◦•◦•◦

→
2

. .◦ . . ..•◦•◦ ..••◦◦ .
→
2

. . . . . .

. .◦•◦ ..••◦◦ .
→
2

. . . . . .

. . . .• ..•◦◦◦ .
→
1

. . . . . .

. . . . . .

.•◦◦• .
2
→

. . . . . .

. . . . . .

.◦ .• . .

(4)
.◦ .• . ..•◦•◦ .
•◦•◦•◦

2
→

.◦ . . . ..• .•◦ .
•◦•◦•◦

2
→

. . . . . .

.◦ . .• .
•◦•◦•◦

2
→

. . . . . .

.◦ . .• ..••◦◦ .
2
→

. . . . . .

. . . . . .

.◦•◦• .
2
→

. . . . . .

. . . . . .

. .◦• . .

(

→
. . . . . .
. . . . . .
. . .◦ . .

)

Case 2: m ≡ 1 (mod 3)

(1) First we clear another six columns and obtain
.•◦•◦•◦ .
•◦•◦•◦•◦

12
→

. . . . . . . .

. . .◦• . . . →
. . . . . . . .
. . . .◦ . . .

(2)
. . . .◦ . . ..•◦•◦•◦ .
•◦•◦•◦•◦

→
3

. . . .◦ . . ..•◦•◦ . . .
•◦•◦•◦• .

3
→

. . . .◦ . . .. . .•◦ . . ..◦•◦•◦• .
→
2

. . . . . . . .

. . . .◦ . . ..◦•◦•◦• .
→
2

. . . . . . . .

. . . . . . . .

.◦•◦◦• . .
→
4

. . . . . . . .

. . . . . . . .

. . .◦ . . . .

(3)
. . .◦ . . . ..•◦•◦•◦ .
•◦•◦•◦•◦

→
3

. . .◦ . . . ..•◦•◦ . . .
•◦•◦•◦• .

2
→

. . .◦ . . . ..◦ .•◦ . . ..••◦•◦• .
2
→

. . .◦ . . . .. . .•◦ . . ..◦•◦•• . .
2
→

. . .◦ . . . .. . .• . . . ..◦•◦• . . .
4
→

. . . . . . . .

. . . . . . . .

.◦ .• . . . .

(4)
.◦ .• . . . ..•◦•◦•◦ .
•◦•◦•◦•◦

2
→

.◦ .• . . . ..•◦•◦ .• .
•◦•◦•◦◦ .

4
→

. . .• . . . .. .◦•◦ . . ..◦•◦•◦• .
2
→

. . . . . . . .

. . .•◦ . . ..◦•◦•◦• .
4
→

. . . . . . . .

. . . .◦ . . .. . .◦•• . .
3
→

. . . . . . . .

. . . . . . . .

. . . .◦ . . .

1 Parenthetical moves are made only if this is the final step.



Case 3: m ≡ 0 (mod 3)

(1) First we clear another six columns and obtain
.•◦•◦•◦•◦ .
•◦•◦•◦•◦•◦

12
→

. . . .◦• . . . .. . .◦•◦• . . .
4
→

. . . . . . . . . .

. . .◦ .• . . . .

(2)
. . .◦ .• . . . ..•◦•◦•◦•◦ .
•◦•◦•◦•◦•◦

6
→

. . .◦ .• . . . .. . .•◦•◦ . . ..◦•◦•◦•◦• .
4
→

. . .◦ . . . . . .. . .•• .◦ . . .. .◦◦• .•◦• .
4
→

. . . . . . . . . .

. . . . . . . . . .

. .◦•• .◦◦• .
4
→

. . . . . . . . . .

. . . . . . . . . .

. . . .◦ .• . . .

(3)
. . . .◦ .• . . ..•◦•◦•◦•◦ .
•◦•◦•◦•◦•◦

6
→

. . . .◦ .• . . .. . .•◦•◦ . . ..◦•◦•◦•◦• .
4
→

. . . . . .• . . .. . . .◦•◦ . . .. .◦◦•◦•• . .
4
→

. . . . . . . . . .

. . . . . .◦ . . .. .◦• .◦•• . .
4
→

. . . . . . . . . .

. . . . . . . . . .

. . .◦ .• . . . .

3.3 Case OE: Odd Number of Rows, Even Number of Columns

To extend Case EE from the previous section to handle an odd number of rows,
we could provide extra termination cases with three instead of two rows for any
step. Because these steps are always final, they may produce an arbitrary result
configuration with one or two stones.

