
Cookie Clicker

Erik D. Demaine∗ Hiro Ito† Stefan Langerman‡ Jayson Lynch∗

Mikhail Rudoy§ Kai Xiao∗

Abstract

Cookie Clicker1 is a popular online incremental game where the goal of the game is to
generate as many cookies as possible. In the game you start with an initial cookie generation
rate, and you can use cookies as currency to purchase various items that increase your cookie
generation rate. In this paper, we analyze strategies for playing Cookie Clicker optimally. While
simple to state, the game gives rise to interesting analysis involving ideas from NP-hardness,
approximation algorithms, and dynamic programming.

Contents

1 Introduction 3
1.1 Models . 3
1.2 Results . 4
1.3 Useful Tools . 4

2 Positive Results 8
2.1 1-Item Cookie Clicker Solution . 8
2.2 Fixed-Cost Cookie Clicker for 2 Items . 9
2.3 Fixed-Cost Cookie Clicker for k Items . 14

2.3.1 Dynamic Programming Solution . 14
2.3.2 Local Optimizations . 15

2.4 Increasing-Cost Cookie Clicker for k Items . 15
2.4.1 Dynamic Programming Solution . 15
2.4.2 Greedy Solutions . 16
2.4.3 Approximation Ratio . 17

3 Negative Results 23
3.1 R version is at least as hard as M version . 23
3.2 Weak NP-hardness of R version . 23
3.3 Cookie Clicker with Initial Cookies . 24

3.3.1 Dynamic Programming Solution . 25
3.3.2 Weak NP-hardness of Cookie Clicker with Initial Cookies 25

3.4 Cookie Clicker with Discrete Timesteps is Strongly NP-hard 28

∗CSAIL, Massachusetts Institute of Technology
†University of Electro-Communications
‡Directeur de Recherches du F.R.S.-FNRS, Université Libre de Bruxelles
§CSAIL, Massachusetts Institute of Technology; now at Google
1http://orteil.dashnet.org/cookieclicker/

1

http://orteil.dashnet.org/cookieclicker/

4 Conclusion 29

5 Acknowledgements 30

2

1 Introduction

Figure 1: Screenshot of Cookie Clicker v.2.002.

In Cookie Clicker, your goal is to generate as
many cookies as possible. There are two ways
to generate cookies in the game – you can click
on a big cookie icon to bake a cookie, and you
can purchase items that automatically generate
cookies for you over time. We simplify these two
mechanics into a single cookie generation rate,
which is defined as the number of cookies we
generate per second. We do so by modeling the
first mechanic (the ability to click on the big
cookie icon to bake cookies) as a fixed initial
cookie generation rate.

You can use the cookies you have generated
as currency to purchase various items that in-
crease your cookie generation rate. Items can
be purchased multiple times, but after each
item purchase, the item’s cost will increase at
an exponential rate, given by Cn = C1 · αn−1,
where C1 is the cost of the first item and Cn is
the cost of item n. In the actual game, α = 1.15. The real game has no explicit end condition,
but in this paper we define two possible end conditions: reaching a certain number M ∈ (0,∞) of
cookies, or reaching a certain cookie generation rate R ∈ (1,∞).

Cookie Clicker falls into a broader class of popular online games called incremental games or
idle games [Wik14], in which the primary mechanic of the game is acquiring income and spending
that income on income generators in order to acquire even more income. Some other well-known
games in this genre include Adventure Capitalist, Cow Clicker, Clicker Heros, Shark Souls, Kittens
Game, Egg Inc., and Sandcastle Builder (based on the xkcd comic 1190, Time). Our analysis of
Cookie Clicker involves solving a scheduling-style optimization problem, similar to prior work on
job-scheduling algorithms where job utilization costs are involved [JWW97].

1.1 Models

Formally, the Cookie Clicker problem is as follows: Given an initial number of cookies z, an initial
generation rate r, and a set of items, find the optimal sequence and timing of item purchases that
optimizes some objective. There are multiple possible objectives that we could want to optimize
for, but we focus on the following two:

1. Reaching M cookies in as little time as possible. (“M version”)
2. Reaching a generation rate of R in as little time as possible. (“R/rate-goal version”)
In most of this paper, unless stated otherwise we assume that you start with z = 0 cookies

and that the initial cookie generation rate from clicking on the big cookie icon is r = 1. We will
describe each item by a tuple (x, y, α), where x ∈ (0,∞) denotes how much the item will increase
your cookie generation rate, y ∈ (0,∞) denotes the initial cost of the item, and α ∈ [1,∞) denotes
the multiplicative increase in item cost after each purchase. The case where α = 1 for every item is
a special case called the fixed-cost case, which we analyze in Sections 2.2, 2.3. Finally, we consider
time to be continuous for the majority of the paper, and we analyze the case where time proceeds
in discrete timesteps in Section 3.4.

3

We will usually begin each case by discussing the M version of the problem and then explain
how to extend our results to the R version. A third natural objective is to maximize the number of
cookies M or the generation rate R achieved given a total amount of time T , and it can be solved
by any algorithm that solves the first two variants using binary search on the values of M and R.

1.2 Results

Our analysis of various versions of Cookie Clicker gives rise to interesting and varied results; refer to
Table 1. First, we present some general results, such as the fact that the optimal strategy involves
a Buying Phase where items are purchased in some sequence as quickly as possible, and then a
Waiting Phase where no items are purchased.

We begin our version-by-version analysis by examining the case where exactly 1 item is available
for purchase, and we present formulas describing how many copies of the item should be purchased
in both the fixed-cost case and increasing-cost case.

Next, we analyze cases involving 2 items. In the 2-item fixed-cost case, we prove that the
optimal solution always involves consecutively buying some number of copies of one item, followed
by consecutively buying some number of copies of the other item.

Then, we analyze the case involving k items. In the k-item fixed-cost case, a weakly polynomial
time dynamic programming solution can be used to find the optimal sequence of items to buy, and
in the increasing-cost case, a strongly polynomial time dynamic programming solution can be used.
Additionally, a greedy algorithm can be devised with an approximation ratio that approaches 1 for
sufficiently large values of M .

Afterwards, we present negative results, including proofs of weak NP-hardness of the decision
version of the problem of reaching a generation rate of R as quickly as possible, as well as for a
version of Cookie Clicker that allows you to start with a nonzero number of cookies. Finally, we
define a discretized version of Cookie Clicker where decisions regarding whether or not to buy an
item happen in discrete timesteps and prove strong NP-hardness for that version.

Python implementations of the dynamic programming solution and the greedy solutions to the
General Cookie Clicker problem, and the dynamic programming solution to the Fixed-Cost Cookie
Clicker problem, are available.2

1.3 Useful Tools

Before proceeding to our main results, we develop some useful tools for finding optimal solutions
for playing Cookie Clicker. We present these tools and show how they are applied to the 1-Item
Case, but these tools are applicable to all versions of the game.

First, we can think of a game state as a tuple (c, n1, n2, . . . , nk) where c is the number of cookies
you have and ni is the quantity of item i that you have. In the 1-Item case, the tuple is just (c, n1).
Note that your current state in the game is entirely described by this tuple, and you can compute
relevant quantities such as the cookie generation rate from this state.

In general, the following claim is true.

Claim 1.1. If the next step of the optimal strategy involves buying an item at some point in the
future, you should buy the item as soon as you can afford it.

Proof. Suppose that from a given game state, a strategy involves buying the ith item t seconds
after you can afford it. Let G denote the cookie generation rate at the game state, let x denote the
cookie generation rate increase from buying the item, and y′ denote the item’s current cost. The

2https://github.com/kaixiao/Cookie-Clicker

4

https://github.com/kaixiao/Cookie-Clicker

Problem Variant Result for M version Result for R version

1-Item Fixed-Cost with item
(x, y, 1) [§2.1]

OPT takes ≈ y
x ln M

y time
O(1) to compute OPT

OPT takes ≈ y
x ln R

x time
O(1) to compute OPT

1-Item Increasing-Cost with
item (x, y, α) [§2.1]

OPT will stop Buying Phase
after logα

M
y items

O(1) to compute OPT

OPT will stop Buying Phase
after R

x items
O(1) to compute OPT

2-Item Fixed-Cost with items
(xi, yi, 1) where y2 > y1 [§2.2]

OPT is of the form
[1, 1, . . . , 1, 2, . . . , 2] for large
enough M
u1 logφ u2 + O(u1) to compute

OPT, where ui ≈ yi
xi

log M
yi

OPT is of the form
[1, 1, . . . , 1, 2, . . . , 2, 1, 1] for
a small number of 1’s at the
end for large enough R.

k-Item Fixed-Cost with items
(xi, yi, 1) [§2.3]

O(maxi(
Mxik
yi

)) to compute
OPT using Dynamic Program-
ming

O(kR) to compute OPT using
Dynamic Programming

k-Item Increasing-Cost with
items (xi, yi, αi) [§2.4]

O(maxi(k logkαi

M
yi

)) to com-
pute OPT using Dynamic Pro-
gramming
Greedy Algorithm has Approx-
imation Ratio of 1 +O(1

logM)

O(maxi(k(Rxi)
k)) to compute

OPT using Dynamic Program-
ming
Weakly NP-hard by reduction
from Partition

k-Item Increasing-Cost with
items (xi, yi, αi) with Initial
Cookies [§3.3]

Weakly NP-hard by reduction
from Partition

Weakly NP-hard by reduction
from M version

k-Item Increasing-Cost with
items (xi, yi, αi) and Discrete
Timesteps [§3.4]

Strongly NP-hard by reduction
from 3-Partition

Strongly NP-hard by reduction
from M version

Table 1: Summary of results. Positive results are listed first, followed by negative results. OPT
in the table denotes the optimal solution, and runtimes listed correspond to how long it takes to
determine OPT.

net change in game state after these t seconds is a gain of 1 copy of item i and a change in the
amount of cookies by Gt− y′.

