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Abstract. We describe a general family of curved-crease folding tessellations

consisting of a repeating “lens” motif formed by two convex curved arcs. The
third author invented the first such design in 1992, when he made both a sketch

of the crease pattern and a vinyl model (pictured below). Curve fitting suggests

that this initial design used circular arcs. We show that in fact the curve can
be chosen to be any smooth convex curve without inflection point. We identify

the ruling configuration through qualitative properties that a curved folding

satisfies, and prove that the folded form exists with no additional creases,
through the use of differential geometry.

1. Introduction

The past two decades have seen incredible advances in applying mathematics
and computation to the analysis and design of origami made by straight creases.
But we lack many similar theorems and algorithms for origami made by curved
creases.

In this paper, we develop several basic tools (definitions and theorems) for
curved-crease origami. These tools in particular characterize the relationship be-
tween the crease pattern and rule lines/segments, and relate creases connected
by rule segments. Some of these tools have been developed before in other con-
texts (e.g., [Fuchs and Tabachnikov 99, Fuchs and Tabachnikov 07, Huffman 76]),
but have previously lacked a careful analysis of the levels of smoothness (C1, C2,
etc.) and other assumptions required. Specific high-level properties we prove in-
clude:

(1) Regions between creases decompose into noncrossing rule segments, which
connect from curved crease to curved crease, and planar patches (a result
from [Demaine et al. 11]).

(2) The osculating plane of a crease bisects the two adjacent surface tangent
planes (when they are unique).

(3) A curved crease with an incident cone ruling (a continuum of rule segments
at a point) cannot fold smoothly: it must be kinked at the cone ruling.

(4) Rule segments on the convex side of a crease bend mountain/valley the
same as the crease, and rule segments on the concave side of a crease bend
mountain/valley opposite from the crease.
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(5) If two creases are joined by a rule segment on their concave sides, or on their
convex sides, then their mountain/valley assignments must be equal. If the
rule segment is on the convex side of one crease and the concave side of the
other crease, then the mountain/valley assignments must be opposite.

We apply these tools to analyze one family of designs called the lens tessellation.
Figure 1 shows an example originally designed and folded by the third author in
1992, and now modeled digitally. We prove that this curved crease pattern folds
into 3D, with the indicated rule segments, when the “lens” is any smooth convex
curve. We also show that the model is “rigidly foldable”, meaning that it can be
continuously folded without changing the ruling pattern.

(a) Huffman’s original

hand-drawn sketch of
crease pattern of lens

design (1992).

(b) Computer-drawn crease pat-

tern of lens design.

(c) Huffman’s origi-

nal hand-folded vinyl
model (1992). Photo
by Tony Grant.

(d) Computer-simulated 3D

model using Tachi’s Freeform
Origami software.

Figure 1. Lens tessellation: 1992 original (left) and digital re-
construction (right).

The 3D configuration of the curved folding is solved through identifying the corre-
spondence between pairs of points connected by rule segments, using the qualitative
properties described above. These properties separate the tessellation into indepen-
dent kite-shaped tiles and force the rulings between the lenses to be particular cones
with their apices coinciding with the vertices of the tiling. The ruling inside each
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lens is free (can twist), but assuming no twist or global planarity/symmetry, is
cylindrical (vertical rule segments). The tiling exists by rotation/reflection of the
3D model of each kite around its four straight boundary edges. From the tiling
symmetry, each tile edge has a common tangent to its neighbors regardless of the
type of curves, as long as it is a convex curve.

The rest of this paper is organized as follows. Section 2 introduces some basic
notation for 2D and 3D curves. Section 3 defines creases, crease patterns, foldings,
rule segments, cone ruling, orientation of the paper, and surface normals (and
analyzes when they exist). Section 4 proves that the powerful bisection property—
the osculating plane of a crease bisects the two adjacent surface tangent planes—and
uses it to rule out some strange situations such as rule segments tangent to creases
or zero-length rule segments. Section 5 characterizes smooth folding: a crease is
folded C1 if and only if it is folded C2 if and only if there are no incident cone rulings.
Section 6 defines mountains and valleys for both creases and the bending of rule
segments, and relates the two. Finally, Section 7 uses all these tools to analyze lens
tessellations, proving a necessary and sufficient condition on their foldability.

