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Abstract

We construct algorithms for deciding essentially any minor-closed parameter, with explicit
time bounds. This result strengthens previous results by Robertson and Seymour [1,2],
Frick and Grohe [3], and Fellows and Langston [4] toward obtaining fixed-parameter algo-
rithms for a general class of parameters.

1 Motivation

A major result from the seminal Graph Minors series of papers (in particu-
lar [1,2]) is that every minor-closed graph property is characterized by a finite set
of forbidden minors. More precisely, for any propertyP on graphs such that a graph
having propertyP implies that all its minors have propertyP , there is a finite set
{H1, H2, . . . , Hh} of graphs such that a graphG has propertyP if and only if G
does not haveHi as a minor for alli = 1, 2, . . . , h. The algorithmic consequence of
this result is that there exists anO(n3)-time algorithm to decide any fixed minor-
closed graph property, by finitely many calls to anO(n3)-time minor test [1]. This
consequence has been used to show the existence of polynomial-time algorithms
for several graph problems, some of which were not previously known to be decid-
able [4].

It should be stressed that all of these algorithmic results (except the minor test)
are nonconstructive: we know that efficient algorithms exist, but do not know what
they are. The difficulty is that we know that a finite set of forbidden minors ex-
ists, but lack “a means of identifying the elements of the set, the cardinality of the
set, or even the order of the largest graph in the set” [4]. Indeed, there is a math-
ematical sense in which any proof of the finite-forbidden-minors theorem must be
nonconstructive [5].

A natural class of graph properties comes from graph parameters: aparameter
assigns a nonnegative integer to every graph. Such a parameter defines an infinite
sequence of properties, whether the graph has parameter value≤ k, for eachk ≥ 0.
Parameters and their associated properties have been the subject of much study in
parameterized complexity[6], a refinement of complexity theory where problems
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are augmented by parameters. In this subject, the main goal is to attain afixed-
parameter algorithm, that is, an algorithm whose running time isf(k) nO(1) where
k is the parameter value andn is the problem size.

We can apply the graph-minor results to prove the existence of algorithms to
compute parameters, provided the parameters are minor-closed. A parameter is
minor-closedif its value never increases when taking a minor. Every property asso-
ciated with a minor-closed parameter is also minor-closed. Therefore, for any fixed
parameter and any fixedk ≥ 0, there exists anO(n3)-time algorithm that decides
whether a graph has parameter value≤ k. Unfortunately, the existence of these
algorithms does not necessarily imply the existence of a single fixed-parameter
algorithm that works for allk ≥ 0, because the algorithms for individualk (in par-
ticular the set of forbidden minors) might be uncomputable. We do not even know
an upper bound on the running time of these algorithms as a function ofn andk,
because we do not know the dependence of the size of the forbidden minors onk.

In this paper we construct fixed-parameter algorithms for essentially all minor-
closed parameters, with explicit time bounds in terms ofn andk. We require three
trivial additional properties of the parameter: the parameter must be positive for
someg × g grid, the parameter for a disconnected graph must be at least the sum
of the parameter values for each connected component, and there must be an algo-
rithm computing the parameter inh(w) nO(1) time for graphs of treewidthw. (See,
e.g., [12] for a definition of treewidth.) These conditions are met by essentially all
minor-closed parameters we have encountered; for example, all parameters whose
corresponding properties can be expressed in monadic second-order logic satisfy
the last condition [7].

The running time of our algorithm for computing such a parameter on gen-

eral graphs is
[
22O(k2.5)

+ h(2O(k2.5))
]
nO(1). A conjecture of Robertson, Seymour,

and Thomas [8] would improve this running time toh(O(k lg k))nO(1), which is
2O(k lg k)nO(1) for the typical case ofh(w) = 2O(w). This conjectured time bound
almost matches the fastest known fixed-parameter algorithms for several parame-
ters, e.g., feedback vertex set, vertex cover, and a general family of vertex-removal
problems [4]. Our result strengthens previous approaches of Robertson and Sey-
mour [1,2], Frick and Grohe [3], and Fellows and Langston [4] to obtaining fixed-
parameter algorithms for a general class of parameters.

2 Main Result

Our result is based on the following theorem of Robertson, Seymour, and Thomas
[8]:
Theorem 1 [8] Every graph of treewidth larger than202r5

has anr × r grid as a
minor.

Our main result is as follows:
Theorem 2 Consider a minor-closed parameterP that is positive on someg × g
grid, is at least the sum over the connected components of a disconnected graph,
and can be computed inh(w) nO(1) time given a width-w tree decomposition of the
graph. Then there is an algorithm that decides whetherP is at mostk on a graph
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with n vertices in
[
22O(g

√
k)5

+ h(2O(g
√

k)5)
]
nO(1) time.

Proof. First we claim that if the parameterP has valuek on some graphG, then the
treewidth ofG is at most202(g

√
k+g)5 . Suppose to the contrary that the treewidth of

G is larger. Then by Theorem 1,G has anr×r grid as a minor wherer ≥ g(
√

k+1).
By cutting edges of thisr× r grid, we can obtain a disjoint union ofbr/gc2 copies
of theg×g grid. Therefore this disjoint union of grids is also a minor ofG. Because
the parameter is minor-closed, its value on this disjoint union is a lower bound on
its value onG. The parameter value on the disjoint union is at least the sum of the
parameter value on each of theg × g grids, each of which is at least1. Therefore
P (G) is at leastbr/gc2 > k, a contradiction.

The algorithm is as follows. We use as a subroutine Amir’s algorithm [9] (or
Robertson and Seymour’s algorithm [10]) which, for a given graphG and integer
ω, either reports that the treewidth ofG is more thanω, or produces a tree decom-
position of width at most(3 + 2

3
)ω, in O(23.698ωn3+ε) time for anyε > 0. Let-

ting ω = 202(g
√

k+g)5, we either find a tree decomposition of widthw = O(ω),
or we determine that the treewidth is more than202(g

√
k+g)5, in which case we

know that the parameter value is more thank and the algorithm can report “no”.
In the first case, we run theh(w) nO(1) algorithm using the computed tree decom-
position, and output whether the answer is at mostk. The total running time is[
2O(202(g

√
k+g)5 ) + h(O(202(g

√
k+g)5))

]
nO(1). 2

Improvements to the bound in Theorem 1 translate directly into improvements
to our time bound. Robertson, Seymour, and Thomas [8] have proved that some
graphs have treewidthΩ(r2 lg r) but have grid minors only of sizeO(r) × O(r),
so a bound better thanΘ(r2 lg r) is not possible. They conjecture that the correct
bound is indeedΘ(r2 lg r). This conjecture would have the following consequence:
Theorem 3 Assume that every graph of treewidth larger thanΘ(r2 lg r) has an
r × r grid as a minor. Then for every minor-closed parameterP satisfying the
conditions of Theorem 2, there is an algorithm that decides whetherP is at mostk
on any graph in

[
2O(g2k lg(gk)) + h(O(g2k lg(gk)))

]
nO(1) time.

Our result is in some sense a generalization of minor-bidimensionality from
minor-closed graph families to general graphs. Bidimensional parameters are a
broad family of graph parameters introduced in a series of papers [11,12,13]. A
challenging open question is whether the results of this paper can be generalized
to contraction-bidimensional parameters, which include e.g. many domination-type
parameters. The difficulty is that the parameter is closed under contractions but not
minors: the parameter may increase from a vertex or edge deletion.
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