Then, consider the strategy that buys the ith item as soon as you can afford it and waits t
seconds afterwards. In this case, the net change in game state after these t seconds is a gain of 1
copy of item i and a change in the amount of cookies by (G + x)t − y′. Thus, this new strategy
results in the exact same result as the original strategy, except that it gains an extra tx cookies,
which is strictly better. Thus, an optimal strategy that intends to buy an item as its next step
must buy it as soon as it can be afforded.

This claim tells us that the optimal strategy will always wait until it can purchase an item and
purchase it immediately, or it will wait until the target number of cookies M is reached. Thus,
the problem boils down to jumping between game states in which you have 0 cookies and need to
decide between waiting to reach M cookies or purchasing an item. This means that the only thing
we need to keep track of to determine our game state is (n1, n2, . . . , nk), the number of each item
we have purchased. For example, in the 1-Item case, we only need to keep track of a single number
n1. Thus, we can define t(n) to be the minimum amount of time needed to reach M cookies from

5

the game state (0, n).
From Claim 1.1, we can deduce that the optimal solution will have 2 phases. We will call them

the Buying Phase, where the solution tries to buy items, and the Waiting Phase, where the
solutions has bought all the items it needs and just waits until the items generate M cookies. Every
optimal solution can be represented by the sequence of items that should be bought in the Buying
Phase.

Next, we define some general notation that will be useful in the future.

Definition 1.2. B([i1, i2, . . . , in], G,X, Y,A) is the amount of time needed to buy the items i1, i2,
. . . , in in order from an initial state with 0 cookies, cookie generation rate G, and rate gains, initial
costs, and cost increases described by the vectors X = (x1, x2, . . . , xk), Y = (y1, y2, . . . , yk), and
A = (α1, α2, . . . , αk) respectively.

In cases where A = (1, 1, . . . , 1), we may leave out the A parameter in the notation. Sometimes,
we also leave out G if it is clear what G is being referred to.

It is often helpful to bound the value of B. The following two results are true in general.

Lemma 1.3. The following inequalities hold:

B([i1, i2, . . . , in], G,X, Y) ≤

(
n∑
k=1

yik

)
/G

B([i1, i2, . . . , in], G,X, Y) >

(
n∑
k=1

yik

)
/

(
G+

n∑
k=1

xik

)
Proof. Let Gik be the generation rate just before purchasing item ik. Note that for all k, G ≤
Gik < G+

∑n
k=1 xik . Additionally, we know that B([i1, i2, . . . , in], G,X, Y) =

∑n
k=1

yik
Gik

. Then we

have that
n∑
k=1

yik
Gik
≤

n∑
k=1

yik
G

=

(
n∑
k=1

yik

)
/G

and
n∑
k=1

yik
Gik

>
n∑
k=1

yik
G+

∑n
k=1 xik

=

(
n∑
k=1

yik

)
/

(
G+

n∑
k=1

xik

)

Next, we determine conditions for when buying an item is optimal. In general, we can determine
an upper bound on the generation rate G beyond which it will not be worth it to purchase any
more items.

Lemma 1.4. If your current cookie generation rate is G and the items have rate increases and
costs (xi, yi), you should stop buying items if and only if

G > max
i

(Mxi
yi
− xi

)
To prove the result, we begin by proving an alternate form of the result for the 1-Item example.

Lemma 1.5. If your current cookie generation rate is G, you should buy an item with cost y and
rate increase x if and only if

M

y
≥ 1 +

G

x
. (1)

6

Proof. Suppose we are at a state where we have purchased n1 items. Then, the optimal decision is
either to purchase another item or to enter the Waiting Phase.

In the first case, the time taken is equal to

y

G
+ t(n1 + 1) ≤ y

G
+

M

G+ x
,

because a valid (but possibly not optimal) strategy from the state (0, n1 + 1) is to wait.
In the second case, the time taken is equal to M

G .
Thus, if it is the case that

y

G
+

M

G+ x
≤ M

G
, (2)

then we should go with the first strategy and purchase an item. Rearranging (2) gives (1). This
means that if (1) is satisfied, purchasing the item is better.

Now we show that if (1) is not satisfied, then waiting is better. Suppose that (1) is not satisfied,
so M

y < 1 + G
x . Written in the form of (2), this inequality becomes y

G + M
G+x >

M
G . Note that for

any rate G′ > G and y′ ≥ y, the inequality M
y′ < 1 + G′

x still holds. Now, suppose that the optimal
strategy from this point forward is to purchase k items for some k > 0 and then wait. Let yi and
Gi denote the price and cookie generation rate after i item purchases from this point forward, and
note that Gm = Gm−1 + x. Then the time taken to achieve this equals B([1, . . . , 1︸ ︷︷ ︸

k

], G,X, Y) + M
Gk

.

Note that for any k > 0

B([1, . . . , 1︸ ︷︷ ︸
k

], G,X, Y) +
M

Gk
=
y

G
+
y1
G1

+ · · ·+ yk−2
Gk−2

+
yk−1
Gk−1

+
M

Gk−1 + x

>
y

G
+
y1
G1

+ · · ·+ yk−2
Gk−2

+
M

Gk−1

= B([1, . . . , 1︸ ︷︷ ︸
k−1

], G,X, Y) +
M

Gk−1

Thus, we have that

B([1, . . . , 1︸ ︷︷ ︸
k

], G,X, Y) +
M

Gk
> B([1, . . . , 1︸ ︷︷ ︸

k−1

], G,X, Y) +
M

Gk−1

> B([1, . . . , 1︸ ︷︷ ︸
k−2

], G,X, Y) +
M

Gk−2

· · ·

> B([1], G,X, Y) +
M

G1

=
y

G
+

M

G+ x

>
M

G

Thus, if (1) is not satisfied, then the optimal strategy is to wait. This completes the proof of
the lemma.

7

Isolating G from Lemma 1.5 and reversing the statement, the following corollary holds.

Corollary 1.6. If your current cookie generation rate is G, you should stop buying items with cost
y and rate increase x if and only if

G >
Mx

y
− x.

Applying Corollary 1.6 to every item in k-Item Cookie Clicker proves Lemma 1.4.

2 Positive Results

2.1 1-Item Cookie Clicker Solution

Armed with the tools we developed in the previous section, we solve the 1-Item Cookie Clicker
problem. Based on the results of the previous section, the optimal strategy is to purchase k items
for some k ≥ 0 as soon as each item becomes affordable and then wait until we reach M cookies.
The total time that this takes is

B([1, . . . , 1︸ ︷︷ ︸
k

], 1, x, y, α) +
M

1 + kx
=

k−1∑
n=0

y · αn

1 + nx
+

M

1 + kx
.

By Lemma 1.5, we know that if our current cookie generation rate is G′ and the current cost of the
item is y′, then we should stop buying the item when M

y′ < 1 + G′

x . After buying k items, we have

that G′ = 1 + kx and y′ = y · αk.
In the special case of α = 1, which we call the fixed-cost case, the inequality becomes

M

y
< 1 +

1 + kx

x
= 1 + k +

1

x

so k, the number of items we should buy before stopping, is the smallest integer larger than M
y −1− 1

x .
In this case, the total time the optimal solution takes is equal to

k−1∑
n=0

y

1 + nx
+

M

1 + kx
=
y

x

k−1∑
n=0

1

1/x+ n
+

M

1 + kx

≈ y

x

k−1∑
n=0

1

n
+

M

1 + kx

≈ y

x
ln k +

M

1 + kx

≈ y

x
ln
M

y
+

M
Mx
y

=
y

x

(
ln
M

y
+ 1

)
.

If α > 1, the inequality then becomes

M

y · αk
< 1 +

1 + kx

x
= 1 + k +

1

x

⇐⇒ M

y(1 + k + 1
x)

< αk

⇐⇒ logα
M

y
− logα

(
1 + k +

1

x

)
< k.

8

In most reasonable cases, the log term on the left hand side of the inequality is fairly small, so
k ≈ logα

M
y .

Now, we derive similar results for the rate-goal version of the problem, where the goal is to
reach a final rate of R cookies. Note that in this version, there is no Waiting Phase, so only the
Buying Phase needs to be analyzed. The optimal strategy for the rate-goal version is quite simple:
buy the item whenever possible until the goal rate is reached. The goal rate of R is reached after
k = dR−1x e purchases of the item.

Then, for the fixed-cost case where α = 1, the total time needed to reach the rate goal will be

k−1∑
n=0

y

1 + nx
=
y

x

k−1∑
n=0

1

1/x+ n

≈ y

x

k−1∑
n=0

1

n

≈ y

x
ln k

=
y

x
ln
⌈R− 1

x

⌉
.

And for the increasing-cost case, the total time needed to reach the rate goal is

k−1∑
n=0

y · αn

1 + nx
.

2.2 Fixed-Cost Cookie Clicker for 2 Items

In this section and the next, we analyze the case where all the α’s are equal to 1, which we call
Fixed-Cost Cookie Clicker. This is a natural starting point, as it corresponds to the economic
situation in which items are fixed in price due to enough supply existing. You can think of this
game as modeling the problem of optimizing discrete investments.

In the 2 Item Cookie Clicker problem, our goal is to reach M cookies as quickly as we can, and
the 2 items available are described by the tuples (x1, y1) and (x2, y2). These are defined analogously
to the 1 item case. Without loss of generality, we can assume that y2 > y1. In this problem, we
will also make the assumption that x2

y2
> x1

y1
. This is because if the reverse inequality held, then

buying y2
y1

copies of item 1 gives a higher rate increase than buying a single instance of item 2,

which means that it will never be optimal to buy item 2 if M is large enough3.
We can apply the general claims from the 1 item analysis here, so we know from Claim 1.1 that

the optimal strategy will jump between states where we have 0 cookies, and that there is a Buying
Phase and a Waiting Phase. As before, we can represent every optimal solution by the sequence of
items that should be bought in the Buying Phase.