2. Curves

In this section, we define some standard parameterizations of curves in 2D and
3D, which we will use in particular for describing creases in the unfolded paper
and folded state. Our notation introduces a helpful symmetry between 2D (un-
folding) and 3D (folding): lower case indicates 2D, while upper case indicates the
corresponding notion in 3D.

2.1. 2D Curves. Consider an arclength-parameterized C2 2D curve x : (0, `) →
R2 (or in any metric 2-manifold). For s ∈ (0, `), define the (unit) tangent at s by

t(s) =
dx(s)

ds
.

Define the curvature

k(s) =

∥∥∥∥dt(s)

ds

∥∥∥∥ .
In particular, call the curve curved at s if its curvature k(s) is nonzero. In this
case, define the (unit) normal at s by

n(s) =
dt(s)

ds

/
k(s).

The curve is curved (without qualification) if it is curved at all s ∈ (0, `).
Define the convex side at s to consist of directions having negative dot product

with n(s); and define the concave side at s to consist of directions having positive
dot product with n(s).

2.2. 3D Curves. For an arclength-parameterized C2 space curve X : [0, `]→ R3,
and for a parameter s ∈ [0, `] inducing a point X(s), define the (unit) tangent

T(s) =
dX(s)

ds
.

Define the curvature

K(s) =

∥∥∥∥dT(s)

ds

∥∥∥∥ .
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In particular, call the curve curved at s if its curvature K(s) is nonzero (and curved
without qualification if it is curved at all s ∈ (0, `)). In this case, define the (unit)
normal at s by

N(s) =
dT(s)

ds

/
K(s);

define the (unit) binormal
B(s) = T(s)×N(s);

and define the torsion

τ(s) = −dB(s)

ds
·N(s).

Equivalently, these definitions follow from the Frenet–Serret formulas: 0 K(s) 0
−K(s) 0 τ(s)

0 −τ(s) 0

 ·
T(s)

N(s)
B(s)

 =
d

ds

T(s)
N(s)
B(s)

 .
Lemma 1. For any curved C2 3D curve X(s), the Frenet frame (T(s),N(s),B(s))
and curvature K(s) exist and are continuous.

Proof. Because X(s) is differentiable, T(s) exists. Because X(s) is twice differen-
tiable, K(s) exists, and because X(s) is C2, K(s) is continuous. Because the curve
is curved, K(s) 6= 0, so we do not divide by 0 in computing N(s), and thus N(s)
exists and is continuous. The cross product in B(s) exists and is continuous because
T(s) and N(s) are guaranteed to be normalized (hence nonzero) and orthogonal to
each other (hence not parallel). �

The same lemma specializes to 2D, by dropping the B(s) part:

Corollary 2. For any curved C2 2D curve x(s), the frame (t(s),n(s)) curvature
k(s) exist and are continuous.

3. Foldings

The following definitions draw from [Demaine et al. 11, Demaine and O’Rourke 07].
We start with 2D (unfolded) notions. A piece of paper is an open 2-manifold

embedded in R2. A crease x is a C2 2D curve contained in the piece of paper
and not self-intersecting (i.e., not visiting the same point twice). A crease point
is a point x(s) on the relative interior of the crease (excluding endpoints). The
endpoints of a crease are vertices. A crease pattern is a collection of creases that
meet only at common vertices. Equivalently, a crease pattern is an embedded planar
graph, where each edge is embedded as a crease. This definition effectively allows
piecewise-C2 curves, by subdividing the edge in the graph with additional vertices;
“creases” are the resulting C2 pieces. A face is a maximal open region of the piece
of paper not intersecting any creases or vertices.

Now we proceed to 3D (folded) notions. A (proper) folding of a crease pattern
is a piecewise-C2 isometric embedding of the piece of paper into 3D that is C1

on every face and not C1 at every crease point and vertex. Here isometric means
that intrinsic path lengths are preserved by the mapping; and piecewise-C2 means
that the folded image can be decomposed into a finite complex of C2 open regions
joined by points and C2 curves. We use the terms folded crease, folded vertex, folded
face, and folded piece of paper to refer to the image of a crease, vertex, face, and
entire piece of paper under the folding map. Thus, each folded face subdivides into a



CHARACTERIZATION OF CURVED CREASES AND RULINGS 5

finite complex of C2 open regions joined by points called folded semivertices and C2

curves called folded semicreases. Each folded crease X(s) can be subdivided into a
finite sequence of C2 curves joined by C1 points called semikinks and not-C1 points
called kinks. (Here C1/not-C1 is a property measured of the crease X(s); crease
points are necessarily not C1 on the folded piece of paper.) In fact, semivertices do
not exist [Demaine et al. 11, Corollary 2], and neither do semikinks (Corollary 20
below).

