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Abstract

Usually, binary search only makes sense in sorted arrays. We show that insertion
sort based on repeated “binary searches” in an initially unsorted array also sorts n

elements in time Θ(n2 log n). If n is a power of two then the expected termination
point of a binary search in a random permutation of n elements is exactly the cell
where the element should be if the array was sorted. We further show that we can
sort in expected time Θ(n2 log n) by always picking two random cells and swapping
their contents if they are not ordered correctly.
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1 Introduction

Comparison based sorting algorithms apply four paradigms: selection, inser-
tion, exchanging, and merging [3, page 73]. Most methods operate by main-
taining an invariant (of sortedness) on an increasingly longer segment of the

1 R. Fleischer was partially supported by HKUST grant DAG00/01.EG03.
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array or, as in the case of Quicksort, at least strong invariants on the progress
made thus far. Shellsort, from one point of view, maintains sorted subarrays
of increasingly greater length as the process continues. From another point of
view, Shellsort is delightfully chaotic. At any stage, one is presented with a
subsequence which one hopes is reasonably close to sorted, and then one is to
complete the task by using linear Insertion-Sort.

We study exchange sorting algorithms, i.e., algorithms that compare pairs of
array elements and swap them if they are out of order. In particular, we con-
sider the algorithm Fun-Sort 2 that repeatedly moves values from current to
“more likely” locations by performing a “binary search”. Since the array is
initially unsorted, a “binary search” will most likely end up at the wrong
array position, resulting in rather chaotic behavior of the insertion sort algo-
rithm. Nevertheless, we were able to adapt the method to correctly perform a
sort in the (rather poor) worst-case runtime by Θ(n2 log n). However, we feel
the greater contribution of this paper is to lay open the approach, both for
purposes of algorithmic improvements and for improvements in the expected
runtime of our approach. In particular, we observe that in a randomly per-
muted array a “binary search” for an element of rank i will on the average
end at position i. We also ask whether the paradigm can be further developed
to give substantially better behavior in the worst case.

This paper is organized as follows. In Section 2 we define the model of exchange
sorting algorithms. In Section 3 we introduce Guess-Sort, a simple randomized
exchange sorting algorithm which runs in expected time O(n2 log n). We also
give a new direct proof of an old theorem that n − 1 rounds of comparing all
adjacent cells, in any order, suffice to sort. In Section 4 we show that Fun-

Sort, which is Insertion-Sort where insertions are guided by “binary search” in
the initially unsorted array, sorts in time O(n2 log n). We conclude with a few
open problems in Section 5.

2 Basics

Let an array a hold n elements from a totally ordered set. When convenient,
we will assume that these elements are distinct; all results also hold in gen-
eral. Denote the contents of cell i by ai, for i = 1, . . . , n. Our goal is to sort
these elements in non-decreasing order. In an exchange sorting algorithm we
concentrate on just two elements at a time, from which we can extract only
one bit of information. A pair (i, j) of cells i and j, where i 6= j, is good if the
cell contents are correctly ordered, i.e., ai < aj if i < j, or ai > aj if i > j.
Otherwise the pair is bad. Bad pairs are also called inversions. The number of

2 after the conference series Fun with Algorithms
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Fig. 1. If we swap the bad pair (i, j) then the good pair (k, `) becomes a bad pair.
However, the bad pair (i, `) becomes a good pair. As an unintended (but pleasant)
side effect, we also turn the bad pairs (i,m) and (m, j) into good pairs.

inversions in the array is between zero if the array is correctly sorted, and
(

n

2

)

if the array is sorted in reverse order.

Sorting algorithms based on finding and swapping bad pairs are called ex-

change sorting algorithms [3, page 73]. A primitive comparison compares two
adjacent cells. A primitive exchange sorting algorithm only does primitive
comparisons. In an oblivious sorting algorithm the sequence of comparisons is
fixed in advance, i.e., it is independent of the input sequence or the outcome
of individual comparisons. Bubblesort is an example of an oblivious primitive
exchange sorting algorithm.

