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Abstract

When can a polyomino piece of paper be folded into a unit cube? Prior work
studied tree-like polyominoes, but polyominoes with holes remain an intriguing
open problem. We present sufficient conditions for a polyomino with one or
several holes to fold into a cube, and conditions under which cube folding is
impossible. In particular, we show that all but five special “basic” holes guarantee
foldability.

Keywords: folding, origami folding, cube, polyomino, polyomino with holes,
non-simple polyomino

1. Introduction1

Given a piece of paper in the shape of a polyomino, i.e., a polygon in the plane2

formed by unit squares on the square lattice that are connected edge-to-edge, does3

it have a folded state in the shape of a unit cube? The standard rules of origami4

apply [3]; in particular, we allow each unit-square face to be covered by multiple5

layers of paper. Examples of this decision problem are given by the three puzzles6

?A preliminary extended abstract appeared in the Proceedings of the 31st Canadian
Conference on Computational Geometry [1].
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Figure 1: Three polyominoes that fold along grid lines into a unit cube, from puzzles by Nikolai
Beluhov [2].

by Nikolai Beluhov [2] shown in Figure 1. We encourage the reader to print out7

the puzzles and try folding them.8

Prior work [4] studied this decision problem extensively, introducing and an-9

alyzing several different models of folding. Beluhov [2] implicitly defined a grid10

model with the puzzles in Figure 1: Fold only along grid lines of the polyomino;11

allow only orthogonal fold angles1 (±90◦ and ±180◦); and forbid folding material12

strictly interior to the cube. In this model, the prior work [4] characterizes which13

tree-shaped polyominoes (whose unit squares are connected edge-to-edge to form14

a tree dual graph) lying within a 3×n strip can fold into a unit cube, and exhaustively15

characterizes which tree-shaped polyominoes of ≤ 14 unit squares fold into a unit16

cube.17

Notably, however, the polyominoes in Figure 1 are not tree-shaped, and their18

interior is not even simply connected: The first puzzle has a hole, the second19

puzzle has two holes, and the third puzzle has a degenerate (zero-area) hole or20

slit. Arguably, these holes are what makes the puzzles fun and challenging.21

Therefore, in this paper, we embark on characterizing which polyominoes with22

hole(s) fold into a unit cube in the grid model. Although we do not obtain a23

complete characterization, we give many interesting conditions under which a24

polyomino does or does not fold into a unit cube.25

The problem is sensitive to the choice of model. The other main model that26

has been studied in past work is the more flexible half-grid model, which allows27

orthogonal and diagonal folds between half-integral points, as in Figure 2. The28

prior work [4] shows that all polyominoes of at least ten unit squares can fold29

into a unit cube in the half-grid model, leaving only a constant number of cases to30

explore, which were tackled recently [5]. Therefore, we focus on the grid model,31

which matches the puzzles of Beluhov [2].32

1The fold angle of a fold measures the deviation from the flat (unfolded) state, i.e., 180◦ minus
the dihedral angle between the two incident faces.
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Figure 2: One way to fold a cube in the half-grid model, adapted from [4, Fig. 5(b)]. In all our
figures, solid/red lines denote mountain folds, dashed/blue lines denote valley folds, light/grey
lines denote grid lines, and bold/black lines denote the polyomino boundary.

If we generalize the target shape from a unit cube to polycube(s), there are33

polyominoes that fold in the grid model into all polycubes of at most a given34

surface area [6]. If we further forbid overlapping unit squares (polyhedron un-35

folding/nets instead of origami), this fold-all-polycubes problem has been studied36

for small polycubes [7], and there is extensive work on finding polyominoes that37

fold into multiple (two or three or more) different boxes [8, 9, 10, 11, 12].38

Our Results39

1. We show that any hole that is not one of five basic shapes of holes (see40

Figure 3) always guarantee that a polyomino containing the hole folds into41

a cube; see Theorem 1 in Section 3.1. Polyominoes with exactly one of the42

five basic holes only sometimes allow folding into a cube.43

2. We identify combinations of two (of the five basic) holes that allow the44

polyomino to fold into a cube; see Section 3.2.45

3. We show that certain of the five basic holes or their combinations do not46

allow folding into a cube, that is, we show that subclasses of polyominoes47

with only specific basic hole(s) cannot be folded into a unit cube; see Sec-48

tion 4.49

4. We present an algorithm that checks a necessary local condition for folding50

into a cube; see Section 4.3.51

5. Whether this condition also constitutes a sufficient condition remains an52

open question; see Section 5.53

6. We conjecture that a slit of size 1 (see Figure 3, second from left) never54

affects whether a polyomino can fold into a cube; see Section 4.2. However,55

we show that a slit of size 1 can be the deciding factor for foldability for56

larger polycubes.57
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2. Notation58