Lemma 3. A curved crease x(s) folds into a 3D curve X(s) that contains no line
segments (and thus is curved except at kinks and semikinks).

Proof. Suppose X(s) is a 3D line segment for s ∈ [s1, s2]. Then the distance
between X(s1) and X(s2) as measured on the folded piece of paper is the length
of this line segment, i.e., the arc length of X over s ∈ [s1, s2] which, by isometry,
equals the arc length of x over s ∈ [s1, s2]. However, in the 2D piece of paper,
there is a shorter path connecting x(s1) and x(s2) because the 2D crease is curved
(and not on the paper boundary, because the paper is an open set), contradicting
isometry. �

3.1. Developable Surfaces. A folded face is also known as an uncreased devel-
opable surface: it is uncreased in the sense that it is C1, and developable in the sense
that every point p has a neighborhood isometric to a region in the plane. The fol-
lowing theorem from [Demaine et al. 11] characterizes what uncreased developable
surfaces look like:

Theorem 4 (Corollaries 1–3 of [Demaine et al. 11]). Every interior point p of an
uncreased developable surface M not belonging to a planar neighborhood belongs to
a unique rule segment Cp. The rule segment’s endpoints are on the boundary of M .
In particular, every semicrease is such a rule segment.

Corollary 5. Any folded face decomposes into planar regions and nonintersecting
rule segments (including semicreases) whose endpoints lie on creases.

For a folded piece of paper, we use the term (3D) rule segment for exactly these
segments Cp computed for each folded face, for all points p that are not folded
vertices, not folded crease points, and not belonging to a planar neighborhood. In
particular, we view the interior of planar regions as not containing any rule seg-
ments (as they would be ambiguous); however, the boundaries of planar regions are
considered rule segments. As a consequence, all rule segments have a neighborhood
that is nonplanar.

For each 3D rule segment in the folded piece of paper, we can define the corre-
sponding 2D rule segment by the inverse mapping. By isometry, 2D rule segments
are indeed line segments.

Define a cone ruling at a crease point x(s) to be a fan of 2D rule segments
emanating from x(s) in a positive-length interval of directions [θ1, θ2].

3.2. Orientation. We orient the piece of paper in the xy plane by a consistent
normal ez (in the +z direction) called the top side. This orientation defines, for a
2D crease x = x(s) in the crease pattern, a left normal n̂(s) = ez × t(s). Where
x(s) is curved and thus n(s) is defined, we have n̂(s) = ±n(s) where the sign
specifies whether the left or right side corresponds to the convex side of the curve.
We can also characterize a 2D rule segment incident to x(s) as being left of x when



6 E. DEMAINE, M. DEMAINE, D. HUFFMAN, D. KOSCHITZ, AND T. TACHI

the vector emanating from x(s) has positive dot product with n̂(s), and right of
x when it has negative dot product. (In Lemma 12 below, we prove that no rule
segment is tangent to a crease, and thus every rule segment is either left or right of
the crease.)

We can also define the signed curvature k̂(s) to flip sign where n̂(s) does:

k̂(s)n̂(s) = k(s)n(s). Then k̂(s) is positive where the curve turns left and neg-
ative where the curve turns right (relative to the top side).

3.3. Unique Ruling. Call a crease point x(s) uniquely ruled on the left if there
is exactly one rule segment left of x(s); symmetrically define uniquely ruled on the
right ; and define uniquely ruled to mean uniquely ruled on both left and right.

By Corollary 5, there are two possible causes for a crease point x(s) to be not
uniquely ruled (say on the left). First, there could be one or more cone rulings (on
the left) at x(s). Second, there could be one or more planar 3D regions incident
to X(s) (which, in 2D, lie on the left of x(s), meaning the points have positive dot
product with n̂(s)).

(a) (b) (c) (d)

Figure 2. Possibilities for a crease to be not uniquely ruled.

