
Polylogarithmic Fully Retroactive Priority
Queues via Hierarchical Checkpointing

Erik D. Demaine, Tim Kaler, Quanquan Liu, Aaron Sidford, Adam Yedidia

MIT CSAIL, Cambridge, Massachusetts

Abstract. Since the introduction of retroactive data structures at SODA
2004 [1], a major open question has been the difference between partial
retroactivity (where updates can be made in the past) and full retroac-
tivity (where queries can also be made in the past). In particular, for
priority queues, partial retroactivity is possible in O(logm) time per op-
eration on a m-operation timeline, but the best previously known fully
retroactive priority queue has cost Θ(

√
m logm) time per operation.

We address this open problem by providing a general logarithmic-
overhead transformation from partial to full retroactivity called “hierar-
chical checkpointing,” provided that the given data structure is “time-
fusible” (multiple structures with disjoint timespans can be fused into a
timeline supporting queries of the present). As an application, we con-
struct a fully retroactive priority queue which can insert an element,
delete the minimum element, and find the minimum element, at any point
in time, in O(log2m) amortized time per update and O(log2m log logm)
time per query, using O(m logm) space. Our data structure also supports
the operation of determining the time at which an element was deleted
in O(log2m) time.

1 Introduction

Retroactivity. We can think of a data structure as being defined by a sequence
of updates u1, u2, . . . , um applied to its initial (empty) state. Traditional data
structures “live in the present” in the sense that the user can only append up-
dates to this sequence, and ask queries about the final state of the data structure
resulting from the entire update sequence. Retroactive data structures, in-
troduced at SODA 2004 [1], allow for updates to be inserted or deleted in the
middle of the sequence, instead of just the end. Effectively, this feature enables
the user to travel back in time and make a retroactive change to the data struc-
ture (similar to the movie Back to the Future). Thus we refer to the mutable
update sequence as the timeline .

We distinguish two forms of retroactivity. In partial retroactivity , queries
can be made only of the final version resulting from all of the updates in the
timeline; effectively, retroactive updates must be propagated all the way through
the timeline in order to answer such queries correctly. In full retroactivity ,
queries can be made about the data structure at any time, corresponding to the
result from a prefix of the timeline. In short, both forms of retroactivity enable
modifying the past, and full retroactivity enables querying the past.

Known results. In some settings, retroactivity is easy to achieve. If updates
commute with each other and have inverses, then retroactive updates can be
moved to the end of the timeline, making partial (but not full) retroactivity
easy. If updates are inserts and deletes, and the queries fall under Bentley and
Saxe’s decomposable search problems, then full retroactivity is possible with an
O(logm) factor overhead [1].

Retroactivity becomes challenging when updates can have non-trival inter-
actions. Here one retroactive update can have a propagated effect on potentially
all later updates. In the extreme, when the data structure is a general-purpose
computer, a retroactive update can require an Ω(m) factor overhead [1].

The more interesting middle ground is when the updates have some but lim-
ited influence on each other—a common scenario in many classic data structures.
For example, logarithmic fully retroactive stacks (with push/pop), queues (with
enqueue/dequeue), deques (with all four), union-find, dictionaries, and prede-
cessor/successor structures all have logarithmic fully retroactive data structures
[1, 2]. Of these results, predecessor/successor was the most challenging; the orig-
inal paper [1] solved partial retroactivity in O(logm) but full retroactivity in
O(log2m), which was later improved to O(logm) by Giora and Kaplan [2]. This
problem is equivalent to dynamic rectilinear ray shooting, which was in fact the
original motivation for defining retroactivity.