We now solve this problem. We will show that the sequence of items in the Buying Phase
must be [1, 1, . . . , 1, 2, 2, . . . , 2] when M is large enough. Then, finding the optimal solution simply
involves figuring out when to stop buying item 1 and when to start buying item 2, which can be
determined in polynomial time.

To help us solve our problem, we will define the following.

Definition 2.1. The efficiency score of an item of cost y and rate increase x when you have
generation rate G is y

x + y
G .

3M must be large enough so that the effect of y2
y1

not being an integer is irrelevant in the long run

9

Lemma 2.2. If you plan to buy both items consecutively, you should always buy the item with the
lower efficiency score. In particular, let T = (y2 − y1)/(y1x1 −

y2
x2

). Then, if G < T , you should
purchase item 1 followed by item 2, and if G > T , you should purchase item 2 followed by item 1.

Proof. The efficiency score of an item dictates whether buying item 1 then item 2 is better than
buying item 2 then item 1.

Suppose we have generation rate G. Then the cost of buying item 1 then item 2 is equal to
y1
G + y2

G+x1
and the cost of buying item 2 then item 1 is equal to y2

G + y1
G+x2

. If G < T , we can
rearrange the inequality to get that

G <
y2 − y1

(y1x1 −
y2
x2

)

⇐⇒ y1
G

+
y1
x1

<
y2
G

+
y2
x2

⇐⇒ y1

(G+ x1
x1

)
< y2

(G+ x2
x2

)
⇐⇒ y1

(x2
G(G+ x2)

)
< y2

(x1
G(G+ x1)

)
⇐⇒ y1

(1

G
− 1

G+ x2

)
< y2

(1

G
− 1

G+ x1

)
⇐⇒ y1

G
+

y2
G+ x1

<
y2
G

+
y1

G+ x2
.

On the other hand, if G > T , then the reverse is true.

Now, suppose that we have some optimal solution represented as a sequence of 1’s and 2’s.
Now, we know that until the rate G reaches T , we will never have a 2 followed by a 1. Similarly,
after the rate G passes T , we will never have a 1 followed by a 2. Thus, the final sequence must be
of the following form.

[1, 1, . . . 1, 1, 2, 2, . . . , 2, 2, 1, 1, . . . , 1, 1].

Somewhere in the middle of the sequence of 2’s, the generation rate reaches T .
Now, we will show that for large enough M , there will be no sequence of 1’s at the end of the

optimal solution.

Theorem 2.3. Let f(x1, x2, y1, y2) = max
(

2, 2
x1
· y1+y2y1

x1
− y2

x2

)
If M ≥ (f(x1, x2, y1, y2) + 2) · y1, then

the optimal solution will have no 1’s at the end.

Proof. Suppose for the sake of contradiction that there are k 1’s at the end of the sequence rep-
resenting the optimal solution for some k > 0. We will show that replacing the final 1 with a 2
results in a better solution, which disproves the optimality of the original solution.

Denote that the rate before purchasing the final 1 in the optimal solution as R.
The time it takes to buy the final 1 and then wait until the goal M is reached is equal to

y1
R + M

R+x1
. The time it takes to buy a 2 instead of the final 1 and then wait until the goal M is

equal to y2
R + M

R+x2
. We want to prove that

y2
R

+
M

R+ x2
<
y1
R

+
M

R+ x1

or equivalently that
M

R+ x2
− M

R+ x1
<
y1
R
− y2
R
. (3)

10

Now, we know from Lemma 1.5 and the fact that the optimal solution bought the final 1 that

1 +
R

x1
≤ M

y1
⇐⇒ M

R+ x1
≥ y1
x1
.

Similarly, because the optimal solution can not buy another 2 after the final 1, we know that

1 +
R+ x1
x2

>
M

y2
⇐⇒ M

R+ x1 + x2
<
y2
x2
.

Combining the above two equations, we end up with

M

R+ x1 + x2
− M

R+ x1
<
y2
x2
− y1
x1

⇐⇒ M

R+ x2
− M

R+ x1
<
y2
x2
− y1
x1

+
M

R+ x2
− M

R+ x1 + x2

=
y2
x2
− y1
x1

+
Mx1

(R+ x2)(R+ x1 + x2)

<
y2
x2
− y1
x1

+
Mx1
R2

.

Thus, to prove (3), we just have to prove that

y2
x2
− y1
x1

+
Mx1
R2

<
y1
R
− y2
R

or that
Mx1
R2

+
y2 − y1
R

<
y1
x1
− y2
x2

Now note that because the optimal solution can not buy another 1 after the final 1,

1 +
R+ x1
x1

>
M

y1
⇐⇒ R >

(M
y1
− 2
)
x1.

Because M ≥ (f(x1, x2, y1, y2) + 2) · y1 and f(x1, x2, y1, y2) ≥ 2, we can deduce that

M ≥ 4y1

⇐⇒ M/2 ≥ 2y1

⇐⇒ M − 2y1 ≥M/2,

and therefore

R >

(
M

y1
− 2

)
x1 =

x1
y1

(M − 2y1) ≥
x1
y1
· M

2
=
Mx1
2y1

.

Thus, Mx1
R2 = M

R
x1
R < 2y1

x1
x1
R = 2y1

R . Using this, all we have to prove now is that

2y1
R

+
y2 − y1
R

=
y1 + y2
R

<
y1
x1
− y2
x2

or equivalently that
y1 + y2
y1
x1
− y2

x2

< R.

But this is true because

R >
Mx1
2y1

≥ (f(x1, x2, y1, y2) + 2) · x1
2

>
f(x1, x2, y1, y2) · x1

2
≥ y1 + y2

y1
x1
− y2

x2

.

11

Thus, we have shown that for large enough M , the optimal solution will be of the form

[1, 1, . . . 1, 1, 2, 2, . . . , 2, 2],

where the 1’s only appear if the total generation rate at that point is less than the threshold T . We
can experimentally verify that the point at which the optimal solution transitions from 1’s to 2’s
is not exactly T , but is usually close to T

2 . An example of this is displayed in Figure 2. For every
integer i, we can consider the optimal strategy that starts off by buying exactly i copies of item 1
then transitioning to item 2. Figure 2 plots the amount of time each optimal solution takes.

Figure 2: Here, M = 60000, X = [10, 100], Y = [72, 700], T = 3140, and G = 1611 at the minimum
of the curve, which corresponds to the correct number of item 1’s to purchase in the optimal
solution. For most parameter settings, there is exactly one local minimum. However, this is not
always the case.

We then have the following corollary

Corollary 2.4. Fixed-Cost Cookie Clicker for 2 Items can be solved in u1 logφ u2 + O(u1) time,

where u1 = O(y1x1 log M
y1

) and u2 = O(y2x2 log M
y2

).

Proof. To solve Fixed-Cost Cookie Clicker for 2 Items, we just have to find the optimal number
of 1’s to buy before transitioning to 2’s and subsequently solving the 1-Item Cookie Clicker game.
Finding this optimal number involves maximizing a function of two bounded discrete variables (the
number of 1’s to buy and the number of 2’s to buy), which can be done in polynomial time.

In particular, let us define

W (r, s) = B([1, . . . , 1︸ ︷︷ ︸
r

, 2, . . . , 2︸ ︷︷ ︸
s

]).

Then the function W is unimodal in s, because for a fixed r, we are essentially solving 1-Item
Cookie Clicker using the item 2. We can obtain rough upper bounds for each of r and s, which we
denote by u1 = O(y1x1 log M

y1
) and u2 = O(y2x2 log M

y2
), by considering an instance of 1-Item Cookie

Clicker with just item 1 or just item 2. Then, we can find an optimal solution in u1 logφ u2 +O(u1)
[DL05].

12

Next, we analyze the rate-goal version of Fixed-Cost Cookie Clicker for 2 Items and obtain a
similar result about the structure of solutions.

Theorem 2.5. For large enough R, any optimal solution to the rate-goal version of Fixed-Cost
Cookie Clicker for 2 Items must be of the form

[1, 1, . . . 1, 1, 2, 2, . . . , 2, 2, 1, . . . , 1],

where the number of 1’s at the end is upper bounded by dx2/x1e
(⌊

1/(x2x1 −
y2
y1

)
⌋

+ 1
)

.

This theorem lets us restrict the space of possible solutions, and we can use brute force on the
number of 1’s at the end to obtain an algorithm that finds the optimal solution in the same amount
of time as in the M version, up to a multiplicative factor corresponding to the brute force search.

Proof. First, we know using the same swapping argument as before that the solution must be of
the form

[1, 1, . . . 1, 1, 2, 2, . . . , 2, 2, 1, 1, . . . , 1, 1].

Thus, we only have to show that the number of 1’s at the end must be small. The primary idea

is that if item 2 is indeed more efficient, you should be able to replace
⌊
x2
x1

⌋
copies of item 1 with

a single copy of item 2, giving a greater rate increase in less time, which can only improve your
solution. This argument isn’t always easy to prove, depending on the costs and rate increases of
items 1 and 2. Thus, we will instead argue that buying n copies of item 1 at the end is worse than
buying m copies of item of item 2 for some positive integers n and m. In particular, the minimal
n such that the rational number n

m satisfies the equation

x2
x1

>
n

m
>
y2
y1

is sufficient for large enough R. It is difficult to find the minimal n, but we know that if we choose
an m such that 1

m < x2
x1
− y2

y1
, then there must exist some n that satisfies the inequality and is less

than dx2/x1em. Thus, one valid choice of m is
⌊
1/(x2x1 −

y2
y1

)
⌋

+ 1, and n is then upper bounded by

dx2/x1e
(⌊

1/(x2x1 −
y2
y1

)
⌋

+ 1
)

. This n upper bounds the number of trailing 1’s we can have in any

solution.
To prove the above claim, consider replacing n trailing copies of item 1 in some solution S with

m copies of item 2 to produce the new solution S′:

[1, . . . 1, 2, . . . , 2, 1, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
n

]→ [1, . . . 1, 2, . . . , 2, 1, . . . , 1, 2, . . . , 2︸ ︷︷ ︸
m

].