A polyomino is a connected polygon P in the plane formed by joining together59

|P| = n unit squares on the square lattice. We refer to the vertices of the n unit60

squares forming P as the grid points of P. We view P as an open region (excluding61

its boundary) which includes the n open unit squares of the form (xi, xi+1)×(yi, yi+62

1) as well as some of the shared unit-length edges (and grid points) among these n63

unit squares. Notably, we do not require P to include the common edge between64

every adjacent pair of squares; if such an edge is missing from P, we call the edge65

a slit edge. But there must be at least n − 1 unit-length edges in P so that P is66

(interior-)connected.67

A hole of a polyomino P is a bounded connected component of P’s exterior,68

whose boundary is one of the connected components of P’s boundary other than69

the outermost one. We assume that P has no holes that are just a single grid point,70

because such holes do not affect foldability, so we can fill them in (add them to P).71

We call a hole a slit if it has zero area (and is more than a single point), and thus72

consists entirely of one or more slit edges. We call a hole basic if it has one of the73

following shapes (refer to see Figure 3):74

1. A unit square75

2. A slit of size 1 (a single slit edge)76

3. A slit of size 2 (L-shaped or straight)77

4. A U-slit of size 378

A unit cube C is a three-dimensional polyhedron with six unit-square faces79

and volume of 1. We refer to the vertices of C as corners.80

In this paper, we study the problem of folding a given polyomino P with holes81

to form C, allowing creases along edges of the lattice with fold angles of ±90◦ or82

±180◦. In all our figures, solid/red lines denote mountain folds, dashed/blue lines83

denote valley folds, light/grey lines denote grid lines, bold/black lines denote the84

polyomino boundary, bold dotted/purple lines denote creases folded by ±180◦,85

and thin dotted/purple lines denoted creases folded by ±90◦ (the purple/dotted86

creases could be mountain or valley).87

Some crease patterns give numbers on the unit squares to indicate which face88

they fold onto in a “real-world” six-sided die, where opposite faces sum up to 7.89
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Figure 3: The five basic holes: a unit square, a slit of size 1, a straight slit of size 2, an L-slit of
size 2, and a U-slit of size 3.

3. Polyominoes That Do Fold90

In this section, we present polyominoes that fold. We start with polyominoes91

that contain a hole guaranteeing foldability.92

3.1. Single-Hole Polyominoes93

In this section, we show that any hole different from a basic hole guarantees94

foldability.95

Theorem 1. If a polyomino P contains a hole h that is not basic, then P folds into96

a cube.97

Proof. By the definition of basic hole, because h is non-basic, it must be a superset98

of either two unit squares, a unit square and a unit slit, or a slit of size 3 that is not99

a U-slit. In the case it contains two unit squares sharing a grid point, h must be a100

superset of one of the holes in Figure 5 (a)–(b) up to rotation. If it contains a unit101

square and a unit slit sharing a grid point, then h is a superset of Figure 5 (e) up102

to reflection and rotation. Else, h must be a superset of the slits in Figure 5 (c),103

(d), (f), (g) because those are all possible slits of size 3 that are not U-shaped up104

to reflection and rotation. Then, we distinguish the cases where h contains105

• Two unit squares sharing an edge106

• Two unit squares sharing a grid point107

• A unit square and an incident slit108

• A slit of length at least 3 (straight, zigzagged, L-shaped, or T-shaped)109

In a first step, we show that if h contains one of the four above holes, we may110

assume that it contains exactly this hole. Let h be a hole containing a hole h′ of the111

above type. By definition of a hole, h needs to be enclosed by solid squares. Thus112

we can sequentially fold the squares of P in columns to the left and right of h′113

on top of the columns directly left and right of h′, respectively, as illustrated in114

Figure 4. Afterwards, we fold the squares of P in rows to the top and bottom of h′115
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Figure 4: Folding strategy to reduce to seven cases.

on top of the rows directly top and bottom of h′, respectively. We call the resulting116

polyomino P′. Note that because h is a hole of P, all neighboring squares of h′117

exist in P′. Thus we may assume that we are given one of the seven polyominoes118

depicted in Figure 5, where striped squares may or may not be present. Note that119

we can assume that no additional slits are present.120

(a)

(b)

(c) (d)

(e) (f) (g)

Figure 5: Any polyomino with a hole that is not basic can be reduced to one of the seven illustrated
cases; striped squares may or may not be present.