Challenges. A key open problem in retroactivity, posed at SODA 2004, is whether
there is a difference in difficulty between obtaining partial versus full retroactiv-
ity. The only known upper bound on the separation is a conversion from partial
to full retroactivity with O(

√
m) factor overhead [1]. Essentially, this conver-

sion maintains Θ(
√
m) checkpoints of the timeline using a partially retroactive

data structure, and to query in between, replays the necessary O(
√
m) inter-

vening updates. On the other hand, the only known data structural problem
with a polynomial separation between the best partially retroactive and best
fully retroactive data structures is priority queues (with insert and delete-min
operations). The logarithmic partially retroactive priority queue [1] is one of the
most sophisticated retroactive data structures, propagating potentially linear-
length chain reactions in just logarithmic time. However, the existing approach
appeared limited to partial retroactivity. Until now, the fastest known fully
retroactive priority queue was the O(

√
m logm) bound that follows from the

general conversion.

Our results. In this paper, we solve this 11-year-old open problem by construct-
ing the first polylogarithmic fully retroactive priority queue. Specifically, our data
structure supports inserting an element, deleting the minimum element, and find-
ing the minimum element, at any time in the timeline, in O(log2m) amortized
time per update and O(log2m log logm) time per query, using O(m logm) space.
We also show how to support another natural query over the timeline: finding
the time at which a given element gets deleted as the minimum (or finding that
it remains in the structure in the present).

More importantly, we present a new general transformation from partial to
full retroactivity with only a logarithmic factor overhead. This result shows a
strong upper bound on the separation between partial versus full retroactiv-
ity, but it requires one additional assumption. Specifically, we call a (partially
retroactive) data structure time-fusible if, given two such data structures repre-
senting two different timelines (contained in disjoint time intervals), it is possible
to form a new (read-only) data structure representing the concatenation of those
timelines. Roughly speaking, this assumption lets us apply the O(

√
m) check-

pointing idea recursively in a binary tree structure built over the timeline, storing
a partially retroactive data structure for the sub-timeline represented by each
rooted subtree. Hence we call the transformation hierarchical checkpointing .
A retroactive query can then be answered by fusing O(logm) structures and
asking a query about the present.

Our fully retroactive priority queue data structure is an application of this
general technique. With some modifications, we show how to fuse two of the log-
arithmic partially retroactive priority queues from [1] in polylogarithmic time.
Applying the general technique gives us a polylogarithmic bound on fully retroac-
tive priority queues, but with worse bounds than those stated above. By a more
careful analysis tailored to priority queues, we show how to further tune the hi-
erarchical checkpointing analysis to improve the running time by a logarithmic
factor and get the claimed bounds of Õ(log2m).

Organization. We organize the sections of this paper as follows. Section 2 in-
troduces our hierarchical checkpointing framework in greater detail. Section 3
describes time-fusible partially retroactive priority queues whose timelines may
be fused together in polylogarthmic time. Section 4 applies the technique of
hierarchical checkpointing to obtain a fully retroactive priority queue with poly-
logarthmic overheads.

2 Hierarchical Checkpointing

In this section, we present our hierarchical checkpointing technique for trans-
forming a time-fusible partially retroactive data structure into one that is fully
retroactive while incurring only polylogarithmic overheads. In later sections,
these results will be employed to design a fully retroactive priority queue with
polylogarithmic overheads.

We begin by defining in Section 2.1 the notion of time fusibility for retroactive
data structures. Then in Section 2.2 we describe the hierarchical checkpoint
procedure and prove its correctness.

2.1 Definitions

Here we discuss the properties of partially retroactive data structures and the
conditions necessary to use hierarchical checkpointing to obtain full retroactivity.

We define a retroactive update operation to be the insertion or deletion of
a data structure operation at a particular time. These operations are:

– Insert-Op(o, t): insert a data structure update operation o into the retroac-
tive structure’s timeline at time t.

– Delete-Op(o, t): delete a data structure update operation o from the retroac-
tive structure’s timeline at time t.

We define a retroactive query operation to be one that can determine
some aspect of the state of the retroactive data structure at some point in time.
We use Get-View(t) as the canonical query procedure when we describe our
transformation.

– Get-View(t): returns some aspect of the state of the retroactive data struc-
ture at time t.