De Bruijn showed that adding arbitrary comparisons to an oblivious primitive
sorting algorithm yields another sorting algorithm. As a consequence (also
attributed to de Bruijn by some authors [7, Fact 1][6, Prop. 1.9], although
his paper does not mention this corollary) we see that doing n rounds of
all n − 1 primitive comparisons, in arbitrary order, is already an oblivious
primitive sorting algorithm (because the n phases of Odd-Even Transposition

Sort [3, page 240] can be found in the augmented sorting algorithm). Later,
de Bruijn’s theorem was rediscovered [8,4,1] and the corollary was slightly
improved; it was shown that n − 1 rounds of all primitive comparisons are
sufficient to sort. In Section 3 we give a new direct proof without reducing
to Odd-Even Transposition Sort. Note that the bound of n − 1 rounds is tight.
If we want to sort the input sequence 1, 0, . . . , 0 by repeatedly comparing the
pairs (n−1, n), (n−2, n−1), . . . , (1, 2) in this order then we need n−1 rounds
to move the ‘1’ to the rightmost position.

The following simple observation is folklore and implies that we can sort by
repeatedly swapping bad pairs.

Lemma 1 Swapping a bad pair strictly decreases the number of inversions.

PROOF. Consider swapping a bad pair (i, j), where i < j and ai > aj (see
Fig. 1). Let (k, `) be a good pair before the swap, where k < `. Since cell i

becomes smaller and cell j becomes larger, (k, `) can only turn bad if k = j

or ` = i.

In the former case, (i, `) was a bad pair before the swap (because ai moves to
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cell j) but it is good afterwards; in the latter case, (k, j) was a bad pair before
the swap (because aj moves to cell i) but it is good afterwards. In any case,
the number of bad pairs decreases because (i, j) becomes a good pair.

Corollary 2 Any exchange sorting algorithm terminates after swapping at

most
(

n

2

)

= O(n2) bad pairs. 2

If we could somehow identify the indices of bad pairs we could sort in O(n2)
time. Unfortunately, we cannot expect to get this information for free. In
Section 3 we show that choosing the comparisons randomly yields a sorting
algorithm with expected running time O(n2 log n). In Section 4 we use “binary
search” (in an initially unordered array) to find bad pairs in logarithmic time.
The resulting algorithm can be seen as Insertion-Sort based on “unordered
binary searches” to locate the position for an insertion. It runs in time O((n+
F ) log n) = O(n2 log n), where F is the number of inversions in the input array.

3 Two Simple Exchange Sorting Algorithms

We first show that we can sort by performing, n− 1 times, all n− 1 primitive
comparisons, in any order. Bubblesort, for example, performs n− 1 iterations,
each of which compares the pairs (1, 2), (2, 3), . . . , (n−1, n). A slightly weaker
theorem, that n− 1 repetitions of the same sequence of all primitive compar-
isons suffice to sort an array, was shown in [8,4,1], but their proofs can easily
be adopted to also show our stronger Theorem 4. We give a direct proof which
is not based on Odd-Even Transposition Sort. It becomes simpler when using
the well-known 0-1 Principle (see [3, Theorem Z on page 223], for example).

Theorem 3 (0-1 Principle) If an oblivious sorting algorithm sorts all se-

quences of ‘0’s and ‘1’s, then it sorts all sequences of arbitrary values. 2

Theorem 4 n − 1 rounds of all n − 1 primitive comparisons, in any order,

suffice to sort an array of n elements.

PROOF. We assume an input of ‘0’s and ‘1’s. Let k be the number of ‘1’s in
the input sequence. Since the claim is trivially true if the input only consists
of ‘0’s or ‘1’s, we may assume that 0 < k < n. Denote the ‘1’s from left to right
by T1, T2, . . . , Tk. We claim that after round i every entry Tj, for j = 1, . . . , k,
is in cell min{i + 2j − k, n + j − k} or further to the right, and prove this by
induction on i. In particular, Tj reaches its final destination n + j − k after at
most n − j ≤ n − 1 rounds.