One special case of unique ruling is when a rule segment is tangent to a curved
crease. Ultimately, in Lemma 12, we will prove that this cannot happen, but for
now we need that the surface normals remain well-defined in this case. There are
two subcases depending on whether the rule segment is on the convex or concave
side of the crease, as in Figures 2(c) and (d). The rule segment’s direction in 3D and
surface normal vector remain well-defined in this case, by taking limits of nearby
rule segments. In the concave subcase (d), we take the limit of rule segments on
the same side of the curve. In the convex subcase (c), the rule segment splits the
surface locally into two halves, and we take the limit of rule segments in the half
not containing the crease. Because the surface normals are thus well-defined, we
do not need to distinguish this case in our proofs below.

Call a crease point x(s) cone free if there are no cone rulings at x(s); similarly
define cone free on the left/right. Such a point may still have a planar region, but
only one:

Lemma 6. If a crease point x(s) is cone free, then it has at most one planar region
on each side.

Proof. Refer to Figure 3. Suppose x(s) had at least two planar regions on, say, the
left side. Order the regions clockwise around x(s), and pick two adjacent planar
regions R1 and R2. By Corollary 5, the wedge with apex x(s) between R1 and R2

must be covered by rule segments. But by Theorem 4, a rule segment cannot have
its endpoints on the boundaries of R1 and R2, as it must extend all the way to
creases. Thus the only way to cover the wedge locally near x(s) is to have a cone
ruling at x(s). �
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R1

R2cone

endpoint
on ruling

Figure 3. Two adjacent planar regions at a point.

3.4. Surface Normals. In 3D, the orientation defines a top-side normal vector at
every C1 point.1 For a crease point X(s) that is cone free on the left, we can define
a unique left surface normal PL(s). First, if there is a planar region on the left of
X(s), then by Lemma 6 there is only one such planar region, and we define PL(s)
to be the unique top-side normal vector of the planar region. Otherwise, X(s) is
uniquely ruled on the left, and we define PL(s) to be the top-side surface normal
vector which is constant along this unique rule segment. (As argued above, this
definition makes sense even when the rule segment is a zero-length limit of rule
segments.) Similarly, we can define the right surface normal PR(s) when X(s) is
cone free on the right.

4. Bisection Property

In this section, we prove that, at a cone-free folded curved crease, the binormal
vector bisects the left and right surface normal vectors, which implies that the
osculating plane of the crease bisects the two surface tangent planes. Proving
this bisection property requires several steps along the way, and has several useful
consequences.

4.1. C2 Case. First we prove the bisection property at C2 crease points, using the
following simple lemma:

Lemma 7. For a C2 folded curved crease X(s) that is cone-free on the left,

(K(s)N(s)) · (PL(s)×T(s)) = k̂(s).

For a C2 folded curved crease X(s) that is cone-free on the right,

(K(s)N(s)) · (PR(s)×T(s)) = k̂(s).

Proof. We prove the left case; the right case is symmetric. The left-hand side is
known as the geodesic curvature at X(s) on surface SL, and is known to be invariant
under isometry. In the unfolded 2D state, the geodesic curvature is

(k(s)n(s)) · (ez × t(s)) = (k(s)n(s)) · n̂(s) = k̂(s).

�

1For example, take infinitesimally small triangles around the point, oriented counterclockwise
in 2D, and compute their normals in 3D.
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Lemma 8. For a C2 cone-free folded curved crease X(s), B(s) bisects PL(s) and
PR(s). In particular, the tangent planes of the surfaces on both sides of X(s) form
the same angle with the osculating plane.

Proof. A C2 cone-free folded curved crease X(s) has unique left and right surface
normals PL(s) and PR(s). By Lemma 7, the left and right geodesic curvatures
match:

(K(s)N(s)) · (PL(s)×T(s)) = (K(s)N(s)) · (PR(s)×T(s)).

The K(s) scalars cancel, leaving a triple product:

N(s) · (PL(s)×T(s)) = N(s) · (PR(s)×T(s)),

which is equivalent to

PL(s) · (T(s)×N(s)) = PR(s) · (T(s)×N(s)).

Therefore B(s) = T(s)×N(s) forms the same angle with PL(s) and PR. Because
B, PL and PR lie in a common plane orthogonal to T, B bisects PL and PR. �

T
N

B

PL

RL

RR

PR

N

PRPL

B=B̂

r
2—

r
2—

Figure 4. Binormal vector bisects surface normals.