For partially retroactive structures, query operations can only be performed
in the present (i.e. t = ∞). Fully retroactive data structures, however, may be
queried at any time t. It turns out, that a collection of partially retroactive data
structures can be used to support fully retroactive query operations when it is
possible to “fuse” their timelines. Formally, we say a partially retroactive data
structure is time fusible if it has the following properties:

1. It supports a function, Fuse(d1, d2), that fuses the timelines of two instances
d1 and d2 of the partially retroactive data structure, producing a version of
the data structure that allows read-only queries and reflects the updates in
both d1 and d2. Fuse(d1, d2) need only support fusion between structures
containing updates that span disjoint and adjacent intervals of the timeline.

2. Sequences of operations made on it exhibit substring closure; in other words,
given a valid sequence of operations, any contiguous subsequence of opera-
tions on the structure is also valid.

2.2 The Data Structure

In this section we describe how to transform a time-fusible partially retroactive
data structure into one that is fully retroactive using our hierarchical check-
pointing framework. Specifically, we obtain a fully retroactive data structure
with O(T (m) logm+Q(m, k)) query time and O(A(m) log2m) amortized update
time, where T (m) and A(m) represent the merge and update time, respectively,
in the original partially retroactive data structure, and Q(m, k) is the query time
of a time-fused structure consisting of k fusions and containing m updates.

The first step of our transformation is to build a checkpoint tree — a
balanced binary search tree in which each node of the tree contains a partially
retroactive data structure consisting of all the updates in the subtree rooted
at that node. Our checkpoint tree is similar to a segment tree [?] in that each
partially retroactive data structure can be viewed as a segment with endpoints
given by the first and last chronological update in the structure. The structures in
the leaves of our checkpoint tree each contain only one update, and the leaves are
sorted by the time of their one update. The update operations Insert-Op(o, t) or
Delete-Op(o, t) can be performed on the fully retroactive structure by inserting

into or deleting the update, o, from all of the partially retroactive structures in
the search path. A query can be performed at time t by merging O(log n) disjoint
partially retroactive structures obtained from the balanced binary tree such that
the fused structure contains all updates in the time span (−∞, t].

Theorem 1. Given a partially retroactive data structure that is time fusible, we
may construct a fully retroactive version of the data structure using hierarchical
checkpointing. This data structure will have an O(A(m) log2m) amortized update
time and O(T (m) logm+Q(m, k)) query time.

We prove Theorem 1 in two parts below.

Lemma 1. Our hierarchical checkpointing method produces a fully retroactive
data structure with O(A(m) log2m) amortized update time.

Proof. Let F be a fully retroactive data structure based on a time-fusible par-
tially retroactive data structure P . Suppose that m updates have been inserted
into F and that the update operation for P runs in O(A(m)) time.

We utilize a scapegoat tree [4] to represent the checkpoint tree for F . The
checkpoint tree contains all updates to the fully retroactive structure at its leaves
ordered by time. Each internal node, x, is associated with an instance of P that
reflects the application of all updates in its subtree. To perform Insert-Op(o, t)
or Delete-Op(o, t), we insert the update as a leaf in the checkpoint tree, and
apply the update to the instances of P associated with nodes along the roof to
leaf path in O(A(m) logm) time.

To rebalance the checkpoint tree, the tree rooted at the scapegoat node is
rebuilt. We begin by obtaining a sorted list of the k updates ordered by time
by performing an in-order walk of the subtree. We create a balanced binary tree
with these k updates at the leaves, and initialize an empty instance of P for each
internal node of the subtree. Then, we insert the update at each leaf into each
of its O(log k) ancestors. Because applying an update to an instance of P takes
O(A(k)) time, the total time required to rebuild a subtree containing k updates
is O(A(k) log k). The total cost of an Insert-Op or Delete-Op operation for
the fully retroactive structures is then the sum of the cost of an insertion or
deletion and the amortized cost of rebuilding, O(A(m) log2m) amortized.

Lemma 2. Our hierarchical checkpointing method produces a fully retroactive
data structure with O(T (m) logm+Q(m, k)) query time.

