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††Mâıtre de Recherches du FRS-FNRS. Université Libre de Bruxelles, Belgique,
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‖‖Universitat Politècnica de Catalunya, Barcelona, Spain, vera.sacristan@upc.edu

. Partially supported by projects MEC MTM2006-01267 and Gen. Cat. DGR
2009SGR1040.
∗ ∗ ∗Carleton University, Ottawa, Canada, swuhrer@scs.carleton.ca

1



Abstract:

In this paper we propose novel algorithms for reconfiguring modu-
lar robots that are composed of n atoms. Each atom has the shape of a
unit cube and can expand/contract each face by half a unit, as well as
attach to or detach from faces of neighboring atoms. For universal re-
configuration, atoms must be arranged in 2×2×2 modules. We respect
certain physical constraints: each atom reaches at most constant ve-
locity and can displace at most a constant number of other atoms. We
assume that one of the atoms has access to the coordinates of atoms
in the target configuration.

Our algorithms involve a total of O(n2) atom operations,
which are performed in O(n) parallel steps. This improves
on previous reconfiguration algorithms, which either use O(n2)
parallel steps [Rus and Vona, 2001, Vassilvitskii et al., 2002,
Butler and Rus, 2003] or do not respect the constraints men-
tioned above [Aloupis et al., 2009b]. In fact, in the setting considered,
our algorithms are optimal. A further advantage of our algorithms is
that reconfiguration can take place within the union of the source and
target configuration space, and only requires local communication.

1 Introduction

Self-reconfiguring modular robots. Robots designed with inflexible
structures tend to have a unique purpose. They can be very efficient but
often lack versatility, in the sense that they might not perform unexpected
tasks efficiently, or might have problems adapting to new environments.

For this reason, much research has been concentrated on the design of
modular robots that can self-reconfigure. Modular robots are theoretically
capable of reaching any shape that has the same mass/volume (restricted
to the size of their finer components, or modules). Thus they not only
become capable of seemingly limitless uses, but they also have the ability
to self-repair (by replacing damaged modules), and navigate through new
environments.

Several new prototypes of modular robots appear each year. Developers
strive to solve hardware design challenges involving strength, precision,
bonding, energy efficiency and flexibility of modules. An important goal is
also to reduce module sizes. On the other hand, a significant problem in the
field is to design efficient algorithms for self-reconfiguration. Various types of
self-reconfiguring robots, as well as related algorithmic issues, are surveyed
in [Murata and Kurokawa, 2007, Yim et al., 2007]. In this paper we focus
on the (modular) Crystalline [Rus and Vona, 2001, Butler et al., 2002] and
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Telecube [Suh et al., 2002] robots, which are designed on a square lattice.

Crystalline and Telecube robots. The atoms of these robots are cubic in
shape, and are arranged in a grid configuration. Each atom is equipped with
mechanisms allowing it to extend each face out one unit and later retract it
back. Furthermore, the faces can attach to or detach from faces of adjacent
atoms; at all times, the atoms should form a connected unit. The default
configuration for a Crystalline atom has expanded faces, while the default
for a Telecube atom has contracted faces.

When groups of atoms perform the four basic atom operations (expand,
contract, attach, detach) in a coordinated way, the atoms move relative to
one another, resulting in a reconfiguration of the robot. Figure 1 shows an
example of a reconfiguration.

Figure 1: Example of reconfiguring Crystalline atoms.

To ensure that all reconfigurations are possible, atoms must be ar-
ranged in k × k × k modules, where k ≥ 2 [Aloupis et al., 2009b,
Vassilvitskii et al., 2002]. In the 2D setting that we focus on, we assume
that modules consist of 2×2 atoms. Our algorithms can easily be extended
to 3D.

We refer the reader to [Rus and Vona, 2001, Vassilvitskii et al., 2002,
Aloupis et al., 2009b] for a more detailed introduction to these robots.

The model. The problem we solve is to reconfigure a given connected
source configuration of n modules to a specified, arbitrary, connected target
configuration T in O(n) parallel steps. We allow modules to exert only a
constant amount of force, independent of n. In particular, each module has
the ability to push/pull one other module by a unit distance (the length
of one module) within a unit of time. Simply bounding the force may still
lead to arbitrarily high velocities and thus rather unrealistic motions. On
the other hand, in some situations where maximal control is desired (e.g.,
treacherous conditions, dynamic obstacle environment, minimally stable
static configuration of the robot itself) it may be desirable to strictly limit
velocity. Thus we also bound maximum velocity (and so the momentum)
by a constant (module length / unit time). Our algorithms are designed
for Crystalline robots. In Section 5 we discuss how the algorithms can be
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adjusted to work for Telecube robots as well. In that section we also men-
tion possible applications of our algorithms to robots made of other modules.