Secondly, we present strategies to fold the polyomino into C. Note that the121

case if h′ consists of two squares sharing only a grid point, we can fold the top122

row on its neighboring row and obtain the case where h′ consist of a square and123

an incident slit. For an illustration of the folding strategies for the remaining six124

cases consider Figure 6.125

Are basic holes ever helpful?126

In fact, four of the five basic holes sometimes allow foldability, as illustrated127

in Figure 7. Note that the U-slit of size 3 reduces to the square hole by a ±180◦128

6



5 5

5

1

6 23 3

3

4

3

3

1

6 25 5

5

4

3

3 2

6 21 5

3 4

1

35 4 5

4 126

4

44

2

22

5

31

6

6

3 3

6 12

5

3

5

1 1

5

5

3

36

2

6

2 4

Figure 6: Crease pattern of cube foldings. Mountain folds are shown in solid red, valley folds in
dashed blue. Squares with the same number cover the same face of the cube.
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mountain or valley fold.129

In Theorem 15, we show that the slit of size 1 never helps to fold a rectangular130

polyomino. Moreover, we show in Lemma 14 that the crease pattern around the131

slit behaves as if the slit was nonexistent, i.e., the only option to make use of the132

slit is to push part of the polyomino through the slit. In fact, we conjecture that133

the slit of size 1 never helps to fold a polyomino into C.134

3.2. Combinations of Two Basic Holes135

In this section, we consider combinations of two basic holes that fold. For a136

polyomino with two holes, for which the lowest grid point v of the upper hole has137

a higher y-coordinate than the upper grid point w of the lower hole, we denote the138

number of unit-square rows between w and v as the number of rows between the139

two holes. Analogously, we define the number of columns between two holes.140

Theorem 2. A polyomino with two vertical straight size-2 slits with at least two141

columns and an odd number of rows between them folds.142

Proof. As in the previous section, we first fold all rows between the slits together143

to one row; this is possible because there is an odd number of rows between the144

slits. Then, all the surrounding rows and columns are folded towards the slits.145

Finally, we fold the columns between the slits to reduce their number to two or146

three. Depending on whether the number of columns between the slits was even147

or odd, this yields a shape as shown in Figure 8 (a) and (b), respectively, where148

the striped squares may be (partially) present. In all cases, the two shapes fold as149

indicated by the illustrated crease pattern. Note that in Figure 8 (b) the polyomino150

is of course connected, which implies that at least one square of the central column151

is part of the polyomino, i.e., a square with label 6 is used.152

If we have a polyomino with exactly two slits that have only one or no column153

between them, then the shape cannot be folded as can be verified by the algorithm154

of Section 4.3. In the following theorems we call a U-slit which has the open part155

at the bottom an A-slit. If the orientation of the U-slit is not relevant, then we call156

it a C-slit.157

Theorem 3. A unit cube can be folded from any polyomino with an A-slit and158

a unit-square hole/C-slit in the same column above it, having an even number of159

rows between them.160
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Proof. We can assume that the upper hole is a unit square, as the flaps generated161

by a C-slit can always be folded away. Similar to before we fold away all sur-162

rounding rows and columns and reduce the number of rows between the A-slit163

and the unit-square hole to two. This yields the shape of Figure 8 (c), which can164

be folded as indicated by the crease pattern.165

Note that if the bottom slit is a U-slit, then the shape of Figure 8 (c) does not166

fold, again verified by the algorithm of Section 4.3.167

Theorem 4. A polyomino with an A-slit and a unit-square hole/C-slit below it and168

separated by an odd number of rows, folds, regardless in which columns they are.169

Proof. As before, we assume that the lower hole is a unit square, fold away the170

surrounding rows and columns, and reduce the number of rows between the two171

slits/holes to one. Furthermore, we fold the columns between the slits/holes such172

that at most two columns remain between the two slits/holes. Consequently, we173

(a) (b) (c) (d)

(e) (g)(f)
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Figure 8: Combinations of two basic holes that are foldable with and without (part of) the striped
region. Mountain folds are shown in solid red, valley folds in dashed blue.
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obtain one of the shapes shown in Figure 8 (d) to (g). All of them fold, with or174

without the striped region. Note that the upper unit-square holes in Figure 8 (d)175

and (e) can be replaced by an A-slit which can be folded away.176

Note that if the two holes are in the same or neighbored column(s) (Figure 8 (d)177

and (e)), then independently of the orientation of the U-slits or whether they are178

unit-square holes, any combination folds, yielding Theorem 5. In the other cases,179

the unit square incident to all three slit edges constitutes the only unit square that180

covers the face ’1’ in the unit cube.181

Theorem 5. A polyomino with two unit-square holes which are in the same or in182

neighboured column(s) and have an odd number of rows between them folds.183

4. Polyominoes That Do Not Fold184

In this section, we identify basic holes and combinations of basic holes that185

do not allow the polyomino to fold. First, we present some results that show how186

the paper is constrained around an interior grid point v. In particular, we consider187

situations when the induced polyomino of the four unit squares A, B,C,D incident188

to v is connected; for an example consider Figure 9.189

Lemma 6. Four unit squares incident to a polyomino grid point v for which the190

induced polyomino is connected, cannot cover more than three faces of C.191

Proof. The grid point v is incident to four unit squares in P. As grid points of P192

are mapped to corners of C and all corners of C are incident to 3 faces, v is incident193

