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Summary 
In this paper we review masterpieces of curved crease folding, the deployed design methods and 
geometric studies on this special kind of paper folding. Our goal is to make this work and its 
techniques accessible to enable further development. By exploring masterpieces of the past and 
present of this still underexplored field, this paper aims to contribute to the development of novel 
design methods to achieve shell structures and deployable structures that can accommodate 
structural properties and design intention for a wide range of materials. 
Keywords: origami, curved creases; paper folding; structural morphology; digital fabrication. 

1. Introduction 
Origami or paper folding is not only a great source of inspiration in architectural design, but is also 
an effective medium for structural form finding because the developability and foldability 
characteristics of origami are useful for designing shells and folding/unfolding deployable 
structures. 
Traditional paper folding mostly uses straight creases. We call this type of origami prismatic 
origami, since straight creases surround planar facets and compose a polyhedral surface (e.g., PCCP 
shells and Miura-ori [1] and Resch’s structure [2]). Here, by altering the crease and making it into a 
curved folding, the surface suddenly becomes a complex three-dimensional form that cannot be 
described easily by simple parameters as vertex coordinates. Curved folding is a hybrid of folding 
and bending a sheet, and the surface is comprised of curved creases and smooth developable surface 
patches. This can be compared to prismatic origami being the result of pure folding, and the smooth 
developable surface created from pure bending of a sheet. 
The hybrid property of curved folding has an advantage when used to form a 3D surface from sheet 
materials. When we try to form a surface by pure bending, the shape is limited to simple geometries 
such as cones, cylinders and tangent surfaces. Prismatic origami on the other hand is more flexible 
in design, but cannot represent a smoothly curved surface without increasing the resolution by a 
sufficient number of creases. Such creases form a large number of vertices where the material 
largely deforms in-plane. Here, a curved fold forms a variety of surfaces using mostly separated 
small number of creases. Design examples of curved folding used for forming 3D surface are 
shown in Section 3.  
Furthermore, there is a relatively new approach for applying curved folding to structure. A curved 
folding can be discretized as a planar quadrangle mesh, the interpretation of which as a rigid 
origami yields a mechanical linkage with 1 degree of freedom. Hence the curved folding can be 
used for designing transformable structures as shown in [3].  



Our goal is to find out further different types of applications of curved folding and make curved 
folding applicable in a wider context of design by understanding its form variations and the 
geometry behind it. In this sense, curved folding is a relatively underexplored topic. Therefore, we 
start from introducing previous works by artists and designers and the geometric approach applied 
to analyze and design curved foldings. Here are the main contributions of our paper. 

1. We introduce the works by a variety of artists and designers who have deeply explored the 
forms of curved folding. 

2. We show examples of curved folding used for the design of products and interior fixtures 
and the design procedure adopted. 

3. We review successful geometric analysis of curved folding and the design methods based on 
geometric and computational means. 

2. Curved Creases in Art and Design 

2.1 Napkin folding 
When we consider examples of curved creases, the trajectories of art, mathematics and education 
will cross and we will observe concurrent developments in all fields. Napkin folding is surprisingly 
well documented in German since the 17th century, but not as art rather as a teaching document. 
This decorative art with its complicated table decorations required manuals to teach all techniques. 
An early account of such a handbook with curved creases is the Trincir-Buch by Georg Philipp 
Harsdoerffer from 1652 [4].  

2.2 The Bauhaus model 
The teaching work by Josef Albers at the first Bauhaus in 1927 and 1928 is documented in 
photographs and represents the first account of a specific curved crease model, which other origami 
experts have investigated [7]. This model is made of concentric circles with alternating mountain 
and valley folds and automatically folds into the shape seen in Figure 1 on the left [8]. Students 
made this model in Josef Albers’ “Vorkurs”, an introductory design class. He decided to teach 
design through paper models, because it is an abstract exercise that allows students to focus only on 
the design and the paper, not on pragmatic or functional requirements for instance. He promotes to 
let students try out designs without any a priori knowledge of architecture or established design 
methodologies. He calls this “non-expert experimentation”. The material itself is the only constraint, 
which is very much aligned with the then newly established Bauhaus tradition. Albers points out 
that working with materials and exploiting its properties for a design leads to a fundamental 
understanding of efficiency of means. A material will be utilized to its maximum potential, which 

leads to light design proposals with little waste. Lastly designing curved crease models provides 
students with unexpected revelations, which was a pedagogical value that Albers appreciated [9]. 
 Another model was recreated by Irene Schawinsky, the wife of Alexander “Xanti” Schawinsky, 
who was a Bauhaus student and later taught at Black Mountain College during the time Albers was 
teaching there. Her model shows a variation with a large hole in the center [10]. Thoki Yenn 
publicized his version of the model in the 80s, which he called “Before the Big Bang” [11]. 
Kunihiko Kasahara learned of the model from Yenn and made many variations, which he published 