4.2. Top-Side Frenet Frame. By Lemma 8, at C2 cone-free points X(s), we can

define the top-side normal of the osculating plane B̂ = ±B = ±T×N whose sign
is defined such that B̂ · PL = B̂ · PR > 0. Thus B̂ consistently points to the
front side of the surface. By contrast, B’s orientation depends on whether the 2D
curve locally turns left or right (given by the sign of k(s)), flipping orientation at
inflection points (where k(s) = 0).

More formally, we will use the top-side Frenet frame given by (T(s), N̂(s), B̂(s))

where N̂(s) = B̂(s)×T(s).

Lemma 9. Consider a folded curved crease X(s) that is cone-free at a semikink
s = s̃. The top-side Frenet frames are identical in positive and negative limits:

lim
s→s̃+

(T(s), N̂(s), B̂(s)) = lim
s→s̃−

(T(s), N̂(s), B̂(s))

and thus the top-side Frenet frame is continuous at s = s̃.
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Proof. First, T(s̃) is continuous because X(s) is C1 at a semikink s = s̃.
Second, by Lemma 8, in the positive and negative limits, B(s) bisects PL(s) and

PR(s). Because there is no cone ruling at s = s̃, the left and right surface normals
PL(s) and PR(s) have equal positive and negative limits at s̃, so PL(s̃) and PR(s̃)
are continuous. Thus B(s̃+) and B(s̃−) must lie on a common bisecting line of

PL(s̃) and PR(s̃), and B̂(s̃) is uniquely defined by having positive dot product

with P1(s̃) and P2(s̃). This gives us a unique definition of B̂(s).

Third, N̂(s) is continuous as B̂(s) ×T(s). Therefore (T(s), N̂(s), B̂(s)) is con-
tinuous at s = s̃. �

At C2 points X(s), we can define the signed curvature K̂(s) to flip sign where

N̂(s) does: K̂(s)N̂(s) = K(s)N(s). As in 2D, K̂(s) is positive where the curve
turns left and negative where the curve turns right (relative to the top side).

4.3. General Bisection Property. By combining Lemmas 8 and 9, we obtain a
stronger bisection lemma:

Corollary 10. For a cone-free folded curved crease X(s), B̂(s) bisects PL(s) and
PR(s). In particular, the tangent planes of the surfaces on both sides of X(s) form
the same angle with the osculating plane.

4.4. Consequences. Using the bisector property, we can prove the nonexistence
of a few strange situations.

Lemma 11. A crease X curved at s cannot have a positive-length interval s ∈
(s− ε, s+ ε) incident to a planar region.

Proof. If this situation were to happen, then the osculating plane of the curve
must equal the plane of the planar region, which is say the left surface plane. By
Corollary 10, the right surface plane must be the same plane. But then the folded
piece of paper is actually planar along the crease, contradicting that it is not C1

along the crease. �

Lemma 12. A rule segment cannot be tangent to a cone-free curved crease point
(at a relative interior point, in 2D or 3D).

Proof. Suppose by symmetry that a rule segment is tangent to a crease point on
its left side. If a rule segment is tangent to the crease point x(s) in 2D, then it
must also be tangent to X(s) in 3D. There are two cases: (1) the left surface is a
tangent surface generated from the crease; (2) the surface is trimmed by the crease
and is only tangent at the point X(s).

In Case 1, there is a finite portion of the crease that is C2 and tangent to the
incident rule segment. Then, for that portion of the crease (including s), the tangent
plane of the left surface is the osculating plane of the curve.

In Case 2, consider surface normal PL(s) at X(s). By assumption, the tangent
vector T is parallel to the rule segment incident to X(s). Suppose by symmetry
that T is actually the direction of the rule segment from X(s). (Otherwise, we
could invert the parameterization of X.) Because the surface normal is constant
along the rule segment, and thus in the rule-segment direction, we have

dPL

ds+
= 0.
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Because PL and T are perpendicular, d
ds+ (PL ·T) = 0, which expands to

dPL

ds+
·T + PL ·

dT

ds+
= 0.