Proof. Suppose that T (m) is the time it takes to fuse any two instances of P ,
and Q(m, k) is the time it takes to query an instance of P , where m is the total
number of updates in P , and k is the number of components that were used to
create the fused structure.

To perform Get-View(t), we first traverse the checkpoint tree to identify the
O(logm) disjoint subtrees that represent the time interval (−∞, t]. The time-
fusible partially retroactive structures associated with these subtrees are then
fused in-order, resulting in a single structure representing the interval (−∞, t].

We can fuse O(logm) P structures in O(T (m) logm) time. Querying this struc-
ture then takes O(Q(m, k)) time. Therefore, the total runtime of Get-View(t)
is O(T logm+Q(m, k)).

3 Time-Fusible Partially Retroactive Priority Queue

In this section we present a partially retroactive priority queue that supports
a polylogarithmic fusion operation. Specifically, we describe an algorithm that
fuses k = O(logm) partially retroactive priority queues containing m updates
in O(k log k logm) time. This time-fusible partially retroactive priority queue
enables the use of hierarchical checkpointing to obtain a fully retroactive priority
queue with polylogarithmic overheads.

3.1 Partially Retroactive Priority Queues

We begin with an informal review of a partially retroactive priority queue data
structure. To simplify our exposition, we treat the partially retroactive priority
queue from [1] as a black box and maintain 2 auxillary data structures: Qnow

containing the set of all keys remaining in the priority queue at time t = ∞,
and Qdel containing all keys that were removed from the priority queue at some
point in the past.

We assume that the partially retroactive priority queue returns, following
each retroactive update, the keys which should be inserted or deleted from Qnow

and Qdel. If a priority queue is empty at time t, then a delete-min operation will,
by convention, insert a placeholder key of infinite weight into Qdel. It is known
that, following a retroactive update at time t, it is only necessary to insert or
delete a single key into Qnow and Qdel [1]. We can, therefore, synchronize our
auxillary data structures Qnow and Qdel with the partially retroactive priority
queue in O(logm) time. A proof of this claim and an in-depth description of the
partially retroactive priority queue data structure can be found in [1, 5.4].

The auxillaryQnow andQdel structures are maintained using weight-balanced
B-trees [?,?,?] which for a balance factor d > 4 have the following properties:

– Insertion and deletion operations on a B-tree containing m elements take
O(logm) time.

– For all non-root nodes u at height h the weight w(u) of the subtree rooted
at u is bounded as follows: dh/2 ≤ w(u) ≤ 2dh.

– The root r of a height-h tree has bounded weight w(r): dh−1 ≤ w(r) ≤ 2dh.
– Tree-split and concatenate operations on a size-m tree take O(logm) time.
– A height-h′ subtree T ′ of a height-h weight-balanced B-tree T can be deleted

to form the weight-balanced B-tree T − T ′ in O(d(h− h′)) time.

A weight-balanced B-tree data structure possessing these properties is described
in [?,?]. Specifically, we apply the result of [?] with balance factor d = 8 to
maintain Qnow and Qdel.

3.2 Fusion Algorithm

Before describing our algorithm for fusion, let us better understand the structure
of the problem by proving a mathematical relationship between two partially
retroactive priority queues that represent two fusible (i.e. disjoint and adjacent)
intervals of time.

Lemma 3. Consider two partially retroactive priority queues Q1 and Q2 whose
update times lie in the intervals [a, b) and [b, c) respectively. Then, the partially
retroactive priority queue Q3 containing all updates in Q1 and Q2 in the interval
[a, c) has the property that

Q3,now = Q2,now ∪max-A {Q1,now ∪Q2,del} (1)

Q3,del = Q1,del ∪min-D {Q1,now ∪Q2,del} (2)

where A = |Q1,now|−|Q2,del|, D = |Q2,del| and max-C {S} denotes the C largest
elements in the set S.

