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Abstract 

Most origami, both practical and mathematical, uses just straight 
creases. Curved creases, on the other hand, offer a wealth of new 
design possibilities. While the first curved-crease models date 
back to the Bauhaus in the 1930s, curved creasing remains 
relatively underexplored. The principal challenge considered here 
is to understand what 3D forms result as natural resting state(s) 
after folding a set of curved creases, with the potential to enable a 
new category of design. This problem goes beyond the 
mathematics of developable surfaces to a question of physics: 
equilibria of an unstretchable surface with uncreased and creased 
(plastically deformed) portions folding elastically toward desired 
angles. Two natural approaches for experimenting with this 
question are computer simulation and building real models. We 
follow the latter approach, being more interested in how real 
materials behave and how the resulting structures might be applied 
in the field of architecture. 
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1 Introduction 

Most materials used for dry building enclosures are supplied as 
sheet goods, making developable surfaces—surfaces foldable from 
a flat sheet—the geometry of choice [She02]. Nondevelopable 
curved surfaces are made primarily by casting, stamping, or 
similar methods that need a dye or mold, which lacks economy of 
scale if the individual components are different from each other. 
     This research proposes a family of curved three-dimensional 
geometries that can be fabricated from two-dimensional sheet 
materials,  by  way  of  curved  creases;  see   Figure 1.   We   also  

 
 
show proofs of concept for fabricating such shapes in materials 
suitable for architectural applications. 
 
 

2 Academic Context 

The first known reference of curved-crease origami is from a 
student’s work at the Bauhaus, taking a preliminary course in 
paper study by Josef Albers in 1927–1928 [Win69, p. 434]. Albers 
later taught the model—formed from creasing a circular piece of 
paper with concentric circles, alternating mountain and valley—at 
Black Mountain College circa 1937–1938 [Adl04, p. 33, p. 73]. 
Irene Schawinsky (wife of Alexander “Xanti” Schawinsky) 
developed a variation with a central concentric circular hole, 
exhibited at the Museum of Modern Art (MoMA) in New York 
[McP44, p. 42]. Later this model entered origami circles through 
Thoki Yenn from Denmark and Kunihiko Kasahara from Japan. 
More intricate curved-crease origami sculpture has been designed 
by Ronald Resch (1970s), David Huffman (1970s–1990s), 
Jeannine Mosely (2000s), Gregory Epps (2000s), and Demaine 
and Demaine (2000s); see [DD] for a recent MoMA exhibition 
and a more detailed history.  
     The mathematical literature encompasses a reasonable 
understanding of how curved creases can fold locally; see, for 
example, Huffman’s one paper [Huf76] and the more recent works 
[FT99, KFC+08]. However, there is essentially no algorithmic 
understanding of how to design origami using curved creases, 
unlike the wealth of algorithms for straight creases; see [DO07]. 
We aim to start filling this gap by experimenting with a range of 
designs. 
     Part of the challenge is that the three-dimensional forms taken 
by curved-crease origami are not usually determined 
mathematically: treated mechanically, the models have many 
degrees of freedom. Yet physical paper prefers to rest in one (or a 
few) stable equilibria. These equilibria (locally) minimize the 
elastic energy of the system: where paper is uncreased, it tries to 
return to its original flat state; and where paper has been creased 
(plastically deformed, effectively modifying its memory), it tries 
to return to the set crease angle. (Exactly how far the crease-angle 
memory is set depends on how hard one folds the creases, which 
affects the final form.) Physics balances these forces, often 
resulting in surprising three-dimensional forms. 
     Being difficult to solve analytically, we can find this family of 
natural folded forms by either physical experiment or computer 
simulation. Computer simulation of origami [KGK94, MYYT96, 
BGW06, Tac07, KWC] has so far focused on straight creases, in 
some cases allowing developable surfaces between straight creases 
[MYYT96, BGW06] and in one case allowing curved creases 
[KGK94]; others have tested using piecewise-straight 
approximations of curved creases [Tac07]. Only a few, however, 
simulate actual physics of paper [BGW06, KWC]. We opt for an 
experimental approach both to ground any future computer 
simulation and to better understand any influence of the material 
choice (not modeled by these simulators). 



 
 
 

3 Experiments 

We consider curved crease patterns consisting of several regular 
offsets of a variety of different piecewise-quadratic smooth curves, 
with fold directions alternating between mountain and valley. In 
an origami context, such crease patterns correspond to “pleating”, 
and they naturally extend the Bauhaus form of concentric circles. 
Specifically, we consider circles, ellipses, and parabolas, both 
whole and joined together in pieces, mostly to form closed loops. 
The offsets we consider are concentric, shifting monotonically in 
one direction, and shifting alternately back and forth in one 
direction. 
     Figures 2a–2c show some of the drawn patterns of our 
experiments. A total of 20 shapes were tested successfully. Only 
11 are documented here because of similarities in crease patterns 
and resulting three-dimensional form. Our experiments use a 
cotton-based paper, scored on each side with a laser cutter. 
     Several interesting   and   sometimes   unexpected   phenomena  

arose from our experiments. Perhaps most exciting is the wide 
variety of three-dimensional forms resulting from sometimes 
subtly different crease patterns, leaving a broad spectrum for 
design even within the context of pleating. Also intriguing is that 
shifting offset ellipses (as well as circles) alternately back and 
forth along a line, as shown in Figure 3 and 4c, results in a 
“twisted” folded form that lacks the mirror symmetry of the crease 
pattern. In contrast, shifting offset ellipses monotonically in one 
direction results in a mirror-symmetric form, as shown in Figure 
4b. 
 

 
 
 

 



 
 
A more negative example is the combination of three parabolas, 
shown in Figure 5, where it appears impossible to fold along all 
creases by a positive amount in the desired direction, resulting in a 
flat area. This outcome is not surprising, given the close proximity 
to a straight-crease design of concentric triangles, which behaves 
similarly. More interesting is that the closely related model shown 
in Figure 6, with two parabolas and a somewhat larger circular 
segment, folds nicely into a three-dimensional form with precisely 
the desired creases. 

 
 

4 Industry Context: Proof of Concept 

The second part of this research is to investigate manufacturing 
techniques within an industry context, as related to the fabrication 
of architectural elements. We produced several prototypes for 
proof of concept and Figure 7 documents the successful ones. The 
goal is to create a direct connection from mathematical origami to 
fabrication technology relevant to architecture today. 



The challenge regarding an architectural implementation is to find 
elastic materials that fold into these natural shapes, without 
showing additional creases, while being suitable for exterior 
applications. The proposed fabrication method is based on 
perforations, because a series of small holes can act as a guide for 
bending. S-shaped dashes for these perforations help metals bend 
easily [Ori]. Our successful experiments shown in Figure 7 were 
made of polycarbonate and steel cut with a water jet. This method 
also seems very promising for thicker sheets of aluminum. 
 

 
 

Conclusion 

This experimental research aims to elucidate the relationship 
between curved crease patterns and the natural three-dimensional 
forms that result. As little is known about this relationship, our 
trial-and-error approach may help indicate interesting behaviors 
that can be exploited in a more general algorithmic approach. 
     Creating three-dimensional shapes out of flat sheet goods has 
inherent architectural advantages and will contribute to the field 

by providing form generation techniques for developable surfaces. 
We find this area ripe for further collaboration between 
mathematics, architecture, design, and fabrication. 
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