to only 3 faces in C.194

Lemma 7. Four unit squares incident to a grid point v not on the boundary of195

P cannot cover more than two faces of C. In particular, at least two collinear196

incident creases are folded by ±180◦.197

Proof. Let A, B, C, and D be the unit squares incident to v in circular order; see198

the left of Figure 9. By Lemma 6, A, B, C, and D cover at most three faces199

of C. Hence, at least two unit squares map to the same face of C; these can be200

edge-adjacent or diagonal.201

In the first case, assume without loss of generality that A and B map to the202

same face. Hence, the crease between them must be folded by ±180◦. Then C203

and D must also map to the same face of C to maintain the paper connected.204

Consequently, the crease between C and D is folded by ±180◦.205
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In the latter case, let without loss of generality A and C map to the same face206

of C. As they are both incident to v, only two options of folding those two unit207

squares on top of each other exist. Either the edge between A and B gets folded on208

top of the edge between B and C, this leaves a diagonal fold on B, a contradiction,209

or the edge between A and D gets folded on top of the edge between B and C,210

which results in D being mapped to C, and those are two adjacent unit squares, by211

the above argument two collinear incident creases must be folded by ±180◦.212

vvA

B C

D vva b =⇒v v

Figure 9: Illustration of Lemmas 7 and 8. The thick dotted/purple lines represent creases fold by
±180◦; they could be mountain or valley.

Lemma 8. Consider a grid point v that is not on the boundary of a polyomino P213

that folds into C. If one crease of v is folded by ±180◦, then the incident collinear214

crease is also folded by ±180◦.215

Proof. Without loss of generality, we show that if the left horizontal crease of v216

is folded by ±180◦, the same holds for the right horizontal crease. We denote the217

left and right adjacent grid points of v by a and b, respectively, as indicated in218

Figure 9, right.219

Suppose for a contradiction, that the right crease is not folded by ±180◦. Then,220

by Lemma 7, both vertical creases are folded by ±180◦. In particular, a and b are221

mapped to the same corner of C and thus the edges av and bv coincide. Hence,222

because av is folded by ±180◦, bv is also folded by ±180◦.223

Lemmas 7 and 8 imply that:224

Corollary 1. Let k, n ≥ 2 and let P be a polyomino containing a rectangular225

k × n-subpolyomino P′ whose interior does not contain any boundary of P. Then,226

in every folding of P into C, all collinear creases of P′ are either folded by ±90◦ or227

by ±180◦. Moreover, either all horizontal or all vertical creases of P′ are folded228

by ±180◦; see Figure 10.229

Proof. First, suppose for a contradiction that there exist two collinear creases,230

one of which is folded by ±90◦ and the other by ±180◦. Then there also exists an231

interior grid point of P′ where the crease type of the two collinear edges changes232
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from ±90◦ to ±180◦. However, by Lemma 8, if one is folded by ±180◦, then both233

are. A contradiction.234

Second, suppose that not all horizontal creases are folded by ±180◦. Then,235

by the first statement, there exists a row in which no grid point has a horizontal236

edge that is folded by ±180◦. By Lemma 7, all vertical creases incident to the grid237

points of this row are folded by ±180◦. Because all collinear edges behave alike,238

it follows that all vertical creases are folded by ±180◦.239

Figure 10: Illustration of Corollary 1.

Corollary 2. Let P be a rectangular k × n-polyomino without any holes, then P240

does not fold into C.241

4.1. Polyominoes with Unit Square, L-Shaped, and U-Shaped Holes242

We begin by examining the possible foldings of a polyomino containing a unit-243

square hole. Suppose that a given polyomino P with a unit-square hole h folds into244

a cube. Furthermore, let the shape of h no longer be a square in the folded state;245

we say hole h is folded in a non-trivial way. For an example consider Figures 11246

and 12. Then, in the folded state, either all edges of h are mapped to the same edge247

of C, or two pairs of edges are glued forming an L-shape. In the following, we248

show that if P folds into C, the first case is impossible, while the second produces249

a specific crease pattern around h.250

Figure 11: An example of a non-trivial fold of a 3 × 3 square with a unit square hole. The crease
pattern is a special case of the one in Figure 13.
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Lemma 9. The four edges of a unit-square hole h of a polyomino P that folds251

into C are not mapped to the same edge of C in the folded state.252

Proof. We denote the four unit squares of the polyomino edge-adjacent to h by253

A, B, C, and D, and the four unit squares adjacent to h via a grid point as F1,254

F2, F3, and F4, as illustrated in Figure 12. Assume for a contradiction that all255

edges of h are mapped to the same edge of C. Consider A, F1, and B in the folded256

state. As the two corresponding edges of h are glued together, the three faces must257

be pairwise perpendicular. The similar statement holds for the triples {B, F2,C},258

{C, F3,D}, and {D, F4, A}. This results in a configuration as illustrated in the right259

of Figure 12.260

A C

B

DF4

F1 F2

F3

A DCB

Figure 12: Four edges of a square hole glued together.