Using Lemma 3 we can construct a time-fused representation of Q3 from Q1

and Q2 in polylogarithmic time. We will represent each of Q3,now and Q3,del as a
list of trees obtained via tree-split operations consistent with the application of
Equation (1) and Equation (2). We say that a time-fusible partially retroactive
priority queue has order k, and use the superscript notation Qk, if Qk

now and
Qk

del are represented as lists of at most k trees.
In Figure 1 we provide the pseudocode for Fuse which fuses two partially

retroactive priority queues Qk
1 , Q

k
2 to obtain Q3k

3 . Step 1 computes the value of A
from Lemma 3, and step 2 concatenates the list of trees representing Qk

1,now and

and Qk
2,del to form a list L containing 2k trees. Step 3 computes a “split-key” x

that is greater than A elements contained in trees of L. Next each tree in L is
split in step 4 by performing a tree-split operation to divide each tree Ti into a
tree Ti,< containing all keys in Ti that are less than x and Ti,> containing all keys
in Ti that are greater than x . The trees Ti,> for i = 1, 2, . . . , 2k combined with
the trees in Q2,now contain the elements satisfying the relation of Equation (1)
in Lemma 3, and similarly the trees in Q1,del and in Ti,< for i = 1, 2, . . . , 2k
contain the elements satisfying the relation of Equation (2).

The following theorem proves that Fuse fuses two partially retroactive pri-
ority queues of order k in O(k logm) time.

Theorem 2. Consider two partially retroactive priority queues Qk
1 and Qk

2 with
order k containing m operations. Then Fuse(Qk

1 , Q
k
2) runs in O(k logm) time.

Proof. We first show that GetSplitKey runs in O(k logm) time. Our algorithm
for finding the split key is an adaptation of the approach of Frederickson and
Johnson to compute order statistics for sorted arrays [5].

Steps 1, 2, and 4 of GetSplitKey run in O(k) time (step 4 uses linear-time
weighted selection from [?]).

Step 3 finds a leftmost subtree Tmi
whose contents are contained in the range

(−∞,mi) and where the order statistic of mi is in the range (|Ti|/256, |Ti|/4).

GetSplitKey(s, T1, . . . , Tk)

1. If N =
∑

i |Ti| < C (for constant C), sort⋃
i Ti and return the sth element.

2. If s < N/2, set s = N − s and “invert” the
order of each Ti.

3. For each Ti, pick a leftmost subtree Tmi

containing keys in the range (−∞,mi)
where mi has an order statistic in Ti con-
tained in the range (|Ti|/256, |Ti|/4).

4. Assign each mi the weight wi = |Ti|. Us-
ing weighted selection, select the N/4th el-
ement mj among m1,m2, . . . ,mk

5. For mi ≤ mj , let T ′
i = Ti − Tmi . For mi >

mj , let T ′
i = Ti.

6. Set snew = s −
∑

i(|Ti| − |T ′
i |) and return

GetSplitKey(snew , T
′
1, . . . , T

′
k).

(a)

Fuse(Qk
1 , Q

k
2)

1. A = |Q1,now| − |Q2,del|
2. Form a list of 2k trees L =

T1, . . . , T2k by concatenating the
list of k trees representing Q1,now

with the k trees representing
Q2,del.

3. x = GetSplitKey(A, T1, . . . , T2k)

4. For i = 1, 2, . . . 2k, split the tree Ti

on the key x to obtain 2 trees Ti,>

and Ti,<.
5. Q3,now = Q2,now + T1,>, . . . , T2k,>

6. Q3,del = Q1,del + T1,<, . . . , T2k,<

7. Return Q3

(b)

Fig. 1: Pseudocode for (a) the GetSplitKey operation; and (b) the Fuse op-
eration. GetSplitKey takes a key s and a list of k binary trees, and returns a
key x such that s keys in T1, T2, . . . , Tk are less than x.