4



Since 2j − k ≤ j for j ≤ k, the claim is true for i = 0. Now consider round
i, for some i ≥ 1. We use induction on j to prove the claim. Since Tk is the
rightmost ‘1’ it will move at least one cell to the right during the current round
if it has not yet reached its final cell n. This proves the inductive step for Tk.

Now consider Tj for some j < k. By the inductive hypothesis, Tj+1 was at least
in cell min{(i−1)+2(j+1)−k, n+(j+1)−k} = min{i+2j+1−k, n+j+1−k}
before round i. If Tj was at that time directly to the left of Tj+1 then it was
in cell min{i + 2j − k, n + j − k} or further to the right, and the claim holds.
Otherwise, it started round i left of a ’0’ and moved at least one cell to the
right during the round. Since it was at least in cell min{(i−1)+2j−k, n+j−k}
after round i − 1, it moved at least to cell min{i + 2j − k, n + j − k} during
round i, which proves the claim.

We note that the worst-case inputs are exactly the maximal elements of de
Bruijn’s partial order on input permutations (see [2] for details), and we im-
plicitly proved an analogue to his Theorem 6.1. According to that theorem, it
is sufficient to prove correctness for maximal elements of the partial order (in
his case there was exactly one maximum element).

Instead of comparing all adjacent cells, which is a rather tedious way of find-
ing bad pairs, we could try a randomized approach. Guess-Sort, in each step,
chooses a random pair of cells, not necessarily adjacent, to compare until the
array is sorted. How do we know that the array is sorted? We could, for ex-
ample, check after every n − 1 steps whether the array is sorted. This needs
n − 1 comparisons, so we at most double the runtime.

Theorem 5 Guess-Sort sorts n elements in expected time O(n2 log n).

PROOF. If there are m bad pairs in the array, we hit one with probability
p = Θ( m

n2 ), so the expected number of tries until we hit a bad pair is 1

p
= Θ(n2

m
).

By Lemma 1, the number of bad pairs decreases each time we swap a bad pair,
so the expected number Tn of swaps until the array is sorted is bounded by

Tn = O





n2

∑

m=1

n2

m



 = O(n2 log n) .

The proof above is similar to the proof of the coupon collector’s problem [5,
page 57]. As in [5], we can find an upper bound of limn→∞

Vn

n4 = π
6

for the
variance Vn. The bound would be tight if the number of bad pairs would
decrease by 1 in each swap, which is not case.
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The bound of Theorem 5 is tight. Guess-Sort needs expected time Θ(n2 log n)
to sort the sequence 2, 1, 4, 3, . . . , n, n−1. This is an application of the coupon
collector’s problem: We need Θ(n) steps to guess a pair of adjacent cells, and
this must happen Θ(n log n) times until we have found all pairs (1, 2), (3, 4), . . .

Consider Primitive Guess-Sort, a variant of Guess-Sort that always chooses a
random pair of adjacent cells. Primitive Guess-Sort would sort the sequence
above in expected time O(n logn). It is easy to see that any input sequence
will be sorted in expected time O(n2 log n), i.e., Primitive Guess-Sort is not
worse than Guess-Sort. To prove the claim, observe that we need an expected
Θ(n log n) steps until we have done each primitive comparison at least once.
By Theorem 4, n − 1 such phases suffice to sort. But is this bound tight?
Experiments suggest that Primitive Guess-Sort needs an expected Θ(n2 log n)
steps to sort the input n

2
+ 1, n

2
+ 2, . . . , n, 1, 2, . . . , n

2
(assuming n is even).

Note that the coupon collector’s problem only guarantees a lower bound of
Ω(n2 log log n) steps. This follows from the observation that we must hit each
pair of adjacent cells in the middle half of the array at least n

4
times each to

move the leftmost n
4

elements to their correct positions at the right end of the
array.

4 Fun-Sort — Smart Search in Bad Arrays

Another way of finding bad pairs is by binary search. While we are normally
taught to apply binary search only when an array is sorted, we could rebel
and apply the same procedure to an unsorted array. Note that a standard
implementation of binary search can also “search” in an unsorted array; the
sortedness is only needed to show correctness of the binary search procedure.
Therefore, we also speak of binary search when we apply the procedure to an
unsorted array.