Related results. Algorithms for reconfiguring Crystalline
and Telecube robots in O(n2) parallel steps have been given
in [Rus and Vona, 2001, Vassilvitskii et al., 2002, Butler and Rus, 2003].
The same bound is implied in [Chirikjian et al., 1996], which deals with
reconfigurations of a specific class of modular robots (more restrictive than
Crystalline). An algorithm that uses O(n) parallel steps for reconfiguring
a robot within the bounding box of source and target configurations was
given in [Aloupis et al., 2009b]. The total number of individual moves
is also linear. However, no restrictions were made concerning physical
properties of the robots. For example, Θ(n) strength is required, since
modules can carry tall towers and push large masses during certain
operations. An O(log n) parallel step algorithm for 2D robots that uses
a total of O(n log n) atom moves and also stays within the bounding box
is given in [Aloupis et al., 2008b], and this has recently been extended to
3D [Aloupis et al., 2009c]. However, in this algorithm, not only are modules
assumed to have Θ(n) physical strength, but they can also reach Θ(n)
velocity. An O(

√
n) time algorithm for 2D robots, using the third dimension

as an intermediate, is given in [Reif and Slee, 2007]. This is optimal in
the model considered, which permits linear velocities, but only constant
acceleration. If applied within the model used in [Aloupis et al., 2008b],
this algorithm would run in constant time. We remind the reader that,
unlike [Reif and Slee, 2007, Aloupis et al., 2009b, Aloupis et al., 2008b], we
limit force and velocity to a constant level.

Contributions of this paper. We present two algorithms to reconfigure
Crystalline robots in O(n) time steps, using O(n) parallel moves per time
step. Our first algorithm (Section 3) is slightly simpler to describe. It also
forms the basis of our second algorithm (Section 4), which is exactly in-place,
i.e., it uses only the cells of the union of the source and target configurations.
This is particularly interesting if there are obstacles in the environment.
Both algorithms consider the given robot as a spanning tree, and push leaves
towards the root with “parallel tunneling”. No global communication is
required. This means that constant-size memory suffices for each non-root
module, which can decide how to move at each step based solely on the
states of its neighbors. In the realistic model considered in this paper, our
algorithms are optimal, in the sense that certain reconfigurations require a
linear number of parallel moves. Our first algorithm can be adapted for use
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with Telecube modules. However an adaptation of our in-place algorithm
seems to require more memory for non-root modules. This is discussed in
Section 5.

2 Primitive operations

We restrict our descriptions to a 2D lattice whose cell size equals the size of
one robot module (i.e., 2×2 connected atoms in their expanded state). None
of our techniques depend on dimension, so it is straightforward to extend to
3D robots. Given the 2×2 module size, a cell of the lattice can potentially
contain two compressed modules (see Fig. 2b). Cells can be marked with an
integer in {0, 1, 2}: a 0-cell corresponds to a node in T that has no module
yet, a 1-cell contains one module, and a 2-cell contains two (compressed)
modules. In a 2-cell, we sometimes distinguish between the host module
and the guest module: the host module is the one occupying the 1-cell prior
to becoming a 2-cell; the guest module is the one compressing itself into the
1-cell occupied by the host module, thus turning the cell into a 2-cell (see
Fig. 2a).

Let r0 be a specialized module that has access to a map of the target
configuration, T . We compute a spanning tree S of the source configuration,
rooted at r0, and instruct modules to form attachments corresponding to
tree edges in S. The spanning tree can be computed in linear time and
constructed via local communication. The tree structure between cells is
maintained throughout the algorithm by physical connections between host
modules; note that guest modules are irrelevant in determining S. These
modules are also responsible for the parent-child pointer structure of the
tree. For each node u ∈ S, let P (u) denote the parent of u in S (recall that
both u and P (u) are host – not guest – modules). A child of a cell u is
adjacent either on the east, north, west, or south side of u. Let the highest
priority child of u be the first child in counterclockwise order starting with
the east direction.

Let m and q be adjacent cells. We define the following primitive operations
(illustrated in Fig. 2). A cell is meant to be engaged in at most one operation
at any time.

1. PushInLeaf(m, q) – applies when q = P (m), m is a leaf, and both
are uncompressed. Here, m becomes empty and q becomes compressed
(i.e., q takes the module of m as a guest).
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2. PopOutLeaf(m, q) – applies when q is compressed and m is empty.
This is the inverse of the PushInLeaf operation.

3. Transfer(m, q) – applies when m is compressed and q is non-empty;
if q is compressed, the guests of both cells physically exchange posi-
tions. Otherwise, the guest of m moves into (and becomes a guest of)
q.

4. Attach(m, q) – applies when the host modules in m and q are
unattached. The two modules make a physical connection.

5. Detach(m, q) – applies when the host modules in m and q are at-
tached. The two modules break their physical connection.

6. Switch(m) – applies when m is compressed. Its two modules physi-
cally switch positions (and roles of host and guest).

PushInLeaf

PopOutLeaf
Switch

(a) (b)

Transfer Transfer

(c) (d)

Figure 2: (a) PushInLeaf and PopOutLeaf. (b) Switch: guest and
host exchange their roles and positions. (c) Transfer, when one module
is compressed and the other is not. (d) Transfer, when both modules
are compressed. Only initial and final configurations are shown. Note that
neighboring cells are not completely drawn.