We show that step 3 runs in O(k) time by showing that for each Ti such a
subtree exists at a distance of at most 2 from the root. Consider a height-h
weight-balanced B-tree with balance factor d, root node r, and an internal node
u at height h−2. The weight-balance criteria for B-trees provided in Section 3.1
implies that the ratio w(u)/w(r) is bounded in the range (1/256, 1/4). The key
mi can, therefore, be found in O(1) time by selecting the maximum key from
the leftmost height-(h− 2) subtree of Ti.

Step 5 deletes the subtree Tmi from Ti if mi ≤ mj . The difference in the
heights of Tmi

and Ti is at most 2, which allows T −Tmi
to be obtained in O(d)

time while preserving weight-balance. For d = 8, this step runs in O(k) time.
Note that the subtrees deleted in this step contain elements whose order statistic
is strictly less than N/2 and thus these subtrees can not contain the sth order
statistic. To prove this we show that the order statistic of mj , computed in step
4, is less than N/2. The key mj is selected in step 4 such that 3N/4 elements are
contained in trees Ti for which mi > mj . For each such i, the key mi is smaller
than at least 3|Ti|/4 of the elements in Ti. The key mj is, therefore, smaller than
at least 9N/16 elements, and thus has an order statistic less than N/2.

Step 6 updates the value of s to reflect the reduced problem size, and recur-
sively calls GetSplitKey. To bound the depth of the recursion, it is sufficient
to show that step 5 eliminates a constant fraction of the elements. Since a total of
N/4 elements are contained in trees Ti for which mi ≤ mj , and at least |Ti|/256
elements in Ti are smaller than mi, step 5 eliminates at least N/1024 elements.
The recursion depth is, therefore, bounded by O(logN). Since N = O(m), the
total runtime of GetSplitKey is O(k logm)

Next let us analyze the Fuse operation. Steps 1-2 and 5-6 of Fuse can be
performed in O(k) time. Step 3 to compute the split key runs in O(k logm) time,
and step 4 may be performed in O(k logm) time by performing an O(logm) time
tree split operation on each of k trees. The runtime of Fuse is bounded by the
time to compute the split key, and therefore is O(k logm).

The bound proved in Theorem 2 depends on the order k of the two time-
fusible partially retroactive priority queues Qk

1 , Qk
2 being merged. It turns out,

that the fusion of k partially retroactive priority queues can be constructed
efficiently while being represented using only O(k) trees by combining trees in
Qnow and Qdel that originated from a split operation on a common tree. The
ability to perform such a reduction relies on the following lemma.

Lemma 4. Let Q1, . . . , Qk denote k partially retroactive priority queues each
with disjoint time intervals that increase monotonically with k. Let Q∗ be a
priority queue containing the updates in Q1, . . . , Qk applied consecutively. Then
Q∗,now and Q∗,del consist of contiguous intervals of Qi,now and Qi,del, i.e.

Q∗,now = ∪i∈Snow
Qi,now[ai, bi] ∪i∈Sdel

Qi,del[a
′
i, b
′
i] (3)

Q∗,del = ∪i∈Tnow
Qi,now[ci, di] ∪i∈Tdel

Qi,del[c
′
i, d
′
i] (4)

for some sets Snow, Sdel, Tnow, Tdel ⊆ {1, . . . , k} and elements ai,a
′
i,bi,b

′
i,ci,c

′
i,di,d

′
i

where for a set S and a, b ∈ S we let S[a, b] = {x ∈ S : a ≤ x ≤ b}.

The preceding lemma allows us to tweak the fusion algorithm to guarantee
that the order of the fusion of k time-fusible partially retroactive priority queues
is bounded by 2k. This is accomplished by adding a post-processing step Post-
Fuse immediately after the fusion procedure Fuse. After obtaining the fusion
Q3 of Q1 and Q2, the trees representing Q3,now are checked in PostFuse to
identify pairs of split-trees that were obtained by splitting a common tree. By
Lemma 4 the union of these intervals span disjoint intervals and these pairs of
trees can, therefore, be concatenated in logarithmic time.