Because the faces A, B,C share an edge of C in the folded state such that A261

and B, as well as B and C are perpendicular, A and C must cover the same face of262

C. Likewise, B and D cover the same face of C. If P folds into C, then F1 and F3,263

as well as F2 and F4 are mapped to the same faces of C. Suppose, without loss of264

generality, that in the folded state A lies in a more outer layer than C. Then, F1265

and F4 are in a more outer layer than F3 and F2, respectively. Thus, B connects266

the more inner layer of F2 to the more outer layer of F1, and at the same time D267

connects the inner layer of F3 to the outer layer of F4. Hence, B and D intersect,268

which is impossible. Therefore, if the polyomino folds into a cube, the four edges269

of a square hole cannot all be mapped to the same edge of C.270

It follows that the only non-trivial way to glue the edges of a square hole h of271

a polyomino folded into a cube is to form an L-shape. We use this to show the272

following fact:273

Lemma 10. Let P be a polyomino with a unit-square hole that folds into C. In274

every folding of P into C where h is folded non-trivially (i.e., h is not mapped to a275
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Figure 13: Thinner dotted/purple lines indicate creases folded by ±90◦, while thicker dotted/purple
lines indicate creases folded by ±180◦. Left: crease pattern around a unit-square hole folding into
an L-shape when grid points a and c are mapped to the same corner of C; creases shown in purple
can be both mountain or valley. Right: numbers indicate the face of the cube in the folded state;
mountain folds are shown as red solid lines, and valley folds as blue dashed lines.

square), the crease pattern of the unit squares incident to h is as illustrated in the276

right image of Figure 13 (up to rotation and reflection).277

Proof. Suppose the four edges of h are not mapped to distinct edges of C. Then,278

by Lemma 9, the four edges are not mapped to the same edge, but to two edges279

forming an L-shape. This effectively amounts to gluing a pair of diagonal grid280

points of the hole.281

Let a, b, c, and d be the four grid points of h, and suppose a and c are mapped282

to the same corner of C when folding P into C; see also the left image of Figure 13.283

284

Consider the crease pattern around h. We shall only focus on the angles of the285

creases and not the type of the fold, as there may be (and will be) other creases in286

P affecting the type of the creases under our consideration. Observe that the three287

faces incident to each of the grid points b and d are pairwise perpendicular, they288

form a corner of a cube. Thus, the creases emanating from b and d are all folded289

by ±90◦. Further observe that the three unit squares around each of the grid points290

a and c fold into two faces of a cube, thus, leading to one of the creases being291

folded by ±90◦ and the other folded by ±180◦. Finally, the two creases folded by292

±180◦ are parallel to each other. Indeed, consider the right side of Figure 12. For293

a crease to form an L-shape one of the two dashed blue lines must fold by ±180◦,294

which corresponds to two parallel creases in the unfolded state. Therefore, the295

crease pattern in Figure 13 (left) is the only pattern of creases (up to rotation and296

reflection) around a non-trivially folded square hole. Figure 13 (right) shows the297

faces of the corresponding crease pattern, and Figure 11 shows the folding process298

of this crease pattern.299

With the help of Lemma 10, we can show that several types of polyominoes300
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with unit-square holes do not fold into C.301

Theorem 11. If P is a rectangle with exactly one unit-square hole h, then P does302

not fold into C.303

Proof. First note that h is folded non-trivially, otherwise P corresponds to a rectangle304

which does not fold into C (Corollary 2). Therefore, by Lemma 10, the crease305

pattern around h is as depicted in Figure 13. Note that, on each side of h, there306

exists a fold by ±90◦.307

Consider the rectangle R obtained by cutting P by the top edge of h and308

deleting the part below. If R has a height of at least 2, then by Corollary 1,309

either all vertical or all horizontal creases are folded by ±180◦. In the first case,310

in particular the creases incident to h are folded by ±180◦. However, this is a311

contradiction to the crease pattern around h in which each side of h has fold by312

±90◦. Consequently, all horizontal edges are folded by ±180◦. This corresponds313

to folding R on top of the row above h. In particular, P is foldable into C if and only314

if the polyomino P′ obtained from P by cutting-off all rows above h is foldable.315

Hence, we consider P′.316

Likewise, we treat all other sides of P′ and obtain the polyomino P′′ consisting317

of a 3 × 3-rectangle with a central unit-square hole; see also Figure 13 (right). In318

particular, P is foldable (if and) only if P′′ is foldable into C.319

Because h is folded non-trivially, the crease pattern of P′′ is given by Figure 13.320

Note that in the folded state P′′ covers only 5 faces and, hence, P′′ does not fold321

into C.322

A similar result holds for rectangular polyominoes with two unit-square holes.323