In the remainder of this paper, we assume that all parallel motions are
synchronized. However, due to the simple hierarchical tree structure of our
robots, we find it plausible that our algorithms could be implemented so
that modules may operate asynchronously.
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Lemma 1. Operations PushInLeaf, PopOutLeaf, Switch and Trans-
fer maintain the tree structure of a robot and can be executed in O(1) time.

Proof. When each of the first three operations is performed individually, the
robot remains connected. For example, in PushInLeaf(m, q), the atoms
of host module q temporarily displace, in order to let those of m occupy
intermediate spaces. However, at all times one of the two atoms along every
face of q (other than the one adjacent to m) will remain in its original
position so that connectivity is ensured; this property can be verified in
Fig. 7 in the appendix. Note that the activity within guest module m does
not affect connectivity in the rest of the robot.

This temporary displacement can cause connectivity issues if modules
neighboring the host module q are also performing basic operations. To
avoid any problems, we can subdivide one basic time unit into four subunits,
so that each host module acts when it has the right parity of row and column.
For example, in the first time subunit, modules located in (odd row, odd
column) lattice cells are allowed to reconfigure; in the second time unit, (odd
row, even column) modules reconfigure; and so on.

This way, when a leaf pushes into its parent, we can ensure that no other
cells adjacent to the parent are active. This issue is even simpler to resolve
in 3D, where the actuation at the atomic level can be done by 2D layers.

Now consider the Transfer operation. In this operation, two adjacent
cells interact and it is best not to let any of the six neighboring cells perform
basic operations simultaneously. A similar lattice parity solution can be
applied.

Regarding the tree structure, it is straightforward to see that Switch
and Transfer only affect module positions, while PushInLeaf removes
one leaf module from S and PopOutLeaf adds one leaf module to S.

As for the complexity of the primitive operation, note that any permu-
tation of atoms within a lattice cell containing two modules can be realized
in linear time with respect to the size of the module (i.e., O(1) time for our
modules). Thus a compressed cell may transfer or push one module to any
direction, and two modules within a cell can switch roles in O(1) time.

In our basic motions, modules move by one unit length per time step.
The two modules involved in a primitive operation do not carry other mod-
ules. Thus our reconfiguration algorithms place no additional force con-
straints beyond those required by any reconfiguration algorithm.
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2.1 Details of the primitive operations

Refer to Figures 7-11, located in the Appendix. Fig. 7 shows the finite
sequence of basic atom operations (attach, detach, compress, expand) that
implement PushInLeaf and PopOutLeaf, which are inverse operations.

Transfer(m, q) can be described as a two-step operation. In the first
step, module m is rotated within its lattice cell, in order to face module
q. We call this the positioning step. In the second step, the module m is
actually sent to the lattice cell of q. Depending on whether q was compressed
or uncompressed, we call this the send or the exchange step. Fig. 8 shows the
finite sequence of basic atom operations (attach, detach, compress, expand)
that produce the positioning step. Fig. 9 and Fig. 10 show the analogous
sequence for the send and the exchange steps. Transfer is the result of
appropriately concatenating these steps.

Switch is a particular permutation of atoms within a lattice cell con-
taining two modules, which can be realized in linear time with respect to
the size of the module. Fig. 11 shows the details of the Switch operation.

3 Reconfiguration via canonical form

This section describes an algorithm to reconfigure S into T via an interme-
diate canonical configuration. Modules follow a path directly to the root r0,
and into a canonical “storage configuration”. We focus on the construction
of one type of canonical form, a vertical line V . In fact V could be any path
that avoids the source configuration. Thus the entire reconfiguration can
take place relatively close to the bounding box of S. Reconfiguring from V
to T is nearly the inverse procedure and is relatively straightforward. Each
module m passes from the canonical form through r0. It suffices for r0 to
provide m with just a few bits of information, indicating where m should
have children. If we can afford to let m store O(log n) bits, then we can even
specify the size of the subtrees rooted at m (this helps heuristically, and is
described at the end of section 3). For this task, it is assumed that r0 has ac-
cess to a map of T (perhaps stored in memory, or via direct communication
with some external processor).

3.1 Algorithmic details

Our algorithm reconfigures S into a vertical strip V that begins at the
maximum y-coordinate of S. We first move r0 to a maximum possible y-
coordinate: this involves pushing in a leaf and iteratively transferring it to
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r0, so that r0 becomes part of a 2-cell and is then able to iteratively transfer
to a module of maximum y-coordinate. Note that this step might not be
necessary in implementations in which all modules are capable of playing the
role of r0 (for example, if all modules have a map of T , or if all are capable
of communicating to an external processor). This initial step is followed by
two main phases, during which r0 does not move.

