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Covering Folded Shapes
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Abstract

Can folding a piece of paper flat make it larger? We
explore whether a shape S must be scaled to cover
a flat-folded copy of itself. We consider both single
folds and arbitrary folds (continuous piecewise isome-
tries S → R2). The underlying problem is motivated
by computational origami, and is related to other cov-
ering and fixturing problems, such as Lebesgue’s uni-
versal cover problem and force closure grasps. In addi-
tion to considering special shapes (squares, equilateral
triangles, polygons and disks), we give upper and lower
bounds on scale factors for single folds of convex objects
and arbitrary folds of simply connected objects.

1 Introduction

In this paper, we consider cov-

Figure 1: From
Wu’s diagram.

ering all possible folded versions
of a given shape by a scaled copy
of the shape itself, with the ob-
jective of keeping the scale factor
as small as possible. We explore how folds can make
an origami model larger, in the sense that Joseph Wu’s
one-fold stegosaurus1 cannot be covered by a copy of
the square from which it is folded.

Problems of covering a family of shapes by one
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minimum-cost object have a long tradition in geom-
etry. The classical prototype is Lebesgue’s universal
cover problem from 1914 [10], which asks for a planar
convex set of minimum area that can cover any planar
set of diameter at most 1; Brass and Sharifi [3] give the
best upper and lower bounds, but a gap remains. A
similar question, also with a gap, is Moser’s worm prob-
lem [9, 11], which asks for a convex set of minimum
area that can cover any planar curve of length 1. As re-
ported in [3] and the book by Brass, Moser, and Pach [2,
Chapter 11.4], there is a large family of well-studied, but
notoriously difficult problems parameterized by

• the family of sets to be covered,
• the sets allowed as covers,
• the size measure to be minimized, and
• the allowed transformations.

In this paper we consider a given shape S, which is a
region of the plane that is a simply connected (no holes)
closed 2-manifold with boundary (every interior point
has a disk neighborhood and every boundary point a
half-disk). A shape S may possess more specific prop-
erties: e.g., it may be convex, a (convex or non-convex)
polygon, a disk, a square, or an equilateral triangle.

We denote by cS, for c > 0, the family of copies of S
that have been scaled by c, and then rotated, reflected,
and translated. We consider upper and lower bounds on
the smallest constant c such that, for any F obtained
by folding S, some member of cS contains or covers F .
Let us be more specific about folding.

A single fold of S with line ` reflects one or more
connected components of the difference S \ ` across `.
Let F1(S) denote the family of shapes that can be gen-
erated by a single fold of S. An arbitrary fold of S is
a continuous, piecewise isometry from S → R2, which
partitions S into a finite number of polygons and maps
each rigidly to the plane so that the images of shared
boundary points agree. The key property that we will
use is that the length of any path in S equals the length
of its image in R2. Let F(S) denote the family of all
images of arbitrary folds of S.

The single fold and arbitrary fold are two simple no-
tions of flat folding that avoid concerns of layering and
fold order. Note that any upper bound that we prove
for arbitrary folds applies to single folds, too. And, al-
though the image of an arbitrary fold need not be the
result of single folds, our lower bounds happen to be
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limits of finite sequences of single folds. Our results
apply to 3-d folded shapes if covering is understood to
mean covering the orthogonal projection to the plane.

Throughout this paper, we consider origami covers:

Definition 1 For a given shape S and c > 0, cS is an
origami cover of S if any member of F(S) can be covered
by some member of cS. The origami cover factor of S
is the smallest such c, which may be ∞:

c∗(S) = inf{c | cS is a origami cover of S}.
Analogously, c1S is a 1-fold origami cover of S if any

member of F1(S) can be covered by c1S; and
c∗1(S) = inf{c | cS is a 1-fold cover of S}.

Questions of whether folding can increase area or
perimeter have been considered before. It is clear that
folding a piece of paper introduces overlap, so area can
only decrease. On the other hand, the perimeter of
a rectangle or square can be greater in a folded than
an unfolded state—known as Arnold’s ruble note or
the Margulis napkin problem [1, 7]. Folding techniques
that increase perimeter, like rumpling and pleat-sinking,
make very small but spiky models that are easily cov-
ered by the original paper shape, however.

Before we explore single folds in the next section,
let us recall some common geometric parameters of a
shape S and make one general observation.