However, as observed before, we only need to consider configurations with
three or five rows in Case OE (any other configuration can be rotated into a Case
EO). It turns out that we can describe their reduction more easily (and conform
with all other cases) by first rotating them. Thus, the following reductions use
the general approach from Section 3.1 to reduce configurations with three or five
columns and an even number of rows.

Three Columns:

(1) •◦•
◦•◦

2
→

. .•
•◦◦

2
→

. . .
◦ .•

(2)
◦ .•
•◦•
◦•◦

2
→
◦ . .
• .•
◦•◦

2
→

. . .
◦ .•
• .◦

2
→

. . .

. . .
◦ .•

Five Columns:

(1) •◦•◦•
◦•◦•◦

2
→

.••◦•.◦◦•◦
2
→

.••• ..◦◦◦ .
2
→

.◦• . .. .◦• .
3
→

. . . . .

. .◦ . .

(2)
. .◦ . .
•◦•◦•
◦•◦•◦

→
4

. .◦ . ..••• ..◦◦◦ .
→
3

. . . . .

.•◦ . ..◦• . .
3
→

. . . . .

. . . . .

.◦ . . .

(3)
.◦ . . .
•◦•◦•
◦•◦•◦

→
4

.◦ . . ..••• ..◦◦◦ .
→
3

. . . . .

.◦ .• ..• .◦ .
2
→

. . . . .

. . . . .

.◦ .• .

(4)
.◦ .• .
•◦•◦•
◦•◦•◦

4
→

.◦ . . ..•••◦.◦◦• .
2
→

. . . . .

.• .•◦.◦◦• .
2
→

. . . . .

. . .◦ ..•◦• .
3
→

. . . . .

. . . . .

. .◦ . .

3.4 Cases EO and OO: Odd Number of Columns

Finally we consider the case of an even or odd number of rows and an odd
number of columns. For each step, we give two variants, one reduction from
two rows and one reduction from three rows. The latter case is applied only
at the end of the reduction, so it does not need to end with the same pattern
of remainder stones. Also, for an odd number of rows, the initial symmetrical
removal of columns from both ends of the rows in a step is done first for the
final three-row step, before any other reduction; this order is necessary because
the three-row symmetrical removal can start only with a White move.

The number of columns is at least seven. Every step begins by reducing the
two or three involved rows down to a small number of columns.



Two Rows. First, we clobber a few stones to create the following configuration
in which the upper row has one more stone on the left side than the lower row,
and the lower row has one more stone on the right side than the upper row:

•◦
◦•· · ·

◦•
•◦

3
→

.◦. . · · ·◦••◦ →
3

.◦. . · · ·
. .
• .

Similar to Case EE, we repeatedly apply the following reduction, in each step
removing six columns, three on each side:

◦•◦•.◦•◦· · ·
•◦• .
◦•◦•

3
→ ◦•◦•.◦•◦· · ·

• . . .
◦•◦ . →

3

.•◦•. . .◦· · ·
• . . .
◦•◦ .

2
→

. .••. . .◦· · ·
• . . .
◦◦ . .

4
→

. . .•. . . . · · ·
. . . .
◦ . . .

We stop applying this reduction when the total number of columns is just five,
seven, or nine, so each row has four, six, or eight occupied columns, depending
on whether m ≡ 1, 0, or 2 (mod 3), respectively.

The resulting two-row configuration has either (a) a black stone in the upper-
left and a white stone in the lower-right, •◦•.•◦ · · ·

•◦ .
◦•◦, or (b) vice versa,

◦•◦.◦• · · ·
◦• .
•◦•.

We will show reductions from both configurations. It turns out that configuration
(a) is more difficult to handle because it is not always possible to end up with
a single stone (or pair of stones) on the bottom row. In that case, we will make
the last move parenthetical, omitting it whenever this step is not the last.

Sometimes we also need to start from the configuration (a′)
.◦•
◦•◦ · · ·

•◦•
◦• . or (b

′)
.•◦
•◦• · · ·

◦•◦
•◦ . which are the mirror images of the configurations (a) and (b). These

starting points can be achieved by applying the reductions above upside-down.

Three rows. First, we clobber a few stones to create the following configuration:

•◦
◦•
•◦
· · ·
◦•
•◦
◦•

8
→

.•. .