The rate increase from the n trailing item 1’s in S is nx1, and the rate increase from the trailing
item 2’s in S′ is mx2. Based on our definition of n and m, we know that the rate increase from the
trailing item 2’s in S′ is higher, so S′ will also reach the goal rate of R.

Now, we just have to show that the solution S′ takes less time than the solution S. Suppose
that the generation rate before purchasing the n copies of item 1 is G. The amount of time it takes
to buy the n copies of item 1 in S is

B([1, . . . , 1︸ ︷︷ ︸
n

], G) > n
y1

G+ nx1
.

13

The amount of time it takes to buy the m copies of item 2 in S′ is

B([2, . . . , 2︸ ︷︷ ︸
m

], G) ≤ my2
G
,

where both inequalities are derived from Lemma 1.3.
Thus, we just have to show that

n
y1

G+ nx1
> m

y2
G

or equivalently, that
ny1G > my2G+mnx1y2

or
G >

mnx1y2
ny1 −my2

(4)

Let R′ be the fraction on the right hand side of (4). The denominator of R′ is positive from the
definition of n and m, so as long as G is large enough, buying m copies of item 2 at the end also
takes less time than buying n copies of item 1. Thus, as long as R > R′+nx1, the optimal solution
will have at most n trailing 1’s.

2.3 Fixed-Cost Cookie Clicker for k Items

A natural follow-up is to extend this problem from 2 items to k items. Here, we present a weakly
polynomial time dynamic programming solution and discuss an attempt using local optimizations
to achieve a faster runtime.

2.3.1 Dynamic Programming Solution

In the fixed-cost case, the items do not change in price over time. Thus, an equivalent way to fully
represent the game state in this case is to specify the current generation rate. Using Lemma 1.4,
the final generation rate is bounded above by maxi

(
Mxi
yi

)
. Let DP[r] denote the minimal amount

of time needed to reach a goal of M from a state where you have 0 cookies and generation rate r.
The dynamic program can be solved by the following recurrence:

DP [r] = min
(M
r
,min

i

(yi
r

+DP [r + xi]
))
,

where the M
r term corresponds to entering the Waiting Phase after achieving a generation rate of

r. If there are k items, then solving the original problem, which is equivalent to finding the value
of DP[1], takes O(maxi(

Mxik
yi

)).
For the rate-goal version of this problem, we can define the same subproblem DP[r], and the

recurrence can be modified slightly to

DP [r] =

{
mini(

yi
r +DP [r + xi]) if r < R,

0 otherwise.

Again, the final problem reduces to finding DP[1], and the total runtime is O(Rk).

14

2.3.2 Local Optimizations

One idea for a faster algorithm is to use local optimizations on a given solution sequence to try to
obtain a better one.

As we saw from the analysis of Fixed-Cost Cookie Clicker for 2 Items, one example of a local
optimization is a “swap” that involves swapping consecutive elements in a solution if doing so im-
proves the solution. Another natural local optimization, which we saw in the proof of Theorem 2.3,
was the replacement of one item in a solution sequence with another.

Thus, to try to solve this problem, we tried using random local optimizations on a randomly
generated initial solution until it reached a point where local optimizations could no longer improve
the solution. The local optimizations we used included:

1. Adding an item to the solution at a specific index

2. Deleting an item from the solution at a specific index

3. Replacing one item with a different item at a specific index

4. Moving an item from one index to another. If an item is moved from index i+ 1 to i, this is
equivalent to a “swap”.

5. Sorting the solution so that the cheapest items come first

In general, these local optimizations would improve the initial solution sequences. In some cases
these local optimizations would result in a final solution that matched the globally optimal solution
computed using dynamic programming. However, in other cases, these local optimizations get
stuck at a local optimum, which are points that are worse than the global optimum, but can not be
improved any further using any of these local optimization operations. Thus, this leads us to the
conclusion that our list of local optimizations is insufficient for finding a global solution, and any
proof that relies solely on these operations will not be able to show global optimality of a solution.

2.4 Increasing-Cost Cookie Clicker for k Items

From this point forward, we assume that the α’s, the cost increase rates, all satisfy α > 1. This is
how the original Cookie Clicker game works, and is also a reasonable assumption. It corresponds
to the economic situation in which items increase in price due to limited supply.

2.4.1 Dynamic Programming Solution

In this section, we present a dynamic programming solution which finds optimal solutions in
O(k logkα(My)) time.

For simplicity, let us solve the problem for the case with 2 items first. Recall that your state
in the game is completely described by the tuple (n1, n2), where ni denotes the quantity of item i
you have purchased. Note that it will never be worth it to buy an item if the item costs more than
the goal M . This gives us upper bounds on n1 and n2, namely, ni < logαi

M
yi

+ 1. This motivates
us to define

DP [a][b] := the minimum time it takes to reach M from the state (a,b).

Let the cookie generation rate at state (a, b) be represented by gab = 1 + ax1 + bx2. From the
state (a, b), the optimal strategy is one of the following three choices: entering the Waiting Phase,

15

buying item 1, or buying item 2. We can then derive the recurrence

DP [a][b] = min
(M
gab

,
y1 · αa1
gab

+DP [a+ 1, b],
y2 · αb2
gab

+DP [a, b+ 1]
)

corresponding to each of those three choices. If A and B are the upper bounds for n1 and n2
respectively, then we can revise the recursive formulas for DP [A][b] and DP [a][B] for any a and b
in the proper range to only correspond to two choices (e.g. for DP [A][b], you can either buy item
2 or wait). We only need to initialize the value DP [A][B] = M

gAB
and then use the recurrence to fill

out the rest of the dynamic programming table. Finally, our answer is DP [0][0].
Initializing the single boundary value takes O(1) time. Then, filling out the rest of the AxB

table takes O(AB) time, so the total runtime is O(AB).
This dynamic programming approach can easily be extended to the k-item problem. As be-

fore, one can note that the game state of the k-item problem is described entirely by the k-tuple
(n1, n2, . . . , nk), where ni is the quantity of item i that you have purchased. We can use the same
upper bound ni < logαi

(Myi) + 1. Let Ni = logαi
(Myi) + 1 denote the upper bounds for each ni.

We can similarly define DP [(n1, n2, . . . , nk)] to be the minimum time it takes to reach M from
the state (n1, n2, . . . , nk). Then, filling in any square in the grid involves checking the solutions
the adjacent squares and doing an O(1) computation for each adjacent square. In total, this takes
O(k) time. The only square we need to initialize is the corner DP [(N1, N2, . . . , Nk)]. Thus, the

total time complexity of this program is O(k
∏k
i=1Ni) = O(kNk

max) = O
(
k logkα

(M
y

))
.

For the rate-goal version of the problem, we can also use dynamic programming to compute the
optimal solution, but the complexity is significantly worse. We also define DP [(n1, n2, . . . , nk)] to be
the minimum time it takes to reach R from the state (n1, n2, . . . , nk), but we can only obtain a naive
upper bound for each ni of Ni = R

xi
. This upper bound does not have a log like the upper bound for

the M version of the problem because we can not take advantage of the fact that costs increase. No
matter how costly the items get, we still have to get to the final rate R. Using this upper bound,

this dynamic programming approach takes O(k
∏k
i=1Ni) = O(kNk

max) = O
(
k
(R
x

)k)
.

2.4.2 Greedy Solutions

Natural Greedy Solution: One greedy solution that arises naturally in normal gameplay
involves buying the item that has the highest rate increase to cost ratio xi

yi
. This is the calculation

that most human players do when playing the game unaided. For the 2 item case, given most
reasonable setting of the parameters, this approach actually performs fairly well. However, for
certain settings of the parameters, this approach can be quite bad. For example, take M =
10000, (x1, y1, α1) = (1, 10, 2), (x2, y2, α2) = (10000, 9999, 2). In this case, the second item has a
much higher rate increase to cost ratio, which means that the natural greedy solution would save
up for a long time to purchase the second item. However, it is much better to purchase the first
item and increase your generation rate incrementally.

Efficiency Score Greedy Solution: As we saw in the analysis of the fixed-cost case, the
efficiency score was a helpful metric to determine which item to buy. Another idea for a greedy
algorithm is to compute the efficiency score of each item and always choose the item with the
lowest efficiency score. This approach is generally very close to optimal. In fact, we can prove
approximation guarantees for this greedy solution.

16

2.4.3 Approximation Ratio

Once again, we will begin with the 2 Item case. We derive an approximation ratio for the Efficiency
Score Greedy Solution that approaches 1 for sufficiently large M . Specifically, we will prove the
following theorem.

Theorem 2.6. The Efficiency Score Greedy Solution obtains an approximation ratio of 1+O
(

1
logM

)
for sufficiently large M .

Proof. The main idea is to use two propositions:

1. Proposition 1: Before you’re anywhere close to reaching the goal M , you’ll want to purchase
at least one more copy of item 1 and at least one more copy of item 2

2. Proposition 2: When G is “big enough”, α > 1 means that the most efficient item is locally
and globally optimal

Using these two propositions, the greedy solution can be compared to the optimal solution in three
phases.