In the first phase, we repeatedly apply procedure ClusterStep to move
modules closer to r0. This is done by compressing leaves into their parents,
and moving up S in parallel. The shape of S shrinks during this procedure,
as PushInLeaf operations in ClusterStep compress leaf modules into
their parent cells. At the end of this phase, all non-leaf cells will become
2-cells. We refer to S in this state as being fully compressed. It is not critical
that all cells become compressed; in fact, we can proceed to the next phase
as soon as the root becomes part of a 2-cell. The restriction for S being
fully compressed at the end of this phase will merely simplify our analysis
of the total number of parallel steps in our algorithm.

ClusterStep(S)

For all cells u in S except for that containing r0, execute the following in parallel:
If P (u) is a 1-cell

If u is the highest priority child of P (u) and
all siblings of u are leaves or 2-cells,

If u is a 1-cell leaf then PushInLeaf(u, P (u)).
If u is a 2-cell, then Transfer(u, P (u)).

SourceCluster(S)

Repeat until S is fully compressed
ClusterStep(S).

The procedure SourceCluster is illustrated in Figure 3. The task of
compressing a parent cell P (u) falls onto its highest priority child, u. Note
that P (u) first becomes compressed only when all its subtrees are essentially
compressed. That is, even if u is ready to supply a module to P (u), it waits
until all other children are also ready. This rule could be altered, and in fact
the whole process would then run slightly faster. Here, we ensure that once
the root of a subtree becomes compressed, it will be able to supply a steady
stream of guest modules to its ancestors.
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Figure 3: An example of SourceCluster. Arrows indicate the direction
of the Transfer and PushInLeaf operations. After steps (a) through (e),
the source configuration (left) becomes fully compressed (f).

In the second phase, we construct V while emptying S, one module at a
time. This is described in the second step of algorithm TreeToPath, and
is illustrated in Figure 4.

Algorithm TreeToPath(S, V )

1. SourceCluster(S)
2. Let d be the cell containing r0 as a host. Let V = {d}.

Repeat until V contains all modules:
a) For all 2-cells u in V , execute in parallel:

Let c be the cell vertically above u.
If c is empty, PopOutLeaf(u, c);
Otherwise, if c is a 1-cell, Transfer(u, c).

b) ClusterStep(S)

Lemma 2. If S is a set of modules physically connected in a tree of cells,
then ClusterStep(S) returns a tree containing the same set of modules,
while maintaining connectivity. So does SourceCluster(S).

Proof. ClusterStep invokes two basic operations, PushInLeaf and
Transfer. By Lemma 1, these operations independently maintain a tree.
Since u is involved in PushInLeaf or Transfer (with P (u)) only if it is
a 1-cell leaf or a 2-cell respectively, but also only when P (u) is a 1-cell,
we know that P (u) is not involved in any other such operation in parallel.
Therefore every cell is involved in at most one basic operation at a time.
The claim also follows immediately for SourceCluster.
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Figure 4: An example of TreeToPath. For each step, the two phases
(PopOutLeaf or Transfer, and ClusterStep) are shown.
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Define the height of a cell in S to be the longest path to a leaf in its subtree,
plus 1. By convention, leaves have height one.

Lemma 3. Let r be a cell in S with height h ≥ 2. In iteration h−1 of
SourceCluster(S), r becomes a 2-cell for the first time.

Proof. Prior to the first iteration, S contains only 1-cells. The proof is by
induction on h. For the base case when h = 2, the children of r are leaves.
Therefore, in the first iteration, during ClusterStep, the highest priority
leaf compresses into r.

Now assume inductively that the lemma is true for all subtrees of height
smaller than h. Cell r must have at least one child c with height h−1. By
the inductive hypothesis, c becomes a 2-cell in iteration h−2, and all of r’s
other non-leaf children are 2-cells by the end of iteration h−2. Therefore, at
iteration h−1, for the first time the conditions are satisfied for r to receive
a module from its highest priority child during ClusterStep.

Lemma 4. In iteration i of SourceCluster, let r be a 2-cell with height
h that transfers its guest module to P (r). Then at the end of iteration i+1,
r is either a leaf or a 2-cell again.

Proof. First note that at the beginning of iteration i+1, r is a 1-cell and
P (r) is a 2-cell. Thus if r is a leaf after iteration i, it remains so. On the
other hand if r has children (h ≥ 2), it will become a 2-cell. We prove this
by assuming inductively that our claim holds for all heights less than h.
Consider the base case when h = 2. At the end of iteration i, all children of
r are still leaves and thus one will compress into r (note that r might also
become a leaf in this particular case).

For h > 2, consider the iteration j < i in which r received the guest
module that it later transfers to P (r) in iteration i. At the beginning of
iteration j, all of r’s children were leaves or 2-cells, since that is a requirement
for r to receive a guest. Let c be the child that passed the module to r. If c
used the PushInLeaf operation, then at the end of iteration j, r has one
fewer children (but at least one). The other children remain leaves or 2-cells
until iteration i + 1, when r becomes a 1-cell again. Thus in iteration i+1,
conditions are set for r to receive a module.