For a given shape S, an incircle, Cr, is a circle of
maximum radius (the inradius r) contained in S. Sim-
ilarly, the circumcircle, CR, is the circle of minimum
radius (the circumradius) that contains S. For a non-
convex shape S, we instead measure geodesic distances
within S, i.e., the distance between two points is the
length of a shortest path in S between the points. A
geodesic diameter is a path within S that attains the
maximum distance D between two points of S. A
geodesic center is a point in S that minimizes the max-
imum distance (the geodesic radius R) to all points
of S. For convex shapes the geodesic radius R is also
the circumradius. Jung’s theorem in the plane says√

3R ≤ D ≤ 2R, with the equilateral triangle and circle
giving the two extremes [12, ch. 16].

For any folded state of S, these parameters give an
upper bound on the origami cover factor.

Lemma 2 Any shape S with inradius r and geodesic
radius R has an origami cover factor c∗(S) ≤ R/r.

Proof. Place any folded state F ∈ F(S) in the plane
so that the image of a geodesic center is at the origin.
Choose a member of (R/r)S with an incircle center at
the origin. Because no path in F can be more than R
from the origin, the scaled incircle covers F . �

2 Single Folds

In this section we explore the 1-fold cover factor c∗1(S),
giving general bounds for convex S and for polygons,

and the exact values for equilateral triangles, squares,
and a family derived from disks.

2.1 Convex shapes

For a convex set S, there is a lower bound for the 1-fold
cover factor c∗1(S) that is within a constant factor of the
upper bound given by Lemma 2.

Theorem 3 Let S be a convex shape with inradius r
and circumradius R. Then κR/r ≤ c∗(S) ≤ R/r for an
appropriate constant κ = ((

√
5− 1)/2)5/2 ≈ 0.300283.

Proof. The upper bound is from Lemma 2.
For the lower bound, consider the center p∗ of the

R-circle CR that contains S. Because R is smallest
possible, the set of points where the boundary of CR
touches S, T := ∂CR ∩ S, must contain at least two
points, and no open halfplane through p∗ can contain
all of T . If |T | = 2, then these two points t1 and t2 must
lie on a diameter of CR; if |T | > 2, there must be two
points t1, t2 ∈ T that form a central angle ∠(t1, p

∗, t2)
in [ 2

3π, π]. Thus, for any ϕ ∈ [0, 2
3π], we can perform a

single fold along a line through p∗ that maps t2 to t′2
such that the central angle ∠(t1, p

∗, t′2) is ϕ.

rϕ

ϕ

p∗

t′2t1

R

R cos(ϕ/2)

R sin(ϕ/2)

Figure 2: Parameters for calculating the 1-fold cover
factor for convex S.

Now, after folding, consider a cover of the three points
t1, p

∗, t′2 by cS for some c > 0. As each member of cS is
convex, in covering the triangle ∆(t1, p

∗, t′2), it also cov-
ers the largest circle C∆ contained in ∆(t1, p

∗, t′2); let
rϕ be the radius of this circle, see Figure 2. Using ele-

mentary geometry we obtain rϕ = R
2

sin(ϕ)
1+sin(ϕ/2) , which is

maximized at ϕ = 2 arctan
(
((
√

5−1)/2)1/2
)
≈ 76.345◦,

giving rϕ = κR as the radius of C∆. Because the largest
circle covered by cS has radius cr, and C∆ is covered
by cS, we conclude that c ≥ κR/r. �

2.2 Cover factors for specific polygons

In this section we determine c∗1(S) when S is an equi-
lateral triangle or a square. These two cases illustrate
analysis techniques that could in theory be extended
to other polygons, except that the number of cases ex-
plodes, especially for non-convex shapes.
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An important subproblem is to fix the folded shape
F and compute, for the given shape S, the smallest c
such that cS covers F . With four degrees of freedom for
translation, rotation, and scaling, we expect that four
first-order contacts between the boundaries of S and F
will define the minimum c. In polygons, these will be
four pairs consisting of a vertex of F and an edge of
S that it lies on. A enclosing triangle, therefore, has
some edge touching two vertices of F [5, Lemma 2];
a enclosing square either has some edge touching two
vertices or each edge touching one [4].