.◦
· · ·
◦ .. .
• .

Then, we reduce long rows by four columns at a time (not six as in the two-row
reductions):

••◦.◦•
◦•◦
· · ·
◦•◦
•◦ .
◦••

3
→

.•◦. .•.◦◦
· · ·
◦•◦
•◦ .
◦••

→
3

. .•. . .

. .◦
· · ·
◦•◦
•◦ .
◦••

3
→

. .•. . .

. .◦
· · ·
◦◦ .
• . .
◦• .

→
3

. .•. . .

. .◦
· · ·
◦ . .. . .
• . .

Note that we can also obtain the symmetric configuration
. .◦. . .
. .•
· · ·
• . .. . .
◦ . .

. Because

we cannot perform this reduction with Black starting, we must perform this
reduction at the very beginning of the entire algorithm, before any other steps.

We stop this reduction when we have reached one of the three configurations
••◦.◦ .
◦••

or
••◦•◦.◦•◦ .
◦•◦••

or
••◦•◦•◦.◦•◦•◦ .
◦•◦•◦••

. We are not able to reduce the last configuration further

because in some cases it isolates the remaining stones from the rows above.

Reductions. Now we show how to reduce the configurations described above
following the general approach from Section 3.1. For the case of three rows, we
only need to consider the following two reductions in step (1):

(1)
••◦.◦ .
◦••

2
→
••◦.◦ ..• .

3
→

.• .. . .

.◦ .

(1′)
••◦•◦.◦•◦ .
◦•◦••

2
→

.• .•◦.◦•◦ .
◦•◦••

2
→

.• .◦ ..◦ .• .
◦•◦••

2
→

. . . . .

.• .◦ .
◦•◦••

2
→

. . . . .

. . .◦ ..•◦••
3
→

. . . . .

. . . . .

.• .◦ .



Case 1: m ≡ 1 (mod 3)
The initial configuration is of type (a) for m = 13+12k columns and of type

(b) for m = 7 + 12k columns, for k ≥ 0.

(1a) •◦•◦ ..•◦•◦
2
→ •◦•◦ .. .•◦ .

2
→

.•◦ . .. .•◦ .
2
→

. .• . .. .◦ . .

(

→
. .◦ . .. . . . .

)

(1b) ◦•◦• ..◦•◦•
2
→

.◦• . ..◦•◦•
2
→

. .◦ . ..◦•• .
3
→

. . . . .

. .◦ . .

(2a)
. .• . .. .◦ . .
•◦•◦ ..•◦•◦

2
→

. .• . .. .◦ . ..••◦ ..◦ .•◦

2
→

. . . . .

. .• . ..◦•◦ .. . .•◦

2
→

. . . . .

. . . . .

. .•◦ .. . .•◦

2
→

. . . . .

. . . . .

. . .• .. . .◦ .

(

→
. . . . .
. . . . .
. . .◦ .. . . . .

)

. . .• . . .. . .◦ . . .
••◦•◦•◦.◦•◦•◦ .
◦•◦•◦••

4
→

. . .• . . .. . .◦ . . .. . .•◦•◦.••◦•◦ ..◦◦•◦••

4
→

. . .• . . .. . .◦ . . .. . .•◦•◦. .•◦•◦ .. . . .◦••

4
→

. . .• . . .. . .◦ . . .. . .•◦◦ .. .•◦•• .. . . . . . .

4
→

. . . . . . .

. . .• . . .. . .•◦ . .. . .•◦ . .. . . . . . .

4
→

. . . . . . .

. . . . . . .

. . . . . . .

. . .• . . .. . . . . . .

(2b)
. .◦ . .
◦•◦• ..◦•◦•

→
3

. . . . .
◦•◦ . ..◦•• .

2
→

. . . . .
◦• . . ..◦• . .

3
→

. . . . .

. . . . .

.◦ . . .
. .◦ . .
••◦•◦.◦•◦ .
◦•◦••

→
4

. .◦ . .
••◦•◦.• .◦ ..◦ .• .

→
4

. .◦ . .
••◦• ..◦ . . .. . . . .

5
→

. . . . .

. .• . .. . . . .

. . . . .

(3a)
. . .• .. . .◦ .
•◦•◦ ..•◦•◦

2
→

. . .• .. . .◦ ..•◦◦ ..• .•◦

2
→

. . . . .