On the other hand, if c used the Transfer operation, we apply the
inductive hypothesis: at the end of iteration j+1 ≤ i, c is either a leaf
or a 2-cell. During iterations j and j+1 in which r is busy receiving or
transferring a module, all other children of r (if any) remain leaves or 2-
cells. Therefore in iteration j+2 ≤ i+1, the conditions are set for r to
receive a module.
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Define the depth of a cell in a tree to be its distance from the root.
Hence, the root has depth zero. Let the root of S be at height h0.

Lemma 5. SourceCluster terminates after at most 2h0−1 iterations of
ClusterStep.

Proof. We claim that at the completion of iteration h0−1+d of
SourceCluster, all non-leaf modules at depth less than or equal to d
in S are 2-cells (here we use S to refer to the current instance of the dy-
namically changing tree, not the original S). The proof is by induction on
d. The base case is the root of S at depth d = 0. By Lemma 3, the root
becomes a 2-cell in iteration h0 − 1. Assume inductively that our claim is
true for all values d′, where 0 ≤ d′ < d.

Now consider a cell p at depth d−1 that has children. By the inductive
hypothesis, p and all its ancestors are 2-cells by the end of iteration i =
h0−1+(d−1), and p is the last of this group to become a 2-cell. Thus at the
beginning of iteration i, all children of p are either leaves or 2-cells. During
iteration i, only p’s highest priority child c changes, either by transferring
a guest module into p (if c is a 2-cell), or by pushing into p (if c is a 1-cell
leaf). In the first case, by Lemma 4, c will be a 2-cell or a leaf by the end
of iteration i+1. In the second case, c is not part of S anymore.

Since p will not accept new guest modules after iteration i (because all
its ancestors are 2-cells), all siblings of c remain leaves or 2-cells during
iteration i+1. Thus at the end of this iteration, our claim holds for depth
d. By setting d = h0, our result follows.

Let a long gap consist of two adjacent 1-cells that are not leaves. A tree
is root-clustered if it has no long gaps. Observe that a fully compressed tree
is a special case of a root-clustered tree.

Lemma 6. Let S be a root-clustered tree. Then after one application of
ClusterStep(S), S remains root-clustered.

Proof. This follows from claims in the proof of Lemma 4. Specifically, con-
sider any 2-cell u. If ClusterStep keeps u as a 2-cell, then u is not part of
a long gap. Otherwise, if u sends a module to P (u), none of the children of u
attempt to transfer a module to u. Now consider any 1-cell non-leaf child y
of u. Since there was no long gap in S, all children of y were either 2-cells or
leaves. Thus y will become a 2-cell during this iteration of ClusterStep.
Again we conclude that u cannot be part of a long gap.

Theorem 1. Algorithm TreeToPath terminates in linear time.
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Proof. By Lemma 5, SourceCluster terminates in linear time. In fact by
treating the final top position of V as an implicit root, our claim follows.

More specifically, however, we analyze the transition from S into
V . When SourceCluster terminates, S is fully compressed (i.e., root-
clustered), and we set r0 to be the host in cell d.

First we mention that all basic operations are performed legally, that is,
every cell is involved in at most one operation. In step 2a, every 2-cell is
involved in an operation, only if the cell above it is not a 2-cell. Therefore
both cells are only involved in this operation. Step 2b is safe, by Lemma 2.

In step 2a, d sends a module to the empty position c vertically above, if c
is not a 2-cell. We may treat the position c as P (d), and consider step 2a to
be synchronous to step 2b. In other words, d is the only child of c, and thus d
follows the same rules as ClusterStep. In fact, since S is fully compressed,
after the first iteration of phase 2, the tree rooted at c will be root-clustered
(only c and the highest-priority child of d will not be 2-cells). Therefore, by
Lemma 6, in every iteration of phase 2, S remains root-clustered. Thus in
every even iteration, d supplies a module to c, and in every odd iteration d is
given a module from one of its children. Informally, when d sends a module
up into V , the gap (in the sense of lack of guest module) that is created in
S travels down the highest priority path of S until it disappears at a leaf.
In general, a guest module on the priority path will never be more than two
steps away from d, following the analysis of Lemma 4. Within V , a stream
of guest modules, two units apart, will move upward. One module will pop
up into an empty cell, every three iterations. Thus compressed modules in
V are always able to progress.

We now briefly discuss the reconfiguration from V to T . If we merely
wish to construct the shape of T , then we can assume that V does not
intersect the cells that will be occupied by T . Otherwise, if T must occupy
specific cell coordinates, it is trivial to move V to a position where our
assumption will hold.

For the construction of T , let us first assume that the memory of each
module suffices to count to n. All modules from V pass through the root
r0 on their way to T . Once a module m reaches r0, the root determines the
position of m in T and supplies m with three values corresponding to the
sizes of the three subtrees of m in T . Then r0 transfers m to the highest-
priority child c of r0 whose subtree is not full yet. The child c in turn
transfers m to its own highest-priority child not yet full and so on, until m
encounters the conditions to pop into an empty cell in T , as directed by its
host module. From that point on, m simply awaits modules transferred by
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its parent and directs them to its children according to our priority rules
(counterclockwise starting with the east child). In order to decide where
to send an incoming module, m keeps count of all modules passed through;
this information, along with the information collected from r0 (the sizes of
its three subtrees), suffices for m to avoid sending an incoming module into
a completed subtree.