Thus we obtain PL · dTds+ = 0. Because the folded crease is not straight (Lemma 3),
N is perpendicular to PL. Therefore the left tangent plane equals the osculating
plane.

By Corollary 10, in either case, the right tangent plane must also equal the
osculating plane, meaning that the folded piece of paper is actually planar along
the crease, contradicting that it is not C1 along the crease. �

When the crease is C2, Lemma 12 also implicitly follows from the Fuchs–Tabachnikov
relation between fold angle and rule-segment angle [Fuchs and Tabachnikov 99,
Fuchs and Tabachnikov 07].

Corollary 13. For a crease X curved and cone-free at s, the point X(s) has an
incident positive-length rule segment on the left side of X and an incident positive-
length rule segment on the right side of X.

Proof. First, by Lemma 11, X(s) is not locally surrounded by a flat region on
either side, so by Corollary 5, X(s) must have a rule segment on its left and right
sides. Furthermore, such a rule segment cannot be a zero-length limit of nearby rule
segments, because such a rule segment would be tangent to the curve, contradicting
Lemma 12. �

Corollary 14. If a face’s boundary is a C1 curved closed curve, then the folded
face’s boundary is not C1.

Proof. Consider the decomposition from Corollary 5 applied to the face, resulting
in planar and ruled regions. By Lemma 11, the ruled regions’ boundary collectively
cover the face boundary. The planar regions form a laminar (noncrossing) family in
the face, so there must be a ruled region adjacent to only one planar region (or zero
if the entire folded face is ruled). This ruled region is either the entire folded face or
bounded by a portion of the face boundary and by a single rule segment (bounding
a planar region). For each rule segment in the ruled region, we can discard the
side that (possibly) contains the boundary rule segment, effectively shrinking the
rule region while preserving its boundary structure of partial face boundary and
one rule segment. In the limit of this process, we obtain a rule segment that is
tangent to the face boundary. By Lemma 12, this situation can happen only if the
face is cone ruled at some point, which by Theorem 15 implies that the folded face
boundary is not C1. �

5. Smooth Folding

A smoothly folded crease is a folded crease that is C1, i.e., kink-free. In Corol-
lary 20 below, we will show that a smoothly folded crease is furthermore C2, i.e., it
cannot have semikinks. A smooth folding of a crease pattern is a folding in which
every crease is smoothly folded. In this section, we characterize smooth folding as
cone-free.

Theorem 15. If a folded crease X has a cone ruling at a point X(s), then X is
kinked at s.
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Proof. Assume by symmetry that X(s) has a cone ruling on the left side, say
clockwise from rule vector R1 to rule vector R2. Because the unfolded crease x is
C1, it has a tangent vector t, so the left side of x(s) is, to the first order, the cone
clockwise from −t to t. Thus we have −t, r1, r2, and t appearing in clockwise
order around x(s), giving us the angle relation:

180◦ = ∠(−t, t) = ∠(−t, r1) + ∠(r1, r2) + ∠(r2, t).

Now assume for contradiction that X is C1 at s, so we can define the tangent
vector T(s). By triangle inequality on the sphere, we have

180◦ = ∠(−T,T) ≤ ∠(−T,R1) + ∠(R1,R2) + ∠(R2,T).

The latter three 3D angles must be smaller or equal to than the corresponding
angles in 2D, by isometry. Furthermore, ∠(R1, R2) < ∠(r1, r2), because the surface
must be bent along the entire cone ruling (otherwise it would have a flat patch).
Therefore

∠(−T,R1) + ∠(R1,R2) + ∠(R2,T) < ∠(−t, r1) + ∠(r1, r2) + ∠(r2, t) = 180◦,

a contradiction. �

-T

T

R1

R2

−t

t

r1

r2

Figure 5. Cone rulings must fold into a kink in 3D.

Now we get a characterization of smooth folding:

Corollary 16. A folded curved crease X is kinked at s if and only if it has a cone
ruling at X(s).

Proof. Theorem 15 proves the “if” implication.
To prove the converse, consider a cone-free crease point X(s). In 2D, we have a

180◦ = ∠(−t, t) angle on either side of the crease. We claim that this 180◦ angle
between the backward tangent and forward tangent is preserved by the folding, so
the folded crease X has a continuous tangent and thus is C1 at s.