• Phase 1: In this phase, the greedy algorithm reaches a certain generation rate G, which
corresponds to the “big enough” G referred to in Proposition 2. “Big enough” is quantified
in Claim 2.7. The time taken is labeled as T1.

• Phase 2: The optimal algorithm will buy some amount of each of the 2 items, reaching c1
copies of item 1 and c2 of item 2 (the game state (c1, c2)) near the tail end of the Buying
Phase. From this point onwards, the optimal algorithm will only purchase one type of item
— this is Phase 3.

We will show that the greedy algorithm also reaches the state (c1, c2). The interval between
the end of Phase 1 and reaching the state (c1, c2) is Phase 2. In this phase, the greedy
algorithm and optimal algorithm would be equivalent from the same starting state4. If we
let T2 denote the amount of time the greedy algorithm uses in Phase 2, and we let O2 be the
amount of time optimal algorithm takes to reach (c1, c2) from (0, 0), then T2 < O2.

• Phase 3: In this phase, Proposition 1 listed above is no longer true. Let w denote the number
of consecutive copies of a single item that the optimal algorithm buys at the very end of the
Buying Phase. If T3 is the amount of time the greedy algorithm takes in this phase and O3

is the amount of time the optimal solution takes, we can show that T3 < O3(α1(w · x2x1 + 1)) if
the single item is item 2, and T3 < O3(α2(w+ x2

x1
)) if the single item is item 1. Furthermore,

we can bound the value of w, so T3 < d2O3 for a constant d2 that depends only on the x’s
and α’s.

Here is an example of the greedy solution compared to the optimal solution, with the three
phases labeled. Take M = 100000, X = {10, 90}, Y = {80, 800}, α = {1.2, 1.1}.

Optimal Solution: [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1︸ ︷︷ ︸
O2

, 2︸︷︷︸
O3

]

Greedy Solution: [1, 1, 1, 1, 1, 1, 2, 2︸ ︷︷ ︸
T1

, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1︸ ︷︷ ︸
T2

, 2︸︷︷︸
T3

]

4In the final analysis, we compare the time needed by the optimal algorithm starting from a worse state than the
greedy one, so the greedy solution actually takes less time in Phase 2.

17

To begin, we will show that, when Proposition 1 is true and G is sufficiently large, then Propo-
sition 2 is true.

Suppose without loss of generality that we are currently at a state where B([1, 2]) < B([2, 1]).
We will say that this state has the E1 property, meaning that item 1 is currently more efficient,
and the locally optimal decision would be to buy item 1.

Due to Proposition 1, we know that any optimal solution from this current state will purchase
k copies of item 2 followed by a copy of item 1 for some number k. We want to show that given a
solution where k > 0, we can produce a better solution by choosing to purchase item 1 first before
purchasing any of the k copies of item 2. That is, given that B([2, 1]) > B([1, 2]), then

B([2, 2, . . . 2, 1]) > B([1, 2, 2, . . . 2])

which can be argued by sequentially showing that

B([2, 2, . . . 2, 2, 1]) > B([2, 2 . . . 2, 1, 2])

> B([2, 2 . . . 1, 2, 2])

...

> B([1, 2, 2, . . . 2, 2]).

This would be true if the E1 property still held after each purchase of item 2. Intuitively,
it should, because purchasing item 2 actually makes future purchases of item 2 more expensive.
However, the E1 property doesn’t necessarily hold after some number of purchases of item 2 because
when the generation rate goes up, the more expensive item, which could be item 2, could become
the more efficient item. Thus, we will rely on the following claim.

Claim 2.7. Let q2 = G
x2

. Suppose that a state with generation rate G satisfies the E1 property.

Then the next item that should be purchased is item 1 if q22 + 2q2 ≥ 1
α2−1 .

Proof. Let y1 and y2 denote the current costs of item 1 and item 2 after factoring in the cost
increases. If item 1 has a lower efficiency score than item 2 at generation rate G, then

y1
x1

+
y1
G
≤ y2
x2

+
y2
G
.

First, we find conditions when B([1, 2]) < B([2, 1]) =⇒ B([2, 1, 2]) < B([2, 2, 1]).
To show that B([2, 1, 2]) < B([2, 2, 1]), we need to prove that

y1
x1

+
y1

G+ x2
≤ α2

(y2
x2

+
y2

G+ x2

)
.

We know that
y1
x1

+
y1

G+ x2
<
y1
x1

+
y1
G
≤ y2
x2

+
y2
G
,

so we just have to show that
y2
x2

+
y2
G
≤ α2

(y2
x2

+
y2

G+ x2

)
.

18

Notice that

a
y2
x2

+
y2
G

≤ α2

(y2
x2

+
y2

G+ x2

)
⇐⇒ y2

G
≤ (α2 − 1)

y2
x2

+
α2y2
G+ x2

⇐⇒ 1

x2q2
≤ (α2 − 1)

1

x2
+

α2

x2q2 + x2

⇐⇒ q2 + 1 ≤ (α2 − 1)q2(q2 + 1) + α2q2

⇐⇒ 1 ≤ (α2 − 1)(q22 + 2q2)

⇐⇒ 1

α2 − 1
≤ q22 + 2q2.

This is the original assumption in Claim 2.7. Thus, we know that B([2, 1, 2]) < B([2, 2, 1]) if
the original condition holds. We also know that B([1, 2, 2]) < B([2, 1, 2]), so the optimal solution
from our current state can not start with a [2, 1] sequence or a [2, 2, 1] sequence.

Now, we claim that this holds for any string of 2’s in the beginning, that is, B([2, 2, . . . 2, 1, 2]) <
B([2, 2, . . . 2, 2, 1]). This is true because at the point where [1, 2] needs to be compared to [2, 1], the
generation rate G′ satisfies G′ > G, so q′2 > q2. Then, the same argument holds because

1

α2 − 1
≤ q22 + 2q2 < q′22 + 2q′2.

Thus, if G is large enough and we are in a state that satisfies the E1 property, then the next item
that should be purchased must be item 1.

Next, we will prove another claim that helps us analyze Phase 2 of the two solutions.

Claim 2.8. Let OPT (n1, n2) denote the minimum amount of time needed to reach the goal M
from a state where you have 0 cookies, n1 ≥ 0 copies of item 1 have been purchased, and n2 ≥ 0
copies of item 2 have been purchased. If n1 + n2 > 0, then OPT (n1, n2) < OPT (0, 0). The same
statement holds if the final goal is not reaching M cookies but to obtain c1 > n1 copies of item 1
and c2 > n2 copies of item 2.

Proof. Consider the strategy S(n1, n2) that mirrors the strategy of OPT (0, 0) except that it doesn’t
purchase items when it has more items than OPT (0, 0). Specifically, when OPT (0, 0) purchases its
nth copy of item 1, S will also choose to purchase the same item unless n < n1, in which case S will
do nothing. When OPT (0, 0) enters the Waiting Phase, S will as well. Due to how S is defined,
when S gets to the Waiting Phase, the generation rate of S will be at least that of OPT (0, 0).
On the other hand, anything that happens before that will take S less time than OPT (0, 0) takes
because S starts with more items and this gives S a higher generation rate and/or lets S save
time because S may not have to purchase some items that OPT (0, 0) does. Thus, it is clear that,
OPT (n1, n2) ≤ S(n1, n2) < OPT (0, 0).

The following claim is also necessary in conjunction with Claim 2.8.

Claim 2.9. If the optimal strategies ends up at the state (c1, c2) just before Phase 3, the greedy
algorithm will also reach the state (c1, c2).

Proof. In fact, a stronger claim is true: the greedy and optimal algorithms end up converging quite
soon after Phase 1. To see why this is the case, consider a point in Phase 2 where the greedy
algorithm has reached the state (a, b), where both ax1 and bx2 are both larger than q2x2. This

19

ensures that (a, 0) and (0, b) are also points in Phase 2. Suppose without loss of generality that it
arrives at this state from the prior state (a − 1, b). Then, consider the optimal solution. At some
point, the optimal solution must reach either (c, b) where c < a or (a, d) where d < b. In the first
case, we know that upon reaching (c, b), the optimal solution will be following a greedy solution
from that point forward. We also know that from the state (a − 1, b), the greedy solution chose
to purchase item 1, indicating that from the state (c, b), it is also more efficient to purchase item
1. This analysis holds true until the optimal solution reaches (a, b), which means that the optimal
solution has converged to the greedy solution. In the second case, we know that upon reaching
(a, d), the optimal solution will also be following a greedy solution from that point forward. We
also know that the greedy solution must have purchased item 2 at some state (e, d) where e < a
(because the greedy solution eventually reaches the state (a− 1, b)). Thus, if it was more efficient
to buy item 2 at the state (e, d), the same will hold at the state (a, d). This analysis applies until
d = b, indicating that the optimal solution will also reach (a, b).

Thus, the optimal and greedy solutions will definitely converge soon after Phase 1, and they
will stay the same as long as Proposition 1 holds true, which is the entirety of Phase 2. Thus, both
solutions will reach the same state (c1, c2) at end of Phase 2.

Finally, we need one last claim to analyze Phase 3 of the two solutions. As described before,
Phase 3 corresponds to the optimal solution only buying w copies of the same item and taking O3

time.

Claim 2.10. Let T3 and O3 denote the time taken by the greedy and the optimal solutions in this
section, respectively. If the optimal solution only buys item 2 at the end, then T3 < O3(α1(w·x2x1 +1)).
If the optimal solution only buys item 1 at the end, then T3 < O3(α2(w + x2

x1
)).

Proof. We’ll begin by analyzing the case where the optimal solution buys w copies of item 2 at the
end. The greedy algorithm will buy m copies of item 2 and n copies of item 1. We know that if we
look at the last item the greedy algorithm buys, the generation rate before buying that last item
must be less than the optimal algorithm’s end generation rate. Thus, either mx2+(n−1)x1 < wx2,
so n < (w−m)x2x1 + 1, or (m− 1)x2 +nx1 < wx2, so n < (w−m+ 1)x2x1 . The two cases are similar,
so we will just analyze the first one.