. . .• ..◦ .◦ ..• .•◦

2
→

. . . . .

. . . . .

. . .• ..◦ .•◦

2
→

. . . . .

. . . . .

. . . . .

.◦ .• .
. . . .• . .. . . .◦ . .
••◦•◦•◦.◦•◦•◦ .
◦•◦•◦••

4
→

. . . .• . .. . . .◦ . .. . .•◦•◦.••◦•◦ ..◦◦•◦••

4
→

. . . .• . .. . . .◦ . .. . .•◦•◦. .•◦•◦ .. . . .◦••

4
→

. . . .• . .. . . .◦ . .. . .•◦◦ .. .•◦•• .. . . . . . .

4
→

. . . . . . .

. . . .• . .. . .•◦ . .. . .•◦ . .. . . . . . .

4
→

. . . . . . .

. . . . . . .

. . .• . . .. . . . . . .

. . . . . . .

(3b)
.◦ . . .
◦•◦• ..◦•◦•

→
3

. . . . .
◦• . . ..◦•◦•

2
→

. . . . .

.◦ . . ..• .◦•
2
→

. . . . .

. . . . .

.◦ .• .
.◦ . . .
••◦•◦.◦•◦ .
◦•◦••

→
4

.◦ . . .
••◦•◦.• .◦ ..◦ .• .

→
4

.◦ . . .
••◦• ..◦ . . .. . . . .

→
5

. . . . .

.• . . .. . . . .

. . . . .

(4a)
.◦ .• .
•◦•◦ ..•◦•◦

2
→

.◦ .• ..••◦ ..•◦◦ .
2
→

. . . . .

.◦•• ..•◦◦ .
2
→

. . . . .

. .◦• .. .•◦ .
2
→

. . . . .

. .• . .. .◦ . .

(

→
. . . . .
. .◦ . .. . . . .

)

◦ .•
••◦.◦ .
◦••

2
→

. . .
◦••.◦ .
◦••

2
→

. . .

.• ..◦ .
◦••

3
→

. . .

.• .. . .

.◦ .

(4b′) We must reduce rows seven and eight starting with the mirrored standard
initial configuration.

.◦ .• ..•◦•◦
•◦•◦ .

2
→

.◦ . . ..•◦• .
•◦•◦ .

2
→

.◦ . . ..• .• ..•◦◦ .
2
→

. . . . .

.◦ . . ..•◦• .
3
→

. . . . .

. . . . .

. .◦ . .
.◦ .• .
••◦•◦.◦•◦ .
◦•◦••

4
→

.◦ .• .
••◦•◦.• .◦ ..◦ .• .

4
→

.◦ .• .
••◦• ..◦ . . .. . . . .

5
→

. . . . .

.◦ .• .. . . . .

. . . . .

Case 2: m ≡ 0 (mod 3)
The initial configuration is of type (a) for m = 15+12k columns and of type

(b) for m = 9 + 12k columns, for k ≥ 0.

(1a) •◦•◦•◦ ..•◦•◦•◦
2
→

.•◦ .•◦ ..•◦•◦•◦
2
→

.◦ . .•◦ ..•• .◦•◦
2
→

.◦ . . .• ..•• .◦◦ .
4
→

. . . . . . .

. .◦ .• . .

(1b) ◦•◦•◦• ..◦•◦•◦•
2
→

.◦• .◦• ..◦•◦•◦•
2
→

.• . .◦• ..◦◦ .•◦•
2
→

.• . . .◦ ..◦◦ .•• .
4
→

. . . . . . .

. .• .◦ . .



(2a)
. .◦ .• . .
•◦•◦•◦ ..•◦•◦•◦

2
→

. .◦ .• . ..••◦◦ . ..•◦•◦•◦
2
→

. . . .• . .. .◦ .◦ . .. .••◦•◦
2
→

. . . . . . .

. . . .• . .. .◦•◦•◦
2
→

. . . . . . .

. . . .• . .. .◦ .•◦ .
2
→

. . . . . . .

. . . . . . .

. .◦ .• . .

For three rows, this case is identical to Case 1(4b).

(2b)
. .• .◦ . .
◦•◦•◦• ..◦•◦•◦•

2
→

. . . .◦ . ..◦••◦• ..◦•◦•◦•
2
→

. . . .◦ . ..◦• .•• ..◦◦ .•◦•
2
→

. . . . . . .

.• . .◦• ..◦◦ .•◦•
6
→

. . . . . . .