If we do not have the luxury of allowing modules to count, we do the
following. The root does not tell m the size of its subtrees, but instead it just
tells m if it will have a subtree, in each direction. Priority rules are followed,
as before. The only difference is that when m reaches its final position, it
will not be able to determine when its subtrees are full. Thus each module
performs an entire Depth-First Search of the partial structure of T . This
involves backtracking, which can be dealt with via Transfer. We omit
details here, since this backtracking issue appears again and is clarified in
section 4.

We remind the reader that our first phase need not terminate before the
second commences. By compressing leaves and sending them towards the
root, while simultaneously constructing V from the root whenever it be-
comes compressed, the target configuration will be constructed even faster.
Splitting into two distinct phases simply helps with the analysis.

4 In-place reconfiguration

This section describes an in-place algorithm that reconfigures S into T by
restricting the movement of all modules to the space occupied by S ∪ T , as
long as they intersect. If S and T do not intersect, then we also use the cells
on the shortest path between them. Our description assumes intersection.
If all modules were to know which direction to take in each time unit (for
example, by having an external source synchronously transmit instructions
to each module individually), then it would not be difficult to design an
in-place algorithm similar to the one in Section 3. However, since we impose
the restriction that all modules are only capable of communicating locally,
it is up to r0 to direct all action.

4.1 Overview

Our algorithm consists of two phases. The first phase is identical to phase
1 of the TreeToPath algorithm from Section 3 (i.e., clustering around the
root).
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In the second phase, r0 carries out a DFS (depth-first search) walk on
T , dynamically constructing portions that are not already in place. Apart
from modules in cells adjacent to r0 that receive its instructions, all other
modules simply try to keep up with r0 (i.e., they follow ClusterStep).
Note that if r0 is not initially inside T , it first must travel to such a position.
At any time, this “moving root” will either be traveling through modules
that belong to the partially constructed tree T , or will be expanding T
beyond the current tree structure, using compressed modules that are
tagging along close to r0.

4.2 Algorithmic details

The InPlaceReconfiguration algorithm maintains a dynamically chang-
ing tree S, and a connected subset S` of that tree. Each cell u maintains
two links: a physical link corresponding to the physical connection between
u and P (u) in S, and a logical link that is only present between adjacent
nodes in S`. We call the tree S` induced by the logical links the logical tree.

Tree S always contains all occupied cells. Tree S` is the smallest subtree
of S that contains modules not in their final position in T . Thus at the end
of the algorithm, S = T and S` = ∅.

The full algorithm is summarized in the following:

Algorithm InPlaceReconfiguration(S, T )

Phase 1. S ← SourceCluster(S).

Phase 2. S` ← S.
Repeat until r0 reaches the final position in its DFS traversal:

S ← TargetGrow(S, T ).

We continue with a description of the operation of TargetGrow.
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TargetGrow(S, T )

d← next cell in the DFS visit of T .
c← current 2-cell in which r0 is a guest module.

{1. DFS Root Update }
Mechanical/Physical Operations
1.1 If d is a 0-cell,

PopOutLeaf(c, d)
1.2 If d is not a 0-cell,

If c 6= P (d),
Attach(c, d) and Detach(d, P (d)).

Transfer(c, d).

Tree Structure Update
1.3 Set P (c) to be d. Set P (d) to null.
1.4 Mark c as “visited”.
1.5 Add edge (c, d) to S`.

{2. Root Clustering }
Until c and d become 2-cells, repeat:

(a) Leaf Prune: For all 1-cell leaves u ∈ S`, execute in parallel:
If u is marked “visited”, remove u from S`.

(b) ClusterStep(S`)
If r0 is not the guest in c, Switch(d).

Note that in Phase 2, we start with S` = S. Throughout this phase, the
structure of S` is identical to the structure of S, with the exception that
some branches of the tree S` are logically trimmed off through iterative leaf
prune operations. The host module in each cell uses a bit to determine if
the cell is also part of S`. Pointers between cells and their parents apply for
both trees.

The main idea of the target growing phase is to move r0 through the
cells of T in a DFS order. A caravan of modules will follow r0, providing
a steady stream of modules to fill in empty target cells that r0 encounters.
The algorithm repeats the following main steps:

1. DFS Root Update: r0 is the guest of 2-cell c and is ready to depart.
It marks c as “visited” (i.e., c now belongs to T ). Then r0 moves to
the next cell d encountered in a DFS walk of T . This is accomplished
either by uncompressing (popping) r0 into d (see Fig. 5(a → b)), or
by transferring r0 to d (see Fig. 5(e → f)). Cell d is added to S`, if
not already included.
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2. Root Clustering: Modules in S` attempt to move closer to r0, to en-
sure that they are readily available when r0 needs them. However,
host modules in their final target position should never be displaced
from that position, so we must carefully prevent such modules from
compressing towards r0. To achieve this, we alternate between the
following two steps, until c and d both become 2-cells:

(a) Logical Leaf Pruning: remove any 1-cell leaf of S` that has been
visited (i.e., is in T ). Note that a pruned 1-cell may end up back
in S` one more time, during Root Update.