First, we observe that the greedy algorithm will never buy item 1 if its cost is more than item
2. Thus, at any point in time, item 1 can cost at most α1 times as much as item 2, or y1 < α1y2.

The total time needed by the greedy algorithm is the total time need to buy the m copies
of item 2 plus the total cost of the n copies of item 1. Buying m copies of item 2 takes at
most m

wO3 (because the items get more expensive). Each copy of item 1 can’t take more than
α1 times the maximum time needed to buy a copy of item 2 in the greedy solution, which must
be less than the maximum time need to buy item 2 in the optimal solution, which must be less
than O3. Thus, buying n copies of item 1 can’t take more than nα1O3. Thus, we have that
T3 < O3(

m
w +nα1) < O3(

m
w +α1((w−m)x2x1 + 1)). This approximation ratio achieves its maximum

when m = 0, giving T3 < O3(α1(w · x2x1 + 1)). This completes the proof.
To prove the same result for the case where the optimal solution only buys item 1 at the end,

we can observe that the greedy algorithm will never buy item 2 if y2 >
x2
x1
y1, so in the worst case,

y2 < α2
x2
x1
y1 at any moment. The rest of the argument proceeds similarly.

Finally, we provide a bound on the w defined above. We will derive an expression for the case
where the optimal solution only buys copies of item 2; the bound for the other case can be derived
similarly.

Claim 2.11. w < j log(jα1)
log(α2)

+ 1, where j =
⌈
x2
x1

⌉
.

20

Proof. If the optimal solution buys k copies of item 2 at the end, k can not be too big because
otherwise we could replace the purchase of the final 2 with j purchases of item 1, which would give
a greater rate increase and also take less time.

If the optimal solution buys w copies of item 2 at the end, it must have bought item 1 right
before that. Thus, at that moment, the optimal and greedy solutions match, and y1 < y2. After
w − 1 purchase of item 2, purchasing another copy of item 2 would cost y2α

w−1
2 . On the other

hand, purchasing j copies of item 1 would cost α1y1(1 +α1 + · · ·+αj−11) < y1jα
j
1. Technically, the

generation rates when each of these items is purchased is different, but we can argue that the rates
are all close enough to each other (say, within a small constant factor), and the overall argument
still holds.

Then, it must be the case that

y1α
w−1
2 < y2α

w−1
2 < y1jα

j
1

Taking logs of both sides and rearranging gives the desired result.

From Claim 2.7, Claim 2.8, Claim 2.9, Claim 2.10, and Claim 2.11, we can show that the greedy
algorithm that uses the efficiency score is an approximation algorithm whose approximation ratio
approaches 1 as M →∞.

Suppose we are given an instance of Cookie Clicker for 2 Items with sufficiently large M .
Without loss of generality, suppose that x2 > x1. Let Q2 be the larger positive solution to x2+2x =

1
α2−1 .

Consider the greedy algorithm on this instance of Cookie Clicker. We will let T (0, 0) be the
amount of time it takes to reach the goal M . At the end of Phase 1, it will reach a rate of
G ≥ Q2x2. We denoted the amount of time taken in this phase by T1. The amount of time it
takes to reach this point is bounded above by the amount of time it takes to purchase dQ2e copies
of item 2 while ignoring item 1, which is a function of the inputs x2, y2, α2. Thus, T1 < d1, where
d1 = f ′(x2, y2, α2).

Next, suppose that when the greedy algorithm passes the rate Q2x2, it has n1 copies of item 1
and n2 copies of item 2. The greedy algorithm will continue to make locally optimal decisions from
that point forward, which, as Claim 2.7 shows, are globally optimal decisions. Let T (n1, n2, c1, c2)
denote the amount of time it takes the greedy solution to reach the end of the Phase 2. Now define
OPT (n1, n2, c1, c2) similarly for the optimal algorithm. Claim 2.9 tells us that we can use the same
values of c1 and c2. Then we know that T (n1, n2, c1, c2) = OPT (n1, n2, c1, c2). Finally, we let T3
denote the amount of time taken in Phase 3 of greedy algorithm. Then, using Claim 2.8, Claim 2.9,
Claim 2.10, and Claim 2.11, we have that

T (0, 0) = T1 + T2 + T3

= T1 + T (n1, n2, c1, c2) + T3

= T1 +OPT (n1, n2, c1, c2) + T3

< d1 +OPT (0, 0, c1, c2) + d2O3,

where d2, depending on whether the optimal solution buys item 2 or item 1 at the end, has the

form
(
α1

((⌈x2
x1

⌉
log
(⌈

x2
x1

⌉
α1

)
log(α2)

+ 1
)
· x2x1 + 1

))
= f∗(x1, x2, α1, α2).

Finally, note that in the optimal solution, the maximum possible generation rate that the
solution will have before going into the Waiting Phase is x1 logα1

M
y1

+x2 logα2

M
y2

, which grows with

O(logM). Thus, the Waiting Phase will take at least M
O(logM) time, so OPT (0, 0) > c · M

logM , where

c is a function of (x1, x2, y1, y2, α1, α2) but is independent of M .

21

The approximation ratio of our greedy algorithm is T (0,0)
OPT (0,0) , and we know that

T (0, 0)

OPT (0, 0)
<
d1 +OPT (0, 0, c1, c2) + d2O3

OPT (0, 0, c1, c2) +O3

=
d1 + (d2 − 1)O3

OPT (0, 0)
+ 1

<
d1
c
· logM

M
+

(d2 − 1)O3

c
· logM

M
+ 1

= O
(logM

M

)
+O(

O3 logM

M
) + 1.

We can make M large enough such that the generation rate G after the Buying Phase is as
big as we want it to be. If we have purchased n1 copies of item 1 and n2 copies of item 2, then
Gn1,n2 = 1 +n1x1 +n2x2. Using Lemma 1.5, the optimal algorithm will stop purchasing additional

copies of item 2 when M < y2 · αn2
2 (1 +

Gn1,n2
x2

). However, because it was worth it to purchase the
n2th copy, we know that

M ≥ y2 · αn2−1
2

(
1 +

Gn1,n2−1
x2

)
> y2 · αn2−1

2 · n2.

Thus logM = O(log n2 + n2) = O(n2), so n2 = O(logM). Note that the cost of the last item
purchased in this phase is O(Mx2/Gn1,n2) = O(M/n2) = O(M/ logM). Because each of the w
items bought in Phase 3 can cost at most the cost of the last item, we have that the total cost of the
last phase in the optimal solution is at most w ·O(M/ logM). Recall from Claim 2.11 that w does
not depend on M . The minimum rate in this phase is G−wx2 = O(logM), so Lemma 1.3 tells us
that the total time cost is O3 = O(M/log2M). Plugging this in for O3 in the final expression, we
get that the approximation ratio is

O
(logM

M

)
+O

(1

logM

)
+ 1 = 1 +O

(1

logM

)
.

Thus, asM →∞, the O(1
logM) term approaches 0, and so the approximation ratio can be arbitrarily

close to 1 for sufficiently large M .
The above results can be extended to the case of k items, as the local “swapping” argument at

the core of Claim 2.7 works for any pair of consecutive item purchases. Thus, once the generation
rate G exceeds maxi qixi, where each qi is the smallest integer satisfying q2i + 2qi ≥ 1

αi−1 , Phase 1
will end. Phase 1 could take longer in the k item case than in the 2 item case, but the amount of
time it takes is still independent of M . Claim 2.8 and Claim 2.9 also hold for more items. Finally,
Claim 2.10 applies to any pair of items, so the number of items in Phase 3 is upper bounded by
the value of w derived from every pair of items, which is still a function of just the x’s and α’s,
independent of M . Thus, the same analysis applies, and we can achieve the same approximation
ratio for larger k.

For the rate-goal version of the problem, we believe that a similar approach could work, but it
does not follow as easily. This is because the Waiting Phase does not exist, which is an essential
part of proving the approximation ratio in the M version. One approach that could work is to
show that Phase 3 of the optimal and greedy solutions match exactly. If that can be proven, then

we can prove an approximation ratio of 1 +O
(
R
cR

)
.

22

3 Negative Results

3.1 R version is at least as hard as M version

We will begin by showing that the R version of the problem is at least as hard as the M version of
the problem using a simple polynomial time reduction.

Theorem 3.1. The M version of Cookie Clicker is polynomial time reducible to the R version of
Cookie Clicker

Proof. Suppose we are given an instance of the M version of the problem with k items having the
parameters (xi, yi, αi) for 1 ≤ i ≤ k.

Then, we can construct an instance of the R version of the problem with k+ 1 items having the
parameters (xi, yi, αi) for 1 ≤ i ≤ k and (V,M,−) for item k + 1, where M is the target number
of cookies in the simulated original problem, V is the rate goal in the new problem, and - is an
arbitrary value. We let V be sufficiently large such that it is faster to purchase item k+1 to achieve
the rate goal of V than it is to achieve the same rate goal by purchasing only the first k items.

Then, the optimal solution must purchase item k + 1. To do so, we would need M cookies as
quickly as possible from the initial state by using just the first k items. Thus, solving this specific
instance of the R version is equivalent to solving the M version for k items. Thus, the M version
is polynomial time reducible to the R version and the R version is at least as hard as the M
version.

3.2 Weak NP-hardness of R version

We will now prove weak NP-hardness of the R version of k-item increasing-cost Cookie Clicker
using a reduction from the weakly NP-hard problem Partition [GJ79].

The problem Partition is the following: Given a multiset S of positive integers, can S be
partitioned into two subsets S1 and S2 such that the sum of the numbers in each subset is equal?