Theorem 12. A rectangle with exactly two unit-square holes in the same row does324

not fold into C if the number of columns between the holes is even.325

Proof. Note that if the polyomino can be folded into C, both holes must be folded326

non-trivially: If one hole behaves as a square in the folded state, i.e., is folded327

trivially, the polyomino is effectively reduced to a rectangle with one basic hole.328

However, by Theorem 11, this does not fold into C. Consequently, both holes are329

folded non-trivially.330

Therefore, by Lemma 10, the crease pattern around the two holes is as depicted331

in Figure 13. Consider the 3× 2k-rectangle R between the two holes (with k ≥ 1).332

By the above observation, at least one horizontal edge of R is folded by ±90◦.333

Consequently, Corollary 1 implies that all vertical edges are folded by ±180◦. In334

particular, every unit square of R is mapped to the same face of C as the leftmost335
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Figure 14: A polyomino that does not fold into a cube.

(or rightmost) unit square in the same row of R. This reduces the polyomino to one336

with R being a 3 × 2-rectangle. We will show that the squares of P neighbouring337

the two holes are not able to cover C, that is, it remains to show that the polyomino338

P, depicted in Figure 14, does not fold into C.339

Consider the left 3 × 3 block of P. If the two parallel creases folded by ±90◦340

are vertical, then the right 3×3 block will also have the two parallel creases folded341

by ±90◦ run vertical; see Figure 14 (left). Then, the four unit squares above and342

below the two holes match to the same face on C. Denote it as ‘1’. Observe that343

the rest of the unit squares share a grid point with ‘1’ and thus cannot cover the344

face on C opposite to ‘1’.345

In the second case, when the two parallel creases folded by ±90◦ of the left346

block are horizontal, then they extend into the right 3 × 3 block by Corollary 1.347

Refer to Figure 14 (right). Then, the four unit squares to the left and to the right348

of the two holes match to the same face on C, which we denote by ‘1’. As before,349

every unit square of P shares a grid point with ‘1’ and thus the face opposite to350

‘1’ on C cannot be covered.351

Remark. Note that the arguments of Lemma 10 and Theorems 11 and 12 extend352

to an L-slit of size 2, and a U-slit of size 3. The resulting crease patterns are353

illustrated in Figure 15.354

These insights help to obtain the following result:355

Theorem 13. Let P be polyomino with two holes, which are both either a unit356

square, or an L-slit of size 2, or a U-slit of size 3, such that (1) P contains all the357

other cells of the bounding box of the two holes and (2) the number of rows and358

the number of columns between the holes is at least 1. In every folding of P into C,359

the two holes are not both folded non-trivially.360

Proof. If P contains a unit-square hole that is not folded non-trivially, then, by361

Lemma 10, the crease pattern in the neighborhood of the hole is as depicted362

in Figure 13. Likewise, if P contains an L-slit of size 2 or a U-slit of size 3363
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Figure 15: Crease pattern around an L-slit (left) and a U-slit (right). Numbers indicate the face
of the six-sided die in the folded state; thinner lines denote creases folded by ±90◦; thicker lines
denote creases folded by ±180◦; mountain folds are drawn solid/red; and valley folds are drawn
dashed/blue.

that is folded non-trivially, the crease pattern in the neighborhood of the hole is364

as depicted in Figure 15. Note that on each side of the crease patterns in the365

neighborhood of the holes, there exists a crease folded by ±90◦.366

We turn the paper such that the left hole is above the right hole as in Figure 16367

and consider the rectangular region R to the right of the left hole and above the368

right hole.369

R

Figure 16: Two unit-square holes with at least one row and column in between, if folded non-
trivially imply two perpendicular creases folded by ±90◦ (drawn as thin dotted lines).

Because each side of the crease patterns in the neighborhood of the holes has370

a crease folded by ±90◦ (Lemma 10), R contains a vertical and a horizontal crease371

folded by ±90◦. By Corollary 1, all collinear creases are also folded by ±90◦.372

Hence, there exists a grid point in R for which all incident creases are folded by373

±90◦, yielding a contradiction to Lemma 7.374

4.2. Polyominoes with a Single Slit of Size 1375

In the following, we show that a slit hole of size 1 does not help in folding a376

rectangular polyomino into C. We start with a lemma:377
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Lemma 14. In every folding of a polyomino P with a slit hole of size 1, the crease378

pattern behaves as if the slit hole was nonexistent.379

Proof. To prove the lemma we examine the local neighborhood of the slit and380

analyze the possible folding patterns we can obtain between adjacent faces. More381

specifically, we consider the six unit squares A, B, C, D, E and F of P that are382

incident to the slit hole of size 1 as illustrated in Figure 17. We distinguish two383

cases: The crease between A and F is folded by ±90◦ or ±180◦.384

F

A B C

DE

Figure 17: A polyomino with a slit hole of size one.