. . . . . . .

. .• .◦ . .

For three rows, this case is symmetric to (4a) in Case 1 (with the mirrored
initial configuration).

Case 3: m ≡ 2 (mod 3)
The initial configuration is of type (a) for m = 17+12k columns and of type

(b) for m = 11 + 12k columns, for k ≥ 0.

(1a) •◦•◦•◦•◦ ..•◦•◦•◦•◦
4
→

.••◦•◦ .• ..◦ .•◦•◦◦ .
4
→

. .◦••◦ . . .. . . .◦•◦• .
4
→

. . .◦• . . . .. . . .◦• . . .
3
→

. . . . . . . . .

. . . .◦ . . . .

(1b) ◦•◦•◦•◦• ..◦•◦•◦•◦•
4
→

.◦◦•◦• .◦ ..• .◦•◦•• .
4
→

. .••◦• . . .. . .◦•◦◦ . .
4
→

. . .• . . . . .. . .◦•◦ . . .
3
→

. . . . . . . . .

. . .◦ . . . . .

(2a)
. . . .◦ . . . .
•◦•◦•◦•◦ ..•◦•◦•◦•◦

→
4

. . . . . . . . .
•◦•◦◦◦ . . ..•◦•◦•◦• .

→
4

. . . . . . . . .
•◦•◦◦◦ . . ..◦ .• .• . . .

→
4

. . . . . . . . .

. .◦◦◦• . . .. . .• . . . . .

(

→
4

. . . . . . . . .

. . . .◦ . . . .. . . . . . . . .

)

. . .◦ . . .
••◦•◦•◦.◦•◦•◦ .
◦•◦•◦••

→
4

. . .◦ . . ..• .•◦•◦.◦•◦•◦ .
◦•• . .◦•

→
4

. . .◦ . . .. . .•◦•◦.◦•◦•◦ .. .• . .• .
→
4

. . .◦ . . .. . .•◦◦ .. .•◦•• .. . . . . . .
→
4

. . . . . . .

. . . .◦ . .. .•◦• . .. . . . . . .
→
3

. . . . . . .

. . . . . . .

. . . .• . .. . . . . . .

(2b)
. . .◦ . . . . .
◦•◦•◦•◦• ..◦•◦•◦•◦•

→
6

. . .◦ . . . . ..•◦•◦• . . .. . .◦•◦•◦ .
→
3

. . .◦ . . . . .. .••◦ . . . .. . .◦••◦ . .
4
→

. . . . . . . . .

. . . .• . . . .. . . .◦•◦ . .
3
→

. . . . . . . . .

. . . . . . . . .

. . . .◦ . . . .

For three rows, this case is identical to Case 1(3b).

(3a)
. .◦◦◦• . . .. . .• . . . . .
•◦•◦•◦•◦ ..•◦•◦•◦•◦

→
4

. .◦◦• . . . .. . .• . . . . .
•◦•◦•◦•◦ .. .◦ . .•◦•◦

→
4

. .◦◦• . . . .. . .• . . . . .. .•◦•◦◦◦ .. . . . .• .•◦
→
4

. . . . . . . . .

. . .◦ . . . . .. . .••◦◦◦ .. . . . .• .•◦
→
6

. . . . . . . . .

. . . . . . . . .

. . . . .◦ . . .. . . . .• . .◦
(

→
. . . . . . . . .
. . . . . . . . .
. . . . .• . . .. . . . . . . .◦

)

◦◦◦• ..• . ..••◦. .◦ ..◦••
→
4

.◦ . . ..• . ..••◦. .◦ .. .◦•
→
4

. . . . .

.◦ . ..•◦ .. .• .. . . .
→
3

. . . . .

. . . .

.• . .. . . .

. . . .

(3b) We must reduce rows five and six starting with the mirrored standard initial
configuration (we could also solve the standard configuration, but then we
could not continue with step (4b)).

. . . .◦ . . . ..•◦•◦•◦•◦
•◦•◦•◦•◦ .

→
6

. . . .◦ . . . .. . .•◦•◦• ..◦•◦•◦ . . .
→
3

. . . .◦ . . . .. . . .••• . .. .◦◦•◦ . . .
4
→

. . . . . . . . .

. . . . .• . . .. .◦• .◦ . . .
2
→

. . . . . . . . .

. . . . . . . . .

. . .◦ .• . . .