Because we want to prove NP-hardness results, we will use a decision version of the rate-
goal Cookie Clicker problem rather than the original optimization version. The problem is the
following: Given 0 initial cookies, an initial cookie generation rate of 1, and k items described by
tuples (xi, yi, αi), is there a strategy that can obtain a rate of R by target time T?

Theorem 3.2. The R version of Cookie Clicker is weakly NP-hard.

Proof. Suppose we are given an instance of Partition in the form of a set of positive integers
(a1, a2 . . . ak) such that

∑k
i=1 ai = 2B. We will construct an instance of rate-goal Cookie Clicker

such that solving this instance is equivalent to solving the input Partition instance.
First, we choose W = B2 +B+ 1 and let L represent an extremely large number such that it is

never worth it to purchase two copies of any one item. Then, we construct the following instance
of rate-goal Cookie Clicker:

• (xi, yi, αi) = (ai/W, ai, L) for 1 ≤ i ≤ k

• R = 1 +B/W

• T = B

Our goal is to prove the following

23

Lemma 3.3. A partition exists for the Partition instance if and only if there exists a solution
for the corresponding rate-goal Cookie Clicker instance which takes at most B time.

Proof. First, note that a partition exists if and only if there exists a sequence of items whose rate
gains add up to B/W .

We’ll begin by assuming that a partition ap1 , ap2 , . . . , apr exists. Let Sp denote the strategy that
purchases the sequence of items p1, p2, . . . , pr. We will show that this strategy Sp takes at most B
time.

Because item costs and rate gains are proportional in this instance of Cookie Clicker, the total
cost (in cookies) of the items in strategy Sp is B. Then, using Lemma 1.3, the total amount of time
needed for strategy Sp is

B([p1, . . . , pr], 1) ≤
r∑
i=1

ypi = B

which proves the desired result.
Next, we will show that if no partition exists, then any solution to the Cookie Clicker instance

will take more than B time. If no partition exists, then no sequence of item purchases will add a
rate gain of exactly B/W . Thus, any solution to Cookie Clicker must end at a rate of 1+(B+n)/W
for some positive integer n. Consider any strategy S that ends at such a rate. Again, because item
costs and rate gains are proportional, the total cost (in cookies) of the items in strategy S is B+n.
Suppose that the items purchased in S have indices q1, q2, . . . , qs. Again, using Lemma 1.3, the
total amount of time needed for strategy S is

B([q1, . . . , qs], 1) >

∑s
j=1 yqj

1 + (B + n)/W
=

B + n

1 + (B + n)/W
=

W (B + n)

W +B + n
.

We want to show that
W (B + n)

W +B + n
> B

or equivalently, that

W >
B(B + n)

n

The final inequality is true as long as W > B(B + 1) because the right-hand side is maximized
when n = 1, so W = B2 +B+ 1 works. Thus, we have shown that if no partition exists, then there
does not exist a solution to Cookie Clicker that takes at most B time. This completes the proof of
the lemma.

Lemma 3.3 is a proof that the reduction from Partition holds, implying the statement of
Theorem 3.2 that the R version of Cookie Clicker is weakly NP-hard. As of now, we have not been
able to prove the same result for the M version of Cookie Clicker, so we provide a weaker hardness
result for a variant of the M version of Cookie Clicker in the following section.

3.3 Cookie Clicker with Initial Cookies

We now focus on the more general version of the Cookie Clicker problem where you start with
z > 0 initial cookies. Recall that previously, we only focused on the case where you start with
z = 0 initial cookies. We will provide a pseudo-polynomial time algorithm for solving it and a weak
NP-hardness proof. First, we list the inputs to this problem again, which are

• z, the initial number of cookies you start out with;

24

• Vectors X, Y , and A, where each triple (xi, yi, αi) represents the (generation rate gain, initial
cost, cost gain) of each item. The vectors are of length k;

• r, the initial generation rate; and

• M , the target number of cookies.

The goal of this game is to find the optimal order of items to purchase to reach the goal M as
quickly as possible. This version of the game now uses the extra parameters z and r, which were
previously set to fixed values z = 0 and r = 1.

3.3.1 Dynamic Programming Solution

This section is not a negative result, but it describes a weakly-polynomial time solution to the
Cookie Clicker with Initial Cookies problem.

The dynamic programming solution from Section 2.3.1 can be modified slightly to solve this
generalized problem. We will use the 2 Item case to illustrate our example.

Just as before, we know that the optimal solutions is to buy items whenever they are affordable
or to enter the Waiting Phase Thus, if we have cookies left over and an item is affordable and
beneficial, we will choose to buy that item right away. This means that right when the game starts,
the strategy will be to buy some set of items all at once, until items are either not affordable or not
beneficial, and then to wait until items become affordable again. This implies that each game state
in the optimal solution can still be described by 2 numbers (n1, n2), corresponding to the number
of item 1 that has been purchased and the number of item 2 that has been purchased. It seems like
the number of left over cookies would be a third parameter, but the number of left over cookies is
determined entirely by (n1, n2) based on this strategy.

Let Cn1,n2 be the cost of purchasing n1 copies of item 1 and n2 copies of item 2 at the very
beginning of the game. If Cn1,n2 < z, the number of left over cookies is just k − Cn1,n2 , and if

Cn1,n2 > z the number of left over cookies is exactly 0. Let Ln1,n2 = max
(
k − Cn1,n2 , 0

)
denote

the number of leftover cookies.
Then, since each state can be described by 2 numbers, we can derive the recurrence:

DP [a][b] = min
(M − La,b

gab
,

max(y1 · αa1 − La,b, 0)

gab
+DP [a+ 1, b],

max(y2 · αb2 − La,b, 0)

gab
+DP [a, b+ 1]

)
Here, gab = r + ax1 + bx2.

We can generalize this formula to k items and it will still hold. Thus, dynamic programming
provides a weakly-polynomial time solution to the Cookie Clicker with Initial Cookies problem.

3.3.2 Weak NP-hardness of Cookie Clicker with Initial Cookies

We will now prove that the Cookie Clicker with Initial Cookies problem is NP-hard.

Theorem 3.4. Cookie Clicker with Initial Cookies is NP-hard.

25

Proof. As before, our strategy will be to use a reduction from Partition. Suppose we are given an
instance of Partition in the form of a set of positive integers (a1, a2 . . . ak) such that

∑k
i=1 ai = 2B.

We will construct an instance of Cookie Clicker with Initial Cookies such that solving Cookie Clicker
with Initial Cookies will solve Partition.

Let A be some big number (for example, A = 1000B), and let L be an extremely large number
such that an optimal strategy should only buy at most 1 of each item. We can construct an instance
of Cookie Clicker with Initial Cookies with the inputs set as follows:

• z = kA+B

• (xi, yi, αi) = (ai +A, ai +A,L) for 1 ≤ i ≤ k

• (xi, yi, αi) = (A,A,L) for n+ 1 ≤ i ≤ 2k

• r = 0

• M = kA+B + 1

We will now prove the following lemma.

Lemma 3.5. A partition exists for the Partition instance if and only if there exists a solution
to the corresponding Cookie Clicker with Initial Cookies instance which takes at most M

kA+B time.

Proof. First, suppose that a Partition solution exists. That means we can choose some set of the
integers (a1, a2 . . . ak) such that they sum to B. Equivalently, this means we can use our initial
z = kA+B cookies to buy k total items for a price of kA+B at the very beginning of the game.
We then wait until we have M cookies. The total amount of time it takes to reach M using this
strategy is M

kA+B , which proves the first half of the lemma.
Now, suppose that there exists a solution to the Cookie Clicker with Initial Cookies instance

which takes at most M
kA+B time. Recall again the optimal strategy has a Buying Phase and a

Waiting Phase. We will analyze what rate the strategy ends up with at the end of the Buying
Phase with the goal of showing that a solution that takes at most M

kA+B time must end at a final
rate of kA+B. We will do so via contradiction.

If the strategy doesn’t end up at a rate of kA+B, there are two possible cases. We will assume
that each case is true and derive a contradiction.

Case 1: The strategy ends at a rate less than kA+B
If the strategy ends at a rate of kA + B − j for j > 0, then it must have spent kA + B − j

purchasing items at t = 0 and then waited from that point forward. The total time that this
strategy takes is M−j

kA+B−j , which we claim is always greater than M
kA+B . It’s easy enough to verify

that
M

kA+B
<

M − j
kA+B − j

or equivalently
−jM < −j(kA+B)

which follows from kA+B < M . Thus, we have a contradiction, and this case is impossible.
Case 2: The strategy ends at a rate greater than kA+B.
First, note that after buying any k items (or particular combinations of k − 1 items) at t = 0,

there will not be enough cookies left over to purchase the next item right away. The Cookie Clicker
with Initial Cookies problem then reduces to the original Cookie Clicker problem where you have

26

no cookies at the start. We can then recall from Corollary 1.6 that if you have generation rate G,
it is only worth it to buy an item with rate increase x and cost y if

G ≤ Mx

y
− x.

Because xi = yi for all i, this becomes
G ≤M − xi. (5)

In the case where a solution buys k items at t = 0, G ≥ kA. Then G+xi ≥ G+A ≥ (k+1)A >
M , so it is no longer worth it to buy any items after purchasing k items. However, the k items
cannot have total cost greater than the initial amount of cookies, which is kA + B, and we know
that their total cost is not exactly kA + B, so the final rate G is at most kA + B − 1. This does
not match the assumption in this case that the final rate is greater than kA+B.

Now, consider the case where the solution buys k − 1 items at t = 0. Then equation (5) tells
us that item i is only worth purchasing if M ≥ G + xi. Thus, the final rate after purchasing the
kth item, G+ xi, is upper bounded by M = kA+B + 1. Because we are currently considering the
case where the final rate is greater than kA + B, the only possible final rate for this case is then
kA+B + 1.