(b) Cluster Step: this step is applied to S`. Thus, only modules that
are guests or unvisited leaves will try to move towards r0.

Fig. 5 illustrates the InPlaceReconfiguration algorithm with the help
of a simple example.

4.3 Algorithm correctness and complexity

Lemma 7. Algorithm InPlaceReconfiguration maintains a physically
connected tree that contains all modules.

Proof. By Lemma 2, SourceCluster produces a tree S containing all
robot modules. Thus we must show that TargetGrow maintains such
a tree when it receives one as input. We first analyze step 1 (DFS root
update). In step 1.1, PopOutLeaf maintains a tree, by Lemma 1. In step
1.2, d is already part of S. Now if c 6= P (d), we attach c to d, which creates a
cycle. However, we immediately break this cycle by detaching d from P (d),
and thus S is restored to a tree. See Figs. 5(c → d → e) for an example.
Regardless of the initial relationship between c and P (d), and the possible
re-structuring of S, we proceed with Transfer(c, d), which maintains tree
connectivity, by Lemma 1.
After steps 1.1 and 1.2 or the DFS update, no other physical connections
are altered. Pointers are modified to reflect the physical changes made.
Since the root acts alone, our assumption that every cell is involved in one
operation at a time holds.

Finally, S remains a physical tree during step 2 of TargetGrow. This
basically follows from two observations: (a) step 2a changes only the logical
tree S`, and (b) ClusterStep maintains a tree, by Lemma 2. The only
issue remaining is to prove that whenever a 1-cell leaf becomes involved
in PushInLeaf in ClusterStep, it is not visited. Not only do we wish
to avoid moving visited 1-cells, but this operation could cause a physical
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Figure 5: Reconfiguring S into T : the top row shows S (after SourceClus-
ter) and T . Links in S`, which is shaded, are depicted as arrows. Subse-
quent figures show S (with its logical subtree S` shaded) (a) after Target-
Grow, with each intermediate step illustrated (DFS root update on the left
and the subsequent 3 clustering steps on the right); (b) after TargetGrow,
with each intermediate step illustrated; (c) after TargetGrow, with its
two main steps (root update and root clustering) illustrated; (d,e,f,g) show
the next 4 TargetGrow steps; (h) after the next 2 TargetGrow steps;
(i) after the next TargetGrow (note the rightmost 1-cell leaf getting dis-
connected from S`); the process continues.
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disconnection if S 6= S`. It suffices to claim that S` never contains a visited
1-cell leaf. This is in accordance to our definition of S` being the smallest
tree containing unvisited modules. Given such a structure, the following
situations can arise for a leaf u in step 2. The leaf u of S` could remain
unaltered, or if it is a 1-cell (meaning, not visited) it could use PushInLeaf
to become the guest in a new 2-cell leaf. Finally if u is a 2-cell and becomes
a 1-cell, we prune the 1-cell from S` if it is visited.

In phase 1 of InPlaceReconfiguration, the SourceCluster call
produces a root-clustered tree containing r0 in a 2-cell. We now show that
phase 2 maintains this property in constant time, regardless of how r0 moves.

Lemma 8. TargetGrow maintains S` as a root-clustered tree containing
r0 in a 2-cell. Furthermore, the procedure uses O(1) parallel steps.

Proof. The proof is rather similar to that of Lemma 6. Since the structure
of S` is identical to the structure of S, with the exception of some branches
being trimmed off, it follows from Lemma 7 that S` is physically connected.
This property can also be derived from the fact that a cell d is attached to
one node only in S`, thus never creating a cycle.

Let Si
` denote the root-clustered tree that is input for TargetGrow at

iteration i. In step 1 (DFS root update), Si
` will be modified according to

any physical operations carried out (PopOutLeaf and Transfer ). By
Lemma 7, these changes result in a tree, which we call Si+1

` .
Since step 1 only affects c and d, it follows that at the beginning of step 2,

a long gap in Si+1
` must contain c, which becomes a 1-cell via PopOutLeaf

(see Fig. 6a), or via Transfer (see Fig. 6b).
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Figure 6: DFS Root update (a) PopOutLeaf(c, d) (b) Transfer(c, d).

We now show that the loop in step 2 of TargetGrow iterates at most
four times before our claim holds. Recall that, since Si

` was root-clustered,
children of c are either leaves, 2-cells, or their children have that property.