  

Fig. 1: The Bauhaus design 
(left) and a variation design 
by Erik Demaine and 
Martin Demaine (right), 
both models by Martin 
Demaine 
 



in Extreme Origami in 2003 [12]. Erik and Martin Demaine started to explore this model together in 
1989 and made many variations of it since. The model shown in Figure 3 differs from the original 
as multiple discs of paper are joined together [13]. The sculptures are part of the Museum of 
Modern Art (MoMA) permanent collection. In 2008 the Demaines and Duks Koschitz created 
further variations of this model that are based on crease patterns that use conic sections. The 
resulting shapes display very different symmetries than the symmetries of the flattened crease 
pattern [14]. 

2.3 Books on paper folding with curved creases 
Less known for his paper foldings but certainly recognized for his bookmaking art, Kurt 
Londenberg (1914-1995) published “Papier und Form” featuring works of paper folding in 1972 
with several new editions later on. He presents paper folding in various contexts including a section 
called “architectural folding”. Many of the photographed models were made specifically for the 
book and he saw this publication as an educational contribution [9]. Londenberg attributes great 
significance to Bauhaus educator and artist, Josef Albers, and reprinted his article on working with 
paper. In the same year Hiroshi Ogawa [15] published crease patterns in his Forms of Paper and 
both authors should be considered as designers since they made their geometrically repeating 
sculptures themselves. Their works display artistic qualities beyond the didactic role they played in 
their books, but the authors refrained from elaborating artistic motivations. 

2.4 Two important figures of the 70s 
The most expressive work from the 70s that is not related to the Bauhaus model but uses curved 
creases has to be attributed to computer scientist David Huffman and artist Ron Resch. The 
contemporaries knew one another and had many 
discussions about paper folding. Huffman 
remained true to his roots and took an analytical 
approach, while Resch was more interested in 
applied techniques for sculptures and other artistic 
endeavors. Both published and had a strong 
connection to computational processes, but only 
Resch used computers to realize some of his 
sculptural work [16]. Huffman’s work can be 
described as true to the “one piece of paper, no 
cuts” rule of folding purists as seen in Figure 2 on 
the left. He never talked about origami and always 
referred to his work as paper folding. Resch, 
being concerned with fabrication methods and the 
expressive nature of art created sculptures with 
elaborate boundaries. 
Huffman may have not considered himself to be 
an artist, but his work is highly valued in the 
folding community both as artistic artifacts and 
mathematical investigations. He mentioned in a 
description of himself while teaching at UCSC. “I 
don’t claim to be an artist. I’m not even sure how 
to define art. But I find it natural that the elegant 
mathematical theorems associated with paper 
surfaces should lead to visual elegance as well.” 
[17]  
Huffman’s passion beyond his academic work was rooted in paper folding. He focused on 
tessellations with straight creases early on and it is hard to estimate when exactly he discovered 
curved creases for himself. Huffman owned the book by Hiroshi Ogawa with its curved crease 
patterns and several examples in this publication are comparable to Huffman’s own investigations. 
It is however unclear when exactly he acquired the book. Ogawa’s sculptures are fairly regular and 
his goal was to cover many techniques [15], but Huffman’s investigations are far more rigorous. 
While we do not think that the craft culture of the 70s had a big impact on the development of 

 
Fig. 2: “column with cusps” by David Huffman. 
Reconstructed model by Duks Koschitz 



curved creases it might still be worthwhile to point out that Thelma, Jay and Lee Newman have 
collected a great deal of relevant examples in the paper issue of their The Complete Book of… series 
on crafts [18]. Included are two curved-crease examples Huffman investigated himself and it is 
possible he knew of this very popular book series. 