In the full paper we say more about how these
structural characterizations support the use of rotating
calipers to compute minimum enclosing shapes. (E.g.,
an appealing direct construction of the square through
four points, which is unique when it exists, is the so-
lution to problem 20 in Kovanova and Radul’s list of
“Jewish problems” [6]: for points A,B,C,D in ccw or-
der, construct BD′ perpendicular and of equal length
to AC; If D′ 6= D, then two sides of the square must be
parallel to DD′.) In what follows we show that the folds
that define c∗1(S) (that maximize the minimum scale
factor) are characterized by having multiple equal-sized
enclosing shapes.

2.2.1 Equilateral triangle

The example that establishes the maximum 1-fold cover
factor of an equilateral triangle is nicely symmetric.

Theorem 4 The 1-fold cover factor of an equilateral
triangle, c∗1(4), is 4/3.

Proof. Let S be the triangle of side length 2 with ver-
tices (±1, 0) and (0,

√
3). We begin by showing that any

single fold can be covered by scaling to at most 4/3.
By symmetry, we may assume that we fold along a

line y = mx + b that intersects both edges incident on
(0,
√

3); let P be the image of this vertex in the folded
state S′ ∈ F1(S). Consider three cases for the location
of the image P and the resulting minimum enclosing
equilateral triangle, depicted in Figure 3.

τ2

τ3

τ1

P

P

P

b
θ

Figure 3: Cases for enclosing triangle depending on P .
Point P ∈ τ3 should be below P ∈ τ2, but then small
triangles mentioned in the proof are even harder to see.

First, suppose that P is on or above the x-axis. By
symmetry, we may assume that P lies in the wedge

formed by extending both edges of S incident on ver-
tex (−1, 0) to rays from (−1, 0). Because P has dis-
tance at most 2 from (−1, 0), scaling S about (−1, 0)
by 2/

√
3 < 4/3 creates an enclosing equilateral trian-

gle τ1.

Second, suppose that the image P = (px, py) has
−
√

3/3 ≤ py ≤ 0. Consider the enclosing triangle τ2
obtained by scaling S about (0,

√
3) until the horizon-

tal edge touches P . The scale factor for this triangle is√
3−py√

3
= 1− py/

√
3 ≤ 4/3.

Finally, suppose that P = (px, py) has py ≤ −
√

3/3.
From the previous case, the scale factor for enclosing
triangle τ2 is 1 − py/

√
3 ≥ 4/3. So instead consider an

enclosing triangle τ3 with an edge e along the fold line,
which we can parameterize by its y-intercept b ≤

√
3/3

and angle from horizontal θ. Draw perpendiculars to
e through vertices (±1, 0) to form two small 30-60-90
triangles. Edge e is composed of the short sides of these
triangles plus the projection of the base edge of S, so e
has length (2 + 2b/

√
3) cos θ. Thus, the scale factor of

triangle τ2 is (1 + b/
√

3) cos θ ≤ 4/3 cos θ ≤ 4/3.

These cases show that c∗1(4) ≤ 4/3, and also reveal
necessary conditions for equality: the fold line angle
θ = 0 and intercept b =

√
3/3, so P = (0,−

√
3/3). To

show that these are sufficient, we must check one more
candidate for enclosing triangle.

Consider τ4, with edge inci-

τ4

30◦

2
√
3
3

α

β

30◦

Figure 4: Not a min
enclosing triangle.

dent to P = (0,−
√

3/3) and
(−1, 0). The length of this edge
is the sum of sides of two 30-
60-90 triangles, marked α and
β in Figure 4. The scale factor
(α + β)/2 =

√
3/9 + 2

√
3/3 =

7
√

3/9 > 4/3. Thus, τ4 is not
a minimum enclosing triangle,
and c∗1(4) = 4/3, as determined
by τ2 and τ3.

This completes the proof. �

2.2.2 Square

For squares, the optimal fold is astonishingly complex,
and is neither symmetric, nor rational. For the unit
square [0, 1]2, the vertex (0, 1) folds to a location whose
y coordinate is the root of a degree twelve polynomial:
Φ(x) = 40x12 + 508x11 + 1071x10 + 930x9 − 265x8 −
1464x7 − 1450x6 − 524x5 + 58x4 + 76x3 + 3x2 − 6x− 1.
This polynomial will arise because the optimal fold has
three distinct minimum enclosing squares. Let ρ denote
the largest (and only positive) real root of Φ(x), which
is approximately 1.105224.