For three rows, this case is identical to Case 1(2b).

(4a) We must reduce rows seven and eight starting with the mirrored standard
initial configuration (because of the white single stone left over at the right
end of row six).

. . . . .◦ . . .. . . . .• . .◦.◦•◦•◦•◦•
◦•◦•◦•◦• .

→
4

. . . . .◦ . . .. . . . .• . . ..◦•◦•◦•◦ .
◦•◦•◦ .• . .

→
4

. . . . . . . . .

. . . . .◦ . . ..• .◦•◦• . .
◦•◦•◦ . . . .

→
4

. . . . . . . . .

. . . . . . . . .

. . .◦•◦ . . ..•◦•◦ . . . .
→
4

. . . . . . . . .

. . . . . . . . .

. . . .◦ . . . .. . .•◦ . . . .

→
2

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . .◦ . . . .
For three rows, we must reduce the number of columns a little bit asym-
metrically (remove four additional columns on the left side) and then do the
following reduction.



. .◦ . . . .. .• . .◦ .
••◦•◦•◦.◦•◦•◦ .
◦•◦•◦••

→
4

. .◦ . . . .. .• . . . .
••◦••◦◦.◦•◦ .◦ .
◦•◦• .• .

→
4

. . . . . . .

. .◦ . . . .
••◦••◦ ..◦•◦ . . .
◦•◦• . . .

→
4

. . . . . . .

. .◦ . . . .
••◦•◦ . ..◦•◦ . . ..• . . . . .

→
4

. . . . . . .

. .◦ . . . .
••◦◦ . . .. .• . . . .. . . . . . .

→
4

. . . . . . .

. . . . . . .
• .◦ . . . .. . . . . . .
. . . . . . .

(4b)
. . .◦ .• . . .
◦•◦•◦•◦• ..◦•◦•◦•◦•

4
→

. . .◦ .• . . ..•◦• .◦◦• .. . .◦•◦•◦•
4
→

. . .◦ . . . . ..•◦• .• . . .. . .◦•◦•◦ .
4
→

. . .◦ . . . . .. .•• . . . . .. . .◦•◦ . . .
4
→

. . . . . . . . .

. . . . . . . . .

. . .◦ . . . . .

For three rows, this case is identical to Case 1(4b).

4 NP-Completeness of 1-Reducibility

In this section we consider arbitrary initial Clobber positions that do not need
to have a rectangular shape or the alternating checkerboard placement of the
stones. We show that then the following problem is NP-complete.

Problem Solitaire-Clobber:

Given an arbitrary initial Clobber configuration, decide whether
we can reduce it to a single stone.

The proof is by reduction from the Hamiltonian circuit problem in grid
graphs. A grid graph is a finite graph embedded in the Euclidean plane such
that the vertices have integer coordinates and two vertices are connected by an
edge if and only if their Euclidean distance is equal to one.

Problem Grid-Hamiltonicity:

Decide whether a given grid graph has a Hamiltonian circuit.

Itai et al. proved that Grid-Hamiltonicity is NP-complete [4, Theorem
2.1].

Theorem 5. Solitaire-Clobber is NP-complete.

Proof. We first observe that Solitaire-Clobber is indeed in NP, because we
can easily check in polynomial time whether a proposed solution (which must
have only n− 1 moves) reduces the given initial configuration to a single stone.

We prove the NP-completeness by reduction from Grid-Hamiltonicity.
Let G be an arbitrary grid graph with n nodes, embedded in the Euclidean
plane. Let v be a node of G with maximum y-coordinate, and among all such
nodes the node with maximum x-coordinate. If v does not have a neighbor to the
left then G cannot have a Hamiltonian circuit. So assume there is a left neighbor
w of v. Note that v has degree two and therefore any Hamiltonian circuit in G
must use the edge (v, w).

Then we construct the following Clobber configuration (see Figure 1). We
put a black stone on each node of G. We place a single white stone just above
w, the bomb. We place a vertical chain of n white stones above v, the fuse, and
another single black stone, the fire, on top of the fuse. Altogether we have placed
n+ 1 white and n+ 1 black stones, so this is a legal Clobber configuration.



vw

bomb

fuse

(n stones)

fire

Fig. 1. An n-node grid graph with Hamiltonian circuit and the corresponding Clobber
configuration that can be reduced to a single stone.