2.5 Contemporary art 
Contemporary examples of paper foldings in Figure 3 by Robert SweeneyYuko Nishimura and 
T.Roy Iwaki continue to intrigue art focused audiences and display how regular repeated shapes 
have been used in art successfully. Sweeney systematically tackles certain configurations and 
focuses on creating free standing or suspended objects often made of many pieces [19] and in some 
case at large scales. Matthew Shilan, also an artist, states that he works with what he calls ‘systems’ 
and that he does not know what the result will be. Once a system of folding is initiated, the outcome 
is unknown, led as it is by the qualities of the material. According to him the process consists of 
‘exploration and invention’ [20]. Nishimura on the other hand has a connection to her art through 
folding day to day commodities from kimonos to wrapping goods in gift shops. “She does not focus 
on any specific area of origami tessellations and is interested in expressing the Japanese soul 

through form” [20]. 
It may seem to be necessary to discuss Paul Jackson’s work in this context, specifically his “one 
fold models”, but when looked at closely it becomes evident that while the paper is curved the 
creases are straight lines [21]. The resulting sculptures are obviously developable, but do not use 
curved creases as the previously mentioned examples do. His work consists of very regular but 
expressive shapes and we will consider designs with less regularity in applied design fields. 
Saadya Sternberg studies geometric tessellations and published in the OSME series. Sternberg 
created a catalog of spiral tessellations and elaborates on techniques how to use curved creases. He 
also recreated a Huffman model known as “hexagonal column with cusps” [22]. 
Roy T. Iwaki created elaborate origami masks of animals and based his designs on simple basic 
shapes that he then used in complex aggregations to achieve the necessary concave and convex 
portions of an animal’s headas the one in Figure 3 on the right [23]. 
 

3. Design Implementations in Product and Interior Design 
Industrial designers, product designers and interior architects sometimes privilege practical 
approaches over artistic methods and since we know little about this geometry designer’s opinions 
and descriptions of their own work can enlighten us in terms of how to design with something we 
don’t fully understand. The choice of working with a specific material for a design project is in part 
political, cultural and historical, and while we believe that one needs to discuss design with that in 

   
Fig. 3: Design by Richard Sweeney (photo by the artist) (left), Yuko Nishimura (photo by Yosuke 
Otomo)(middle) and T.Roy  Iwaki (photo by Robert Lang) (right). 



mind, we will focus on formal aspects here. When materiality is intrinsically related to the process 
we will elaborate on the role of the material in relationship with the formal operations. 

3.1 Lamp Design by the LeKlint Company 
The lamp designs by the LeKlint company are still 
produced by hand toady. The designs had been 
developed in the family and it is unclear when 
exactly the first examples of curved creases were 
created. The shapes consist of cylindrical 
configurations that create continuous surfaces. Long 
narrow plastic sheets are folded into their shape in 
Figure 4, very much the same way Huffman made 
his models [5]. 
 

3.2 Bench Design by Tim Herok, Markus Schein 
The “Liegengenerator” by Tim Herok and Markus Schein helps generate bench designs. The 
process starts with defining tight constraints for two edges of the bench design. One edge touches 
the ground and the other is the center line in the symmetry plane of the seating area [24]. Schein set 
up a digital model that is using a genetic algorithm [25], which is looking for a solution that a user 
customizes by tweaking height and undulation parameters. The resulting plan spline represents the 
outline on the floor and is used to construct the section spline. After intersection points are plotted 
the surface can be constructed by lofting the discrete parts together. This case shows us that 
designers are drawn to this kind of geometry and are willing to accept a very constrained base 
premise in order to realize their project. This design approach however is different from the 
previous ones as it places the designer further in the background. User defined parameters generate 
the final shape that was selected by an algorithm.  

3.3 Metal Column Covers by Haresh Lalvani 
Haresh Lalvani’s work on column covers [26] is made with a very similar approach that uses a 
genetic algorithm to exhaustively explore a simple setup. The expressiveness of their “orchestrated 
random” designs is remarkable when one takes the constraints into consideration. The column 
covers are part of the MoMA collection and are made in regular and stainless steel. 

3.4 Car Design by Gregory Epps 
Gregory Epps designed the car in 
Figure 5 as proof of concept prior to 
founding is company RoboFold. The 
resulting shapes of his method that 
starts by crumpling paper are irregular 
and have great expressive potential. 
Epp’s car does not need to enclose a 
volume as opposed to the LeKlint 
designs since the bottom of a vehicle 
is rarely controlled by the designer. 
Epp’s playful design method is also 
not conducive to creating such a 
configuration as this is very difficult to 
make surfaces meet in a continuous 
way. 
In concluding the design section we would like to point out a curious characteristic common to all 
mentioned examples, which is their bias towards symmetry. We believe this is a combined result of 
functional requirements and the difficulties designers face when working with curved creases, 
which might change once we know more about this geometry. 