If the AF crease is folded by ±90◦, we must further distinguish if the EF385

crease is folded by ±90◦ or by ±180◦. If the EF crease is folded by ±180◦, then386

the slit edge is mapped to the edge between AF, fixing that B maps to A. Hence,387

this corresponds to a crease folded by ±90◦ of the slit edge.388

By symmetry, we may assume that both the AB crease and the EF crease389

are folded by ±180◦. This implies that B and E cover the same face in such390

a way that the top edge of B is mapped to the left edge of E. However, then the391

bottom left corner of D is also mapped to the top left corner of E. A contradiction.392

Consequently, this is impossible.393

If the AF crease is folded by ±180◦, then A and F cover the same face and, in394

particular, their left edges are mapped to the same edge such that the top edge of395

F and the bottom edge of A coincide. This implies that the left edge of E and the396

left edge of B also coincide such that the top edge of E and the bottom edge of B397

coincide. This corresponds to crease folded by ±180◦ of the slit edge.398

This shows that the slit edge is a crease folded by ±90◦ or by ±180◦. Hence,399

the crease pattern behaves as if the slit hole was nonexistent.400

Theorem 15. If P is a rectangle with exactly one slit of size 1, then P does not401

fold into C.402

Proof. By Lemma 14, the crease pattern behaves as if the slit was nonexistent,403

i.e., as if P was a rectangle. By Corollary 1, all horizontal or vertical creases are404

folded by ±180◦, reducing P to a rectangle of height or width 1, which does not405

fold into C.406
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Furthermore, we conjecture that the slit of size 1 never is the deciding factor407

for foldability.408

Conjecture 1. Let polyomino P′ be obtained from a polyomino P by adding a409

slit s of size 1. If P′ folds into C, then P folds into C as well.410

We note that this is not true for arbitrarily large polycubes (connected three-411

dimensional polyhedron that are formed by a union of face-adjacent unit cubes on412

the cube lattice):413

Lemma 16. There exists a polyomino P with a slit s of size 1 and a polycube Q,414

such that P can be folded into Q, but the polyomino P′ without s cannot be folded415

into Q. That is, for larger polycubes, a slit of size 1 can be the deciding factor for416

foldability.417

Figure 18: Left: Polyomino P (with slit s), right: polycube Q. Colors of P coincide with the parts
of the same color in Q, the light gray unit squares are not mapped to outer faces of Q.

Proof. We consider the polyomino P and the polycube Q from Figure 18. P has418

40 unit squares, and Q has 38 faces. Therefore, 38 out of the 40 unit squares will419

be the faces of Q when folded, hence, at most two unit squares of P may be folded420

on top of other unit squares to obtain Q.421

19



P contains two rectangular k × n-subpolyominoes with k, n ≥ 2 that do not422

contain s: a rectangular 3 × 4-subpolyomino in the lower left (green) and a rect-423

angular 5×2-subpolyomino (pink). Similar to the proof for Corollary 1, we know424

that there do not exist two collinear creases in these rectangular subpolyominoes,425

one of which is folded by ±90◦ and the other by ±180◦. Hence, if we fold a crease426

in those rectangular subpolyominoes by some angle, all other collinear creases427

(in the same row or column) are also folded by the same angle. Observe that the428

surface of Q does not contain any 2 × 2 flat squares. Hence, for every grid point429

contained in a rectangle at least the vertical or horizontal creases are folded by430

some angle.431

Assume that we fold the vertical crease of length 5 in the pink rectangular432

5 × 2-subpolyomino by ±180◦. Then 5 unit squares would be folded on top of433

other unit squares in Q, again a contradiction. If, on the other hand, we fold a434

horizontal crease of length 2 in the rectangular 5 × 2-subpolyomino by ±180◦,435

then all other unit squares need to appear as a face of Q. Similarly, if all of these436

creases would be ±90◦, again 2 unit squares would be folded on top of other unit437

squares. However, there are unit squares attached at the bottom and the top of438

the 5 × 2-subpolyomino, which in that case cannot cover separate faces (5 unit439

squares from the pink rectangular 5 × 2-subpolyomino plus these two adjacent440

unit squares can cover at most 4 faces of Q), which would yield further overlap, a441

contradiction. Hence, the crease of length 5 must be ±90◦, thus, this will constitute442

part of the row of eight unit cubes in Q.443

Analogously, assume that we fold any of the horizontal or vertical creases444

of the green rectangular 3 × 4-subpolyomino by ±180◦. Hence, 3 or 4 of the445

unit squares would be folded on top of other unit squares in Q, a contradiction.446