Let S = {(x, y) : 0 ≤ x, y ≤ 1} denote the axis-
parallel unit square and consider some F ∈ F1(S) such
that F 6= S. Note that F is a simple polygon that is
uniquely determined (up to symmetry) by a fold line `.
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Proposition 5 The polygon F can be covered by S, un-
less fold line ` intersects S in the relative interior of two
opposite sides.

Proof. If ` does not intersect the interior of S then
F ∼= S. Otherwise ` intersects ∂S in exactly two points.
If these points lie on adjacent sides of S, then folding
along ` reflects the triangle formed by these sides and `
inside the portion of the square S on the opposite side
of `. Therefore, F can be covered by S. �

We are interested in a fold line ` that maximizes the
smallest enclosing square of F . Using symmetry with
Proposition 5, we can assume:
(1) the line ` intersects both horizontal sides of S (else

rotate by 90◦);
(2) the slope of ` is negative (else reflect vertically);
(3) ` intersects the top side of S left of the mid-

point (1/2, 1) (else rotate by 180◦).
If we imagine F as the result of folding the part of S to
the left of ` over to the right, then we can parameterize
` by the image P = (px, py) of the top left corner (0, 1)
of S under this fold. Under the above assumptions, a
line ` that passes (almost) through (1/2, 1) and (1, 0)
would maximize py. Therefore 0 < px < 4/5 and so

1 < py <
√

2px − px2 + 1 < 7/5.
Denote the two points of intersection between ` and

∂S by B = (bx, 0) and T = (tx, 1) and denote the image
of the bottom-left corner (0, 0) of S under the fold across
` by Q = (qx, qy). If qx > 1, then the convex hull CH(F )
of F is the hexagon B, (1, 0), Q, (1, 1), P, T , else Q does
not appear on ∂(CH(F )) and it is only a pentagon. Note
that in any case the width of F in the y-direction is
greater than one, whereas the width in the x-direction
is less than one.

For a given P = (px, py), we have

` : y = − px
py − 1

x+
px

2 + py
2 − 1

2(py − 1)
,

T =
(px2 + (py − 1)2

2px
, 1
)
,

B =
(px2 + py

2 − 1

2px
, 0
)
, and

Q =
(px(px

2 + py
2 − 1)

px2 + (py − 1)2
,

(px
2 + py

2 − 1)(py − 1)

px2 + (py − 1)2

)
.

What does a smallest enclosing square σ of F look
like? For the upper bound on the cover factor we con-
sider three enclosing squares (Figure 5).
σ1 is the smallest axis-parallel enclosing square, which

has points B and (1, 0) on the bottom side, P on
the top, T on the left, and no point on the right.

σ2 has points P and (1, 1) on one side, B on the oppo-
site side, and T on a third side.

σ3 has points B, (1, 0), (1, 1), and T appearing in this
order, each on a different side of σ3.

σ1

P

T

B (1, 0)

σ2

P

T

B

(1, 1)

σ3

T

B

(1, 1)

(1, 0)

`2

`′2

`3

`′3

Figure 5: Three minimum enclosing squares for F .

Theorem 6 The 1-fold cover factor of a square, c∗1(�),
is ρ, the real root of the degree twelve polynomial Φ.

Proof. The effort goes into showing that, for each
folded shape F , one of the three enclosing squares σi,
i ∈ {1, 2, 3}, as defined above, has side length at most ρ.

Denote the side length of a square σ by |σ|. For a start
it is easy to see that |σ1| = py < 7/5, which provides a
first upper bound.

For σ2 we have to consider the distance d(B, `2),
where `2 is the line through P and (1, 1) and the dis-
tances d((1, 0), `′2) and d(Q, `′2), where `′2 is the line or-
thogonal to `2 through T . Noting that

d(B, `2) =

∣∣px2py + py
3 + px

2 − 2pxpy − py2 − py + 1
∣∣

2px
√

(px − 1)2 + (py − 1)2

d((1,0), `′2) =

∣∣py2px + px
3 − py2 − 3px

2 + 2py + px − 1
∣∣

2px
√

(px − 1)2 + (py − 1)2
,

it can be checked that the former dominates the latter
for py ≤ 1

2 (1+
√

4px − 4px2 + 1) and that d((1, 0), `′2) >

py for 1
2 (1 +

√
4px − 4px2 + 1) < py <

√
2px − px2 + 1

(and so |σ1| ≤ |σ2| in such a case). Exactly the same
holds if d((1, 0), `′2) is replaced by

d(Q, `′2) =
|N1|

2px(1 + (px − py)2)
√

(px − 1)2 + (py − 1)2
,

where N1 = px
5 + 2px

3py
2 + pxpy

4 − px
4 − 2px

3py −
2pxpy

3 + py
4 − 4px

2py − 4py
3 + 4px

2 + 2pxpy + 6py
2 −

px−4py+1. This verifies that σ2 is enclosing, with side
length |σ2| = d(B, `2).