Lemma 5. The fusion of k time-fusible partially retroactive priority queues has
order bounded by 2k and runs in O(k logm) time when using the PostFuse
procedure.

To combine the results of this section, we prove the following theorem.

Theorem 3. Consider k = O(logm) time-fusible partially retroactive priority
queues. The time to fuse these k data structures is bounded by O(k log k logm),
and the time required to query this structure is O(log2m).

Proof. We arrange the k time-fusible structures at the leaves of a balanced
height-log k merge tree. By Lemma 5 the sum of the orders of time-fusible
partially retroactive priority queues at level i in the merge tree is O(k). The
total work to perform fusions at level i is, therefore, O(k logm) Since there are
log logm levels in the merge tree the total time is O(k logm log logm). To query
the fused structure we perform a query on each of the O(logm) trees representing
Qnow which can be done in O(log2m) time.

14

Q[0,2) Q[4,6)

3 D 15 D 9 2 6 D 5 D 35

Q[2,4) Q[6,8) Q[8,10) Q[10,12)

8 97 D D

Q[12,14) Q[14,16)

t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q[0,4) Q[4,8) Q[8,12)

Q[0,8)

Q[0,16)

Q[8,16)

Q[12,16)

(a)

Q[0,8)

Qnow

15

9

2

6

14

3

Qdel

Q[8,10)

Qnow

5

Qdel

∞

Q[10,11)

Qnow Qdel

∞

4 size 2 size 1 size 1 size 0 size 1 size

(b)

Fig. 2: Hierarchical checkpointing for fully retroactive priority queue. Illustration
of the checkpoint tree for a fully retroactive priority queue with 16 operations.

4 Fully Retroactive Priority Queue

In this section we describe the design of a fully retroactive priority queue that
uses hierarchical checkpointing. We begin in Section 4.1 by showing how to
apply our technique of hierachical checkpointing using the time-fusible par-
tially retroactive priority queue of Section 3. This yields a fully retroactive
priority queue that supports retroactive updates in O(log3m) amortized time,
retroactive queries in O(log2m log logm) time, and Find-Deletion-Time in
O(log3m log logm) time. Next, in Section 4.2, we optimize our application of hi-
erarchical checkpointing for priority queues to obtain O(log2m) amortized time
updates, and O(log2m) time Find-Deletion-Time queries.

4.1 Obtaining Full Retroactivity using Hierarchical Checkpointing

Here we analyze the fully retroactive priority queue obtained by a straightfor-
ward application of hierarchical checkpointing. The time-fusible partially retroac-
tive priority queue described in Section 3 meets the prerequisites of Theorem 1
needed to perform the partial-to-full transformation. Consequently we can di-
rectly apply this theorem to obtain a fully retroactive priority queue which fol-
lows the structure laid out in Section 2. A checkpoint tree contains all retroactive
updates ordered by time, and each internal node maintains a time-fusible par-
tially retroactive priority queue that contains the updates within its subtree.

The checkpoint-tree data structure used in this fully retroactive priority
queue is shown in Figure 2(a) after 16 retroactive operations have been per-

formed. In this example, the checkpoint tree has 16 leaves each corresponding to
a retroactive operation on the priority queue. The time-fusible partially retroac-
tive priority queue data structure described in Section 3 is used to represent the
partial checkpoints in a checkpoint tree. Each internal node, Q[a,b), maintains
a time-fusible partially retroactive priority queue that contains all retroactive
operations in its subtree (i.e. all operations occurring at times t ∈ [a, b)).

The Get-View(t) operation is illustrated in Figure 2(b). A checkpoint rep-
resenting the priority queue at time t = 10 is constructed by combining 3 partial
checkpoints from the checkpoint tree. The time-fusible partially retroactive pri-
ority queues Q[0,8), Q[8,10), and Q[10,11) that are highlighted in Figure 2 are
collected and then merged to obtain obtain a partially retroactive priority queue
containing all updates in in the interval [−∞, 10].