Consequently, all existing folds must be ±90◦.447

Assume that we fold all vertical creases in the green rectangular 3×4 subpoly-448

omino ±90◦. This would yield 3 faces of a tube-like 4× 1× 1-polycube for which449

the 1 × 1 top and bottom faces and one of the 4 × 1 faces are missing. However,450

together with (part of) the pink 5 × 1 × 1 polycube, this would yield a row of nine451

unit cubes, which cannot be combined for Q. Hence, all horizontal creases must452

be ±90◦.453

Consequently, the green rectangular 3 × 4-subpolyomino can be folded in a454

tube-like 3× 1× 1-polycube for which the 1× 1 top and bottom faces are missing.455

If we did not use the dark-green leftmost bottom unit square to cover one of these456

faces, this closing face would need to be a unit square of the remaining 27(=457

40 − (3 × 4 + 1)) unit squares, however, then three unit squares must be folded458

on top of unit squares of the folded 3 × 4-subpolyomino, a contradiction to the459
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number of faces of Q again.460

Hence the 3 × 1 × 1 polycube with one 1 × 1-face missing (obtained from the461

green rectangular 3 × 4-subpolyomino and the adjacent dark-green unit square),462

must cover the left 3 × 1 × 1-subpolycube of Q.463

Then, the only part of P that can be folded into the blue attached unit cube is464

the blue T-shape.465

The vertical unit-square row on top and below that T has length 5, hence, it466

must cover a part of the right 5×1×1 of Q (again, otherwise too many unit squares467

would be folded on top of each other).468

We obtain this only when using the slit of size 1 (we push the green 3 × 4-469

subpolyomino and the adjacent dark-green unit square through the slit and unfold470

then again).471

4.3. An Algorithm to Check a Necessary Local Condition for Foldability472

Consider the following local condition: let s be a unit square in a polyomino473

P such that the mapping between grid points of s and corners of a face of C has474

been fixed. Then, for every unit square s′ adjacent to s, there are two possibilities475

on how to map its four grid points onto C: the two grid points shared by s and476

s′ must be mapped consistently and for the other two grid points there are two477

options depending on whether s′ is folded by ±90◦ to an adjacent face of C, or478

whether it is folded by ±180◦ to the same face of C.479

The algorithm below checks whether there exists a mapping between all grid480

points of unit squares of P to corners of C such that the above condition holds for481

every pair of adjacent polyomino squares of P.482

1. Run a breadth-first search on the polyomino unit squares, starting with the483

leftmost unit square in the top row of P and continue via adjacent unit484

squares. This produces a numbering of polyomino unit squares in which485

each but the first unit square is adjacent to at least one unit square with486

smaller number. See Figure 19 for an example.487

2. Map grid points of the first unit square to the bottom face of C. Extend the488

mapping one unit square at a time according to the numbering, respecting489

the local condition (that is, in up to two ways). Track all such partial490

mappings.491

The algorithm is exponential, because unless inconsistencies are produced, the492

number of possible partial mappings doubles with every polyomino unit square.493

Nevertheless, it can be used to show non-foldability for small polyominoes: if no494

consistent mapping exists for a polyomino, then the polyomino cannot be folded495

onto C. On the other hand, any consistent grid-point mapping covering all faces496
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Figure 19: Example of Step 1 of the algorithm. It shows the numbering of polyomino squares
produced by the breadth-first search.

of C obtained by the algorithm that we tried could in practice be turned into a497

folding. However, we have not been able to prove that this is always the case.498

The algorithm above was used to prove that polyominoes in Figure 20 do499

not fold, as well as it aided us to find the foldings of polyominoes in Figure 8.500

An implementation of the algorithm is available at the following site http://501

github.com/zuzana-masarova/cube-folding.502

Figure 20: These polyominoes with single L-, U- and straight size-2 slits do not fold into a cube.

5. Conclusion and Open Problems503

We showed that, if a polyomino P does contain a non-basic hole, then P folds504

into C. Moreover, we showed that a unit-square hole, size-2 slits (straight or L),505

and a size-3 U-slit sometimes allow for foldability.506
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Based on the presented results, we created a font of 26 polyominoes with slits507

that look like each letter of the alphabet, and each fold into C. See Figure 21, and508

http://erikdemaine.org/fonts/cubefolding/ for a web app.509

We conclude with a list of interesting open problems:510

• Does a consistent grid-point mapping output by the algorithm in Section 4.3511

imply that the polyomino is foldable? If so, is the folding uniquely deter-512

mined?513

• Is any rectangular polyomino with one L-slit, U-slit, or straight slit of size 2514

foldable? Currently, we only know that the small polyominoes in Figure 20515

do not fold.516

• We considered the existence of only a folded state in the shape of C, but what517

if we require a continuous folding motion from the unfolded polyomino518

into C? These two models are known to be equivalent for polygons without519

holes [13, 3], but equivalence remains an open problem for polygons with520

holes as in our case.521
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Figure 21: Cube-folding font: the slits representing each letter enable each rectangular puzzle to
fold into a cube.
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