We give a short description of binary search. Let x be the search element.
To avoid special treatment of the array boundaries we assume a0 = −∞ and
an+1 = ∞. We keep two indices ` and h such that at any time a` < x < ah.
Initially, ` = 0 and h = n + 1. In each step we compare x to am, where
m = b `+h

2
c, and set h = m if x ≤ am, or ` = m if x > am. We stop if h = `+1

and return the index h as the result of the search. We say the search was
successful if x = ah (note that x = al is impossible), otherwise it failed. Note
that the search for x can fail even though x is contained in the array, and that
encountering x during the search (i.e., am = x at some time) does not cause
the search to halt.

Fun-Sort is an in-place variant of Insertion-Sort. It performs repeated insertions
guided by binary search into an initially unsorted array. We show that O(n2)
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of these insertions suffice to sort the array.

Fun-Sort runs in n phases. In phase i, for i = 1, . . . , n, we repeatedly binary
search for the current content ai of cell i until the search is successful and
“finds” the element in cell i. If the search fails we find an index h such that
ah−1 < ai < ah. We then either swap the bad pair (i, h− 1) if i < h− 1, or the
bad pair (h, i) if h < i. The phase continues with a search for the new content
of cell i. Note that Fun-Sort is not an exchange algorithm in the strict sense
(because we do not repair wrongly ordered pairs during a binary search), but
a failed search always identifies a bad pair which is subsequently swapped.

To illustrate Fun-Sort, we demonstrate phase 1 on the input (12, 14, 8, 1, 20).
We first binary search for a1 = 12. The binary search starts with (l, m, h) =
(0, 3, 6). Since a3 = 8 < 12, we set l = 3 and m = 4. Since a4 = 1 < 12, we
set l = 4 and m = 5. Since a5 = 20 ≥ 12, we set h = 5. Now l + 1 = h, so the
binary search stops and returns position h = 5. Since we are in phase 1, we
swap the pair (1, 4). The array now contains (1, 14, 8, 12, 20), and we continue
binary searching for a1 = 1. This search is successful (it ends in position 1),
ending phase 1.

Note that, incidentally, 12 ended up near its correct final position (position 3)
in the first step of phase 1. Indeed, we can show that binary searching for the
i-th item (in increasing order) returns exactly array position i on average if all
input permutations are equally likely and if n = 2k − 1, so Fun-Sort just does
the right thing when it moves an item to cell h−1 (or h) after an unsuccessful
search.

Theorem 6 Let n = 2k − 1 for some k ≥ 1. Then the expected termina-

tion point of a binary search for i, i = 1, . . . , n, in a random permutation of

{1, . . . , n} is cell i.

PROOF. Let di be the expected value of the difference of the array positions
where the searches for i and i+1 end. Instead of binary searching in a random
permutation of {1, . . . , n}, we think of searching in a complete binary tree with
k levels where the elements {1, . . . , n = 2k − 1} are randomly placed on the
nodes. At an interior node containing element z, the search for x proceeds to
the left child if x ≤ z and to the right child otherwise. Note that we do not
stop the search at the interior node if x = z; a search always ends at some
leaf.

If the search path for i passes through the node containing i we say the search
hits i. If the search does not hit i then the search paths for i and i + 1 are
identical. Otherwise, if the search for i hits i in node v at level r, for some
r = 0, . . . , k − 1, then the search for i ends at some expected position x in
the left subtree of v. Since the set of all possible left subtrees is identical to
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the set of all possible right subtrees, the search for i + 1 ends at the same
expected position x in the right subtree of v (where the expectation is over all
placements such that we hit i at level r).

So the difference in the positions between the search for i and i + 1 depends
only on the level r where the search for i hits i. We could now write down the
probabilities that we hit i at a particular level r and what that would mean
for the offset, but we can also observe that the argument above shows that di

is actually independent of i, so we have d1 = d2 = · · · = dn. Since the search
for ‘1’ always ends in cell 1 and the search for ‘n+1’ always ends in cell n+1,
we have d1 + · · ·+ dn = n and thus d1 = · · · = dn = 1, proving the claim.