Any Leaf Prune operation only trims visited 1-cell leaves from the tree
and thus does not affect the root-clustered property of the tree. There
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are two cases for the number of ClusterStep applications required to
terminate the loop:

1. Si+1
` was obtained via PopOutLeaf (step 1.1): In this case c and d

are 1-cells at the beginning of step 2. If all children of c are leaves
or 2-cells, then in the first iteration of ClusterStep, c will become
a 2-cell again. Otherwise, since Si

` was root-clustered, any non-leaf
1-cell child will become a 2-cell in the first iteration. Thus in the
second iteration at the latest, c will become a 2-cell. Furthermore,
just as described in Lemma 6, the subtree rooted at any child of c
remains root-clustered after the first application of ClusterStep (in
particular, for the highest-priority child which is the only one that
changes). Similarly, by the time c becomes a 2-cell, the subtree rooted
at c also becomes root-clustered. The third ClusterStep makes d a
2-cell root of a root-clustered tree, since all children of c must have been
leaves or 2-cells to supply a module to c. The fourth ClusterStep
makes c a 2-cell, which terminates the loop.

2. Si+1
` was obtained via Transfer (step 1.2): In this case d is already

a 2-cell at the beginning of step 2 because of the Transfer opera-
tion in step 1.2. If c remains a 2-cell during the transfer, then Si+1

`

is already root-clustered and the loop condition is satisfied. If c is a
1-cell, arguments similar to case 1 imply that after one application of
ClusterStep, Si+1

` is root-clustered. A second application of Clus-
terStep makes c a 2-cell, which terminates the loop.

This concludes the proof.

Theorem 2. The InPlaceReconfiguration algorithm can be imple-
mented in O(n) parallel steps.

Proof. By Lemma 5, phase 1 uses O(n) steps. Step 2 of InPlaceReconfig-
uration has O(n) iterations, since DFS has O(n) complexity. By Lemma 8,
each iteration takes constant time.

5 Observations

Matching lower bound: Transforming a horizontal line of modules to a
vertical line requires a linear number of parallel steps, if each module can
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only displace one other module and maximum velocity is constant.

3D: All of our techniques apply directly to 3D robots, once the top and
bottom sides of cells are incorporated into our highest priority rule.

Reconfiguration of labeled robots: Our algorithms are essentially un-
affected if labels are assigned to modules. This is of interest if a robot is
to have specialized modules, equipped with cameras, drills, etc. In Tree-
ToPath, assume that the partially constructed canonical path is sorted.
Then a new module m can bubble/tunnel to its position by successive ap-
plications of the Transfer primitive operation. When it gets there, the
tail of the path (from m to leaf) must shift over. This is straightforward,
involving propagation of one compressed unit, and does not interfere with
other modules following m. At all times, m or its replacement makes steady
progress towards the leaf.

For the in-place algorithm, T can first be constructed disregarding labels.
A similar type of bubble-sort can then be applied, taking place within T .

Telecube robots: The natural state of a telecube robot has atom arms
contracted. There is no room to compress two modules into one cell. Thus
an algorithm cannot commence with PushInLeaf operations, and it is not
possible to physically exchange modules in adjacent cells while remaining
in place. However, consider our first algorithm. We do not even need a
SourceCluster phase, since all atoms are packed together. The root can
transmit an instruction to a cell at maximum y-coordinate to act as root
and immediately push out two of its atoms. For the construction of V , all
analysis follows. It seems that labeled atoms within a module might become
separated (for example, if the module is at a junction in a tree). Thus an
extra step is used, to collect the root atoms at the bottom of V .

Exact in-place reconfiguration is impossible for telecube robots if the
modules are labeled. Thus the root cannot travel to any position within
S. It might be possible to deal with this issue by requiring larger modules
and designing a “reduced module shape” for the root (e.g., fewer atoms,
using naturally expanded links). Instead, we could require that all modules
have access to the map of T , which means any module can begin to expand
T by filling adjacent 0-cells. Instead of backtracking or advancing through
non-empty cells of T physically, the root can just tell its neighbors to take
over. Eventually a new root module would expand T at a different connected
component of 0-cells.

Other modular robots: It has been shown [Aloupis et al., 2009a]
that suitably constructed modules of other prototypes (e.g., M-
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TRAN [Kurokawa et al., 2007], ATRON [Jørgensen et al., 2004]) are
capable of simulating Crystalline atoms. Such modules may require 50-100
atoms to simulate one Crystalline atom, and the resulting shape is not
compact. Nevertheless, the result in [Aloupis et al., 2009a] implies that our
results here apply to large systems of other prototypes.
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Appendix

PushInLeaf and PopOutLeaf

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 7: Details of PushInLeaf and PopOutLeaf.
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Transfer

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 8: Details of the positioning step of the primitive operation
Transfer(m, q). Before being sent to the lattice position of q, the module
m is rotated within its lattice cell, in order to face q.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 9: Details of the Send step of the primitive operation Transfer.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 10: Details of the Exchange step of the primitive operation Trans-
fer.
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Switch

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 11: Details of Switch.
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