For σ3 we consider a line `3 : y = m(x − 1) through
(1, 0), for some m > 0 and the orthogonal line `′3 : y =
(m+ 1−x)/m through (1, 1). If σ3 is a smallest enclos-
ing square, then d(T, `3) = d(B, `′3). For our range of
parameters, the only solution is

m =
px

2 + py
2 − 1

px2 + (py − 1)2
,

which yields

|σ3| = d(T, `3) =

√
2|N2|

4px
√
D2

,
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where N2 = px
4 + 2px

2py
2 + py

4 − 4px
3 − 2px

2py −
4pxpy

2−2py
3+4pxpy+2py−1 and D2 = px

4+2px
2py

2+
py

4 − 2px
2py − 2py

3 + 2py
2 − 2py + 1.

Because we choose the smallest square among σ1, σ2,
and σ3, the claim certainly holds for |σ1| = py ≤ ρ.

It can be checked that |σ2| ≤ ρ, for all P with

ρ < py <
√

2px − px2 + 1, except for a small region
R. This region R is bounded from below by the line
y = ρ and from above by the curve γ : |σ2| = ρ (the
branch of this curve that lies in {(x, y) : ρ ≤ y <
1
2 (1 +

√
4x− 4x2 + 1}). The curve γ intersects the line

y = ρ at two points, whose x-coordinates are approx-
imately 0.67969 and 0.77126, respectively. The more
interesting of these two is the first point of intersection,
which can be described exactly as the smallest positive
real root xρ of the polynomial 40x12−116x11−1045x10+
4756x9−10, 244x8 +7260x7−8392x6−184x5 +620x4−
160x3 + 1088x2 − 192x + 256. For the fold defined by
P = (xρ, ρ) we have |σ1| = |σ2| = |σ3| = ρ, while for
all other points in R the corresponding value for |σ3| is
strictly less than ρ.

It can also be checked that |σ3| < ρ, for any P

with py > ρ and 1
2 (1 +

√
4px − 4px2 + 1) < py <√

2px − px2 + 1 (above we committed to using σ2 only

if py ≤ 1
2 (1 +

√
4px − 4px2 + 1)).

Altogether it follows that min{|σi| : i ∈ {1, 2, 3}} ≤
ρ ≈ 1.105224446, as claimed.

Using rotating calipers, one can verify that all other
enclosing squares are larger, giving the equality. �

2.2.3 Polygons and single folds

In the full paper we prove that any polygon (a fi-
nite cyclic sequence of vertices and edges with no self-
intersections) can be made larger with a single fold. The
following lemma is in contrast to observations in Section
3.2 for disks and a family of shapes related to disks.

Lemma 7 For every plane polygon P , the 1-fold cover
factor, c∗1(P ), is greater than 1.

The idea of the proof is to look for finite sets of struc-
tures in P that, if not destroyed by folding, can be cov-
ered only by members of that set. For example, the set
of diameters in a polygon is finite because the maximum
distance D is realized by pairs of vertices, and any di-
ametral pair still at distance D in the folded state F
must be covered by a diameter of P , possibly itself.

For a quick example, consider the class of polygons P
in which there exist vertices that participate in two or
more diametral pairs. (E.g., for odd n, every vertex of a
regular n-gon.) Choose as our structure two diametral
pairs, pq and qr, that minimize θ = ∠pqr. Fold along a
line trisecting θ, reflecting qr to create qr′ in the folded
shape F . This modified structure has angle ∠pqr′ = θ/3

between two diameters; by minimality of θ, it cannot be
covered by P .

The proof repeatedly identifies classes of polygons by
structures found in the neighborhoods of diameters, un-
til every polygon is in some class. Modifications to these
structures show that c∗1(P ) > 1 for all polygons.

3 Arbitrary Folds

3.1 Simply connected shapes

In this section we show that, for a simply connected
shape S, there is a lower bound for the origami cover
factor c∗(S) that is within a constant factor of the upper
bound given by Lemma 2.