     
Fig. 4: Lamp by the LeKlint Company 

 
Fig. 5: Gregory Epps’ car design (photo by the artist) 



4. Mathematical Analysis and Computational Methods 
In order to morphologically investigate curved foldings to make them flexibly applicable to 
different design purposes, it is necessary to understand the geometric nature of curved folding. One 
of the difficult problems of curved folding is that it is defined by continuously smooth surface and 
non-smooth creases. The surface cannot be represented by simple parameters like NURBS surfaces 
because of the restrictive constraints induced from its geometry. There is no known universal 
representation of curved folding. Here, we introduce the known major approaches deployed for 
understanding and using the geometry for design. 

4.1 Differential Geometric Analysis 
The most fundamental result starts with a differential geometric approach, i.e., understanding the 
local behavior of the surface. Huffman [27] describes the local behavior of a crease by introducing 
spherical trigonometry on the Gauss sphere, and this publication still remains a main reference. 
Resch investigated curved creases and stipulated that every space curve can be used to construct 
three distinct curved creases. He demonstrated such designs by early computer graphics rendering 
[16, 28]. Fuchs and Tabachnikov [29] further Huffman’s work and contributed significantly to the 
understanding of developable surfaces and curved creases.. They assess that it is possible to fold an 
arbitrary curve drawn on paper into a 3D crease with higher curvature.  If the curve is strictly 
convex and closes onto itself (e.g., circle) then the folded 3D crease is not in a plane. They also 
elaborate on the behavior of rulings along folded creases. On the other hand, Demaine et. al. [30] 
describe how paper behaves between creases and mathematically answer why only curved creases 
can produce interesting curved surface. In other words, the surface surrounded by straight creases 
cannot bend and must stay polyhedral. Even though these local analyses form the base of other 
geometric design approaches, these general results themselves stop at the first crease, while 
multiple creases are applied in practical designs.  

4.2 Constructive Geometric Approach 
One of the simplest design methods of curved folding with more than one crease is to use reflection. 
We start from a single developable surface and cut and reflect it by planes. The reflection is a 
special case of curved folding where the crease lies on a single osculating plane as described in [26]. 
This is a simple yet effective method and has been deployed by many artists. For example, 
Huffman’s cone model is created using a single cone and its mirror reflections (see the 
reconstruction process in [31]).  

4.3 Inverse Calculation of a Crease 
More advanced methods solve an inverse problem to connect known elements such as cones and 
cylinders with a curved crease. Geretschläger [32] sets out to understanding curved creases by 
predefining the geometry of a piece of paper in a curved state. He then assumes the path of a crease 
and calculates the position of the part of the paper on the other side of the fold.  
This type of inverse approach is useful to construct reusable modules for constructing 
symmetrically aligned or tessellated figures. Mosely analyzes curved creases of her own “cube 
shape”, a volumetric model she invented that uses several tiles of a simple crease pattern made of 
four semicircles [33]. Also, in her tessellation works, a curve is numerically calculated so that cones 
and cylinders symmetrically tessellate a plane [34]. 

4.4 Discrete Geometric Approach 
In order to deal with fully generalized curved folding without predetermined assumptions on the 
form of surfaces, we need to globally solve geometric problems by discretizing and globally solving 
the geometric problems.  
Lalvani uses genetic algorithms that select mutated straight polyhedra. His “Morphological Genome 
Project” is based on defining parameter sets or genes, which are then used to modify a polyhedral 
shape. The final selected results by the genetic algorithm are developable [26]. The practical 
application of this work lead to metal column covers for interiors as described in Section 3.3. 



Kergosien et al. [36] take an engineering approach to investigate early simulations of paper. 
Starting from a generic curve they are able to fit a developable surface. If the boundary curve 
creates crossing rule lines their algorithm finds a curved crease within the boundary as seen in.  
Kilian et al. [35] model curved folding using planar quadrangle meshes (PQ-meshes) and deploy an 
optimization based method. A case study they investigated is a car design by Gregory Epps that is 
made of a single piece of paper. The physical model is 3D scanned and an elaborate process of 
analysis, rule line searching, plane fitting and edge optimization follows that results in a description 
of the piecewise developable surface. The work can post-rationalize a scanned paper model, which 
is useful for fabrication for instance, but does not describe the folding process or generate novel 
forms, which still presents the main challenge today.  

5. Conclusion 
We have reviewed a small portion of previous works of curved folding in art and design, examples 
of industrial applications of curved folding, and mathematical and computational considerations 
reflected in some of the designs. We hope that this study helps the development of novel curved 
folding design in a structural context. 
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