If G has a Hamiltonian circuit C then the bomb can clobber all black nodes
of G, following C starting in w and ending in v after n rounds. At the same
time, the black fire can clobber the n stones of the fuse and end up just above
v after n rounds. But then in a last step the bomb can clobber the fire, leaving
a single stone on the board.

On the other hand, if the initial configuration can be reduced to a single stone
then White cannot move any stone on the fuse (because that would disconnect
the black fire from the stones on G), so it must move the bomb until Black has
clobbered the fuse. But that takes n steps, so White must in the meanwhile
clobber all n black stones of G, that is, it must walk along a Hamiltonian circuit
in G. ut

5 Conclusions

We have seen that reducing to the minimum number of stones is polynomially
solvable for checkerboard rectangular configurations, and is NP-hard for general
configurations. What about checkerboard non-rectangular configurations and
rectangular non-checkerboard configurations?



We have also seen a lower bound on the number of stones to which a config-
uration can be reduced that is based on the number of stones plus the number
of stones on squares of different color. It would be interesting to identify other
structural parameters of a configuration that influence reducibility.
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A Small Cases

Our proof of Theorem 4 requires us to verify reducibility for all instances with 2 ≤
n,m ≤ 6. This fact can be checked easily by a computer, but for completeness
we give the reductions here. By symmetry, we only need to show the cases with
n ≤ m. Reductions of 2×3, 2×5, 3×4, 3×6, 4×5, and 5×6 boards are already
given in Section 3.3. Eight more small boards remain. We assume White moves
first.

2×2: •◦
◦• →

• .
◦◦ →

. .
•◦ →

. .
◦ .

2×4: •◦•◦
◦•◦• →

•◦• .
◦•◦◦ →

•◦ . .
◦••◦ →

•◦ . .
◦•◦ . →

.◦ . .
••◦ . →

. . . .
•◦◦ . →

. . . .

.•◦ . →
. . . .
.◦ . .

2×6: •◦•◦•◦
◦•◦•◦•

3
→ •◦•◦ . .
◦•◦•◦ . →

3

. .•◦ . ..•◦•◦ .
2
→

. . . . . .

.••◦◦ .
2
→

. . . . . .

. .• .◦ .

3×3:
•◦•
◦•◦
•◦•

2
→
◦ .•
• .◦
•◦•

3
→

. . .

. . .
◦ .•

3×5:
•◦•◦•
◦•◦•◦
•◦•◦•

2
→
•◦•◦•. .◦•◦
◦••◦•

2
→

.••◦•. .◦•◦.◦•◦•
2
→

. .•◦•. . .•◦.◦•◦•
2
→

. . .•◦. . .• ..◦•◦•
2
→

. . .◦ .. . .• ..◦•• .
3
→

. . . . .

. . . . .

.• .◦ .

4×4: We reduce the upper two rows as in the 2 × 4 board, then Black moves
next:.◦ . .
•◦•◦
◦•◦•

→
.◦ . ..••◦
◦•◦•

→
. . . .
.◦•◦
◦•◦•

→
. . . .
.• .◦
◦•◦•

→
. . . .
.• .◦.◦◦•

→
. . . .
. . .◦.•◦•

→
. . . .
. . . .
.•◦◦

→
. . . .
. . . .
. .•◦

→
. . . .
. . . .
. .◦ .

4×6: We reduce the upper two rows as in the 2 × 6 board, then White moves
next:. .• .◦ .
•◦•◦•◦
◦•◦•◦•

2
→

. . . .◦ .
• .•◦•◦
◦•◦•◦•

2
→

. . . . . .
• .•◦◦•
◦•◦•◦ .

2
→

. . . . . .
• .•◦• .
◦◦ .•◦ .

2
→

. . . . . .
• . .•◦ .
◦◦ .• . .

4
→

. . . . . .

. . . . . .

.• .◦ . .

6×6: We reduce the upper four rows as in the 4 × 6 board, then White moves
next:.• .◦ . .
•◦•◦•◦
◦•◦•◦•

2
→

. . .◦ . .
◦••◦•◦.•◦•◦•

2
→

. . .◦ . ..◦•••◦.•◦ .◦•
2
→

. . . . . .

.••◦•◦. .◦ .◦•
2
→

. . . . . .

. .• .•◦. .◦ .◦•
2
→

. . . . . .

. .• . . .. .◦ .•◦
2
→

. . . . . .

. . . . . .

. .• .◦ .