Theorem 7 Fun-Sort sorts n elements in time Θ((n+F ) logn) = Θ(n2 log n),
where F is the number of inversions in the input array.

PROOF. First we prove that the runtime is O(n2 log n). This is done by
induction on the number of phases such that after phase i, for i = 1, . . . , n,
the elements stored in cells 1, . . . , i are ordered correctly (although they are
not necessarily the smallest i elements).

The claim is clearly true for i = 1, so assume i > 1. By induction, the first
i − 1 cells are ordered correctly at the beginning of phase i. If now a search
fails (i.e., we are not done with phase i yet) then it returns an index h 6= i.
If h > i, the subsequent swap of (i, h − 1) does not affect the sortedness of
the first i cells. If h < i then we swap (h, i). Since binary search guarantees
ah−1 < ai < ah, this swap also maintains the sortedness of the first i− 1 cells.
If the search for ai is successful (and phase i ends) then we have ai−1 < ai,
and the first i cells are sorted as claimed.

Each binary search takes time O(log n). There are n successful searches, one

per phase, and there are at most F =
(

n

2

)

unsuccessful searches by Lemma 1.

Thus, the total time is O((n + F ) log n) = O(n2 log n).

To demonstrate that this bound is tight in the worst case, we give a family
of examples. If n is even, we add another item ∞ to the input to get an odd
number of items. Thus, we can assume n = 2k + 1 for some k ≥ 1. Consider
the input k + 2, k + 3, . . . , 2k, 2k + 1, 1, 2, . . . , k, k + 1. In the first phase, we
first try to locate k + 2. The binary search ends with h = n + 1, so we swap
(1, n). Then cell 1 contains k + 1, and we search for k + 1. The search ends
with h = n, etc. After k + 1 unsuccessful searches, the sequence of numbers
is 1, k + 3, . . . , 2k, 2k + 1, 2, 3, 4, . . . , k + 1, k + 2, and the phase ends with a
successful search for 1. Analogously, the next phases will have k, k − 1, . . .
unsuccessful searches.
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An alternate proof of the upper bound can be obtained by demonstrating that
no two searches in the same phase will terminate at the same location. This
follows from a few observations: First, in phase i, if an unsuccessful search
terminates to the right of i at position p, the next search will end to the left of
p. Next, in phase i, if an unsuccessful search terminates in the range [0, i− 1]
at position p, the next search will terminate at position p + 1. Finally, in
phase i, all unsuccessful searches terminating to the right of i occur before all
unsuccessful searches terminating to the left of i.

Note that we actually have some liberty in the definition of binary search
regarding how to break ties. If x = am we continued the search in the left half,
but instead we could also continue the search in the right half (and at the end
return the last index ` as the result of the search), or even stop immediately
and return index m as the result of the search. In the former case, Fun-Sort

would swap the bad pair (`+1, i) if ` < i and the bad pair (i, `) if i < `. These
variants always produce the same result on sorted arrays, but not on unsorted
arrays. It is easy to adapt the proof of Theorem 7 to these Fun-Sort variants,
so the theorem still holds.

5 Conclusions

A few interesting questions still await answers:

• Prove a lower bound of Ω(n2 log n) for the expected running time of Primitive

Guess-Sort.
• Is there an exchange sorting algorithm in the strict sense based on unsorted

binary searches? In particular, how efficient is the following algorithm (if it
works at all): binary search on a fixed search path and swap elements which
are in the wrong order (i.e., on each level of the path have lower bound,
search key, and upper bound ordered such that the binary search follows
the fixed path)?

• Theorem 6 only holds for values of n of the form n = 2k − 1. For other
values of n, the search for i in a random permutation of {1, . . . , n} still ends
approximately in cell i on the average, but not exactly cell i. However, an
exact analysis seems to be non-trivial.

The main questions, though, are:

• Can Fun-Sort be adapted to run in o(n2) (or even O(n2)) worst-case time?
• What is the average-case runtime of Fun-Sort? Theorem 6 seems to indicate

that it might be rather fast on the average.
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