Theorem 8 Let S be a simply connected shape with
inradius r, geodesic radius R, and geodesic diameter
D. Then κR/r ≤ D/(2πr) ≤ c∗(S) ≤ R/r for κ =√

3/(2π) ≈ 0.27566.

Proof. Again, the upper bound is from Lemma 2. The
basic idea for the lower bound is to find a path in S
that can be folded into a large circle, which must then
be covered by a scaled copy of the incircle of S. Here,
for brevity, we use a path of length D, the geodesic
diameter.

Figure 6: For Theorem 8, folding inflection edges to
make a generalized spiral, then crimping to approximate
a circle that must be covered by the incircle.

A generalized spiral is a simply connected region com-
posed of consistently orientable plane patches having a
distinguished shortest path γ that follows the bound-
ary and never turns to the left. A generalized spiral
may overlap itself if projected onto a plane, but we can
think of it as embedded in a covering space of the plane.

Ordinarily, a diameter path γ will alternate between
sequences of left turns and right turns at boundary
points; a portion of the path between opposite turns is a
line segment that we can call an inflection edge. We can
simply fold along every inflection edge, gluing doubled
layers along these edges, to turn γ into a path that goes
only straight or to the right. Folding any non-boundary
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edges creates a generalized spiral with path γ. These
folds are along lines of the geodesic path, so γ remains
a shortest path between its endpoints.

We fold the generalized spiral into a left-turning circle
with circumference approaching the length of γ. If we
sweep a paired point and normal vector along γ, we
can think of painting a portion of the generalized spiral
with fibers that each start on γ and grow orthogonal to
a local tangent (because γ is a shortest path) and that
are disjoint (because the sweep in position and angle is
monotonic). We construct a circle whose circumference
is arbitrarily close to the length of γ by crimp folds
that align successive fibers of γ with the circle center.
Figure 6 shows an example. It does not matter how far
the fibers extend towards or beyond the circle; in order
to cover the boundary of the circle, the inradius r must
be scaled to the circle radius, which is D/(2π). �

3.2 Disks with bumps

Because the radius of a disk is simultaneously the inra-
dius and the geodesic radius, Lemma 2 implies that the
cover factor of a disk, c∗(©), is 1. It is interesting to
note that there are other shapes S with c∗(S) = 1; here
is one simple family.

In a unit disk centered at C with a chord AB, choose
a point D between C and the midpoint of AB. Add
the disk centered at D of radius |AD|. Thus, we have a
family of shapes Sd,e, parameterized by two distances,
d = |CD| and e = distance from C to chord AB, satis-
fying 0 < d ≤ e < 1. See Figure 7.

A B
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D

S 1
2 ,

2
3

e d

A B

C

D

S√
2

2 ,
√

2
2

A B

C

D

S0.8356,0.8356

Figure 7: Shapes Sd,e with c∗(Sd,e) = 1.

Lemma 9 The shape Sd,e, with 0 < d ≤ e < 1, has
origami cover factor c∗(Sd,e) = 1.

Proof. Shape Sd,e is the union of a unit disk centered
at C and a disk centered at D whose radius we denote r.
Note that by construction the boundaries of the disks
intersect at A and B. This shape also covers all disks
of radius r that are centered between C and D.

Now, in an arbitrary folded state S′d,e, consider the
locations of these centers, C ′ and D′. Placing a unit
disk centered at C ′ and a radius r disk centered at D′

will cover all points of S′d,e. Because |C ′D′| ≤ |CD|,
this pair of disks will be covered by placing a copy of

Sd,e with C at C ′ and D on the ray
⇀
C ′D′. �

Choose any d ∈ (0, 1) and for all e ∈ [d, 1) shape Sd,d
covers Sd,e, so these extremal members of the family
have AB as the diameter of the smaller disk. Just for
the sake of curiosity, the example with d = e =

√
2/2

minimizes the ratio of inradius to circumradius, R/r =
(1 + sin θ + cos θ)/2 ≈ 0.8284, and the example with
d ≈ 0.8356 minimizes the fraction of the circumcircle
covered, (π(1 + sin2 θ) + sin 2θ − θ)/(πR2) ≈ 0.7819.

4 Open Problems

The most interesting questions are whether c∗(4) =
c∗1(4) and c∗(�) = c∗1(�), and whether we can com-
pletely characterize those shapes with origami or 1-fold
cover factor of unity.
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