Thus, we have reduced this case to the specific scenario where k−1 items are purchased at time
t = 0, giving a rate of (k − 1)A + c for some 0 ≤ c ≤ 2B. Then, the strategy purchases another
item as soon as it can, ending up at a rate of kA + B + 1. After purchasing the first k − 1 items,
the strategy will have A + B − c cookies left. The cost of the last item, which will push the rate
up to kA+ B + 1, will be kA+ B + 1− (k − 1)A− c = A+ B − c+ 1. Thus, this strategy needs
exactly 1 more cookie to purchase this last item.

The amount of time this strategy takes is

1

(k − 1)A+ c
+

M

kA+B + 1
≥ 1

(k − 1)A+ 2B
+

M

kA+B + 1
. (6)

We want to check that the quantity on the right-hand side of (6) is greater than M
kA+B . Indeed,

1

(k − 1)A+ 2B
+

M

kA+B + 1
>

M

kA+B

⇐⇒ 1

(k − 1)A+ 2B
>

M

(kA+B)(kA+B + 1)

⇐⇒ 1

(k − 1)A+ 2B
>

1

kA+B

⇐⇒ kA+B > (k − 1)A+ 2B

⇐⇒ A > B,

which is true. Thus, any strategy that ends at a rate greater than kA+B will also take more than
M

kA+B time. Again, we have a contradiction, and this case is impossible.

Therefore, if a solution exists that takes at most M
kA+B time, it must end at a rate of kA+ B.

Then, since the cost and rate gains are the same for each item, the solution must have purchased
a set of items that have a total cost (in cookies) of kA+B. Then, this set of items corresponds to
a set of ai’s that sum to B, which means that a solution to the Partition instance exists. Thus,
we have shown that if a solution takes at most M

kA+B time, then a partition exists for the original
Partition instance. This completes the proof of Lemma 3.5.

27

We have shown that given an instance of Partition, which is NP-complete, we can construct
an instance of Cookie Clicker with Initial Cookies in polynomial time such that being able to solve
Cookie Clicker with Initial Cookies means being able to solve the instance of Partition. Thus,
Theorem 3.4 is proven and Cookie Clicker with Initial Cookies itself is NP-hard.

As a note, this result was proven for the M version of Cookie Clicker with Initial Cookies, so it
must hold for the R version too because the R version is at least as hard as the M version.

3.4 Cookie Clicker with Discrete Timesteps is Strongly NP-hard

Another variant of Cookie Clicker is Cookie Clicker with discrete timesteps. In all previous versions,
we have been analyzing the game in continuous time. In this model, we can think of the generation
rate as an “income” instead, where you receive your income (some number of cookies) after every
discrete time step. This model can be shown to be NP-hard via a reduction from the strongly
NP-hard problem 3-Partition [GJ79].

The Cookie Clicker with Discrete Timesteps problem can be formally stated as the following:
Given 0 initial cookies, an initial income r, n items described by tuples (xi, yi, αi), and the rule
that you receive your income after every timestep, is there a strategy that can obtain M cookies
by target time T?

The problem 3-Partition is the following: Given a multiset S of k = 3m integers, can S be
partitioned into triplets S1, S2, . . . , Sm such that the sum of the numbers in each subset is equal?

Theorem 3.6. Cookie Clicker with Discrete Timesteps is strongly NP-hard

Proof. We reduce from 3-Partition. Suppose we are given an instance of 3-Partition (a1, a2, . . . , ak),
such that

∑k
i=1 ai = A.

We will encode 3-Partition as Cookie Clicker with Discrete Timesteps as follows. Choose a
number B > Ak

3 . As before, let L be a large enough number such that it is never worth it to
buy two of any one particular item. We then construct the following Cookie Clicker with Discrete
Timesteps instance:

1. (xi, yi, αi) = (ai, B · ai, L).

2. M = A
2

(
k
3 − 1

)
+ 2B ·

(
3BA
k +A

)
.

3. r = 3BA
k .

4. T = k
3 + 2B

We will prove that there exists a solution to the 3-Partition instance if and only if there exists
a solution to the Cookie Clicker instance which reaches M in time k

3 + 2B or less. Recall that the
optimal solution must proceed in two distinct phases: the Buying Phase and the Waiting Phase.

First, note that after time step k
3 , ignoring any extra income we get from buying items in those

timesteps, we will have produced BA cookies just from our initial generation rate. Thus, it will
be possible to purchase every single item by the end of time step k

3 . Since it is always better to

purchase items earlier rather than later, this means that the Buying Phase will last at most k
3 turns.

Next, note that buying every single item results in a final generation rate of 3BA
k +A. Thus, the

generation rate is always upper bounded by 3BA
k +A. At the end of time step k

3 , the total amount

of cookies generated will be at most BA + Ak
3 . Because Ak

3 < B and all item costs are multiples
of B (and thus at least B), we know that any cookies generated from our items and not from the

28

original income will not increase our ability to purchase items in the Buying Phase. In other words,
the cookies that our items generate will not improve our buying power, and we essentially get 3BA

k

to spend every turn. We can also conclude that the Buying Phase will last exactly k
3 turns.

Next, note that because the cost of every item scales linearly with the increase in generation
rate, spending cookies on items will always produce the same increase in generation rate per cookie.
Thus, the best way to spend cookies is to spend them as early as possible, because this maximizes
the amount of time that the increase in generation rate is present.

Finally, T is large enough that it is always worth it to purchase the first copy of each item
rather than foregoing the purchase. Thus, the optimal strategy is to spend as many of your cookies
as possible at every time step in the Buying Phase, and then to enter the Waiting Phase. The
fastest way to reach M will be to spend all 3BA

k of your generated cookies on every time step in the
Buying Phase. This is only possible if the numbers (a1, a2, . . . , ak) can be partitioned into subsets
such that for each subset, the total sum is 3A

k , which is exactly the 3-Partition problem. The
maximum attainable value of M assuming a 3-Partition exists is the value we chose for M in the
reduction.

Once again, note that this result also holds for the corresponding R version of the Cookie Clicker
with Discrete Timesteps problem.

4 Conclusion

Cookie Clicker, while a seemingly simple game, gives rise to many interesting optimization prob-
lems. We analyzed these problems through the context of dynamic programming, approximation
algorithms, and NP-hardness. For specific variants of Cookie Clicker, we classified the structure of
optimal solutions, thereby limiting our search space for such solutions. This allowed us to devise
polynomial time algorithms for solving the problem. For more general variants of Cookie Clicker,
we proved NP-hardness results via reductions from Partition and 3-Partition. Although these
problems are NP-hard, their solutions can be approximated very well with a greedy algorithm based
on a specific efficiency metric, and we can prove an approximation ratio guarantee that approaches
1 when the input parameter approaches infinity.

Here are a few conjectures which experimentally appear to be true, but have not been proved.

• Fixed-Cost Case for k items: In any solution, if there are two items such that item 1
is cheaper and has a lower rate increase to cost ratio than item 2, then item 1 will never be
bought after item 2. This conjecture would imply that any solution to the fixed-cost case is
in “sorted” order, where the cheaper and less efficient items come first. This matches current
experimental results. If this conjecture is true, then it would lead to a polynomial-time
solution for small values of k that involves finding the points of transition between buying
one item as opposed to another. Analyzing a specific subset of local optimizations different
from the ones analyzed in this paper could lead to insight on this conjecture.

• Increasing-Cost Case for k items: The problem of minimizing the amount of time needed
to reach M cookies from a starting state of 0 initial cookies, an initial generation rate of 1,
and a set of k items whose costs increase exponentially is weakly NP-hard. This conjecture
would be interesting because we would then have a very simple approximation algorithm
whose approximation ratio approaches 1 for sufficiently large M for an NP-hard problem.

Other interesting directions to explore include the following:

29

• Different Cost Increase Dynamics: Instead of having item costs increase exponentially,
have item costs increase additively or in some manner that matches economic situations more
closely.

• Relate the incremental game model to more real-world situations.

5 Acknowledgements

The authors would like to acknowledge the support of CREST, JST, Grant No. JPMJCR1402 and
KAKENHI, JSPS, Grant No. 15K11985.

References

[DL05] Erik D. Demaine and Stefan Langerman. Optimizing a 2D function satisfying unimodal-
ity properties. In Proceedings of the 13th Annual European Symposium on Algorithms,
volume 3669 of Lecture Notes in Computer Science, pages 887–898, Mallorca, Spain,
October 2005.

[GJ79] Michael Garey and David Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[JWW97] Xing Zhao Jihua Wang, Peter B. Luh and Jinlin Wang. An optimization-based algorithm
for job shop scheduling. In Proceedings of SADHANA, volume 22, pages 241–256, April
1997.

[Wik14] Wikipedia. Incremental game. https://en.wikipedia.org/wiki/Incremental_game,
2014.

30

https://en.wikipedia.org/wiki/Incremental_game

	Introduction
	Models
	Results
	Useful Tools

	Positive Results
	1-Item Cookie Clicker Solution
	Fixed-Cost Cookie Clicker for 2 Items
	Fixed-Cost Cookie Clicker for k Items
	Dynamic Programming Solution
	Local Optimizations

	Increasing-Cost Cookie Clicker for k Items
	Dynamic Programming Solution
	Greedy Solutions
	Approximation Ratio

	Negative Results
	R version is at least as hard as M version
	Weak NP-hardness of R version
	Cookie Clicker with Initial Cookies
	Dynamic Programming Solution
	Weak NP-hardness of Cookie Clicker with Initial Cookies

	Cookie Clicker with Discrete Timesteps is Strongly NP-hard

	Conclusion
	Acknowledgements