Theorem 4. There exists a fully retroactive priority queue that supports retroac-
tive updates in O(log3m) amortized time, queries in O(log2m log logm), and the
operation, Find-Deletion-Time, in O(log3m log logm) time.

Proof. The time-fusible partially retroactive priority queue described in Sec-
tion 3 supports retroactive updates in O(logm) time. Applying Lemma 1 with
A(m) = logm shows that retroactive updates run in O(log3m) amortized time.
By Theorem 3, the time to merge O(logm) time-fusible partially retroactive
priority queues is bounded by O(log2m log logm). Similarly, the time to query
this merged structure is bounded by O(log2m) since the merged priority queue
has order O(logm). Applying Lemma 2 with T (m) = O(log2m) and Q(m) =
O(log2m log logm) shows that retroactive queries run in O(log2m log logm)
time. Finally, the Find-Deletion-Time(x) operation can be performed via bi-
nary search to identify the first time t for which the key x is not in the queue.
This involves O(logm) retroactive queries showing that Find-Deletion-Time
runs in O(log3m log logm) time.

4.2 Faster Retroactive Updates and Find-Deletion-Time Queries

The general transformation described in Section 2 maintains balance in the
checkpoint tree by reapplying all updates in rebuilt subtrees. As shown in Lemma 6
a checkpoint tree for priority queues can be rebuilt more efficiently.

Lemma 6. A subtree of the fully retroactive priority queue’s checkpoint tree
containing m updates can be rebuilt in O(m logm) time.

Proof. Consider a node u in the checkpoint tree with children v and w whose
subtree contains m updates. The time-fusible priority queue containing all up-
dates in u’s subtree can be computed in O(m) time from the 2 time-fusible
priority queues associated with v and w. First the Fuse operation outlined in
Section 2 is performed to merge v and w. The resulting time-fusible priority
queue may represent Qnow and Qdel using multiple trees, but these trees can be
merged in O(m) time. Using this merge procedure, a subtree of the checkpoint
tree is rebuilt by first placing all m updates at the leaves of a balanced tree,

and then performing merges from the leaves upward. Each update is involved in
O(logm) merges, so the total time to rebuild the subtree is O(m logm).

A more efficient implementation of the Find-Deletion-Time(k) operation
can be obtained by performing a binary search directly on the checkpoint tree.
The high-level idea is to perform a binary search for the time of deletion by
keeping track of the current number of surviving keys that are less than or equal
to k at any particular time. Due to space limitations, this result is stated in
Lemma 7 without proof.

Lemma 7. The Find-Deletion-Time operation which performs a binary search
directly on the checkpoint tree data structure runs in O(log2m) time.

Theorem 5. The fully retroactive priority queue performs updates in O(log2m)
amortized time when using a checkpoint tree with the memoized subtree rebuilding
procedure, and performs Find-Deletion-Time operations in O(log2m) time.

Acknowledgments

This research was initiated during the open-problem sessions of the MIT class
6.851: Advanced Data Structures taught by E. Demaine in Spring 2014. We
thank Adam Hesterberg, Ofir Nachum, and other members of the class for helpful
discussion regarding this problem.

References

1. Demaine, E.D., Iacono, J., Langerman, S.: Retroactive data structures. ACM
Transactions on Algorithms (TALG) 3 (2007) 13

2. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar
subdivisions. ACM Transactions on Algorithms (TALG) 5 (2009) 28

3. Acar, U.A., Blelloch, G.E., Tangwongsan, K.: Non-oblivious retroactive data struc-
tures. Technical report (2007)

4. Galperin, I., Rivest, R.L.: Scapegoat trees. In: Proceedings of the fourth annual
ACM-SIAM Symposium on Discrete algorithms, Society for Industrial and Applied
Mathematics (1993) 165–174

5. Frederickson, G.N., Johnson, D.B.: The complexity of selection and ranking in¡
i¿ x¡/i¿+¡ i¿ y¡/i¿ and matrices with sorted columns. Journal of Computer mand
System Sciences 24 (1982) 197–208