First, suppose that there is no planar region incident to X(s) on say the left
side. Then the left side is locally a uniquely ruled C2 surface, with no rule segments
tangent to the curve by Lemma 12, and thus the surface can be extended slightly
to include X(s) in its interior. In a C1 surface, it is known that geodesic (2D)
angles equal Euclidean (3D) angles, so folding preserves the 180◦ angle between the
backward and forward tangents.

Now suppose that there is a planar region on the left side of X(s). By Lemma 6,
there can be only one, and by Lemma 11, there must be two uniquely ruled surfaces
separating such a planar region from the crease. These three surfaces meet smoothly
with a common surface normal, as the surface is C2 away from the crease, so the
overall angle between the backward and forward tangents of the crease equals the
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sum of the three angles of the surfaces at X(s). The previous paragraph argues
that the two uniquely ruled surfaces preserve their angles, and the planar region
clearly preserves its angle (it is not folded). Hence, again, folding preserves the
180◦ angle between the backward and forward tangents. �

6. Mountains and Valleys

6.1. Crease. Refer to Figure 4. For a smoothly folded (cone-free) crease X, the
fold angle ρ ∈ (−180◦, 180◦) at X(s) is defined by cos ρ = PL·PR and sin ρ = [(PL×
PR)·T]. The crease is valley at s if the fold angle is negative, i.e., (PL×PR)·T < 0.
The crease is mountain at s if the fold angle is positive, i.e., (PL ×PR) ·T > 0.

Lemma 17. A smoothly folded curved crease X has a continuous fold angle ρ 6= 0.

Proof. By Corollary 16, the crease is cone-free, so the surface normals PL(s) and
PR(s) are continuous. If the resulting fold angle ρ(s) were zero, then we would have
PL(s) = PR(s), contradicting that the folded piece of paper is not C1 at crease
point X(s). �

Corollary 18. A smoothly folded curved crease X is mountain or valley throughout.

Proof. By Lemma 17, ρ(s) is continuous and nonzero. By the intermediate value
theorem, ρ(s) cannot change sign. �

Lemma 19. For a smoothly folded curved crease X(s),

K̂(s) cos
1

2
ρ(s) = k̂(s).

In particular, folding increases curvature: |k̂(s)| < |K̂(s)|, i.e., k(s) < K(s).

Proof. Referring to Figure 4, we have

cos
1

2
ρ(s) = PL(s) · B̂(s).

By definition of B̂(s), this dot product is the triple product

PL(s) · (T(s)× N̂(s)) = N̂(s) · (PL(s)×T(s))

(similar to the proof of Lemma 8). Multiplying by K̂(s), we obtain

(K̂(s)N̂(s)) · (PL(s)×T(s)) = (K(s)N(s)) · (PL(s)×T(s)).

By Lemma 7, this geodesic curvature is k̂(s). �

Corollary 20. A folded crease cannot have a semikink, and thus a smoothly folded
crease X is C2.

Proof. Suppose X(s) had a semikink at s = s̃. Applying Lemma 19 with positive
and negative limits, we obtain that

lim
s→s̃+

K̂(s) =
k̂(s)

cos 1
2ρ

= lim
s→s̃−

K̂(s),

and thus the signed curvature K̂(s) is continuous at s = s̃. By Lemma 9, N̂(s) is

continuous at s = s̃. Therefore d2X(s)
ds2

= K̂(s)N̂(s) is continuous at s = s̃, so X(s̃)
is not actually a semikink. �
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Lemma 21. A smoothly folded crease X is valley if and only if (PL × B̂) ·T < 0,

and mountain if and only if (PL × B̂) ·T > 0.

Proof. Refer to Figure 4. Vectors PL, PR, and B̂ are all perpendicular to T,
and thus live in a common oriented plane with normal T. By the choice of B̂ to
have positive dot products with PL and PR, the three vectors in fact live in a
common half-plane. In this plane, we can see the fold angle ρ = ∠(PL,PR), where
∠ measures the convex angle between the vectors, signed positive when the angle is
convex in the counterclockwise orientation within the oriented plane with normal
T, and signed negative when clockwise.

By Corollary 10, PL · B = PR · B, so PL · B̂ = PR · B̂. Thus cos∠(PL, B̂) =

cos∠(PR, B̂), i.e., |∠(PL, B̂)| = |∠(PR, B̂)|.
If ∠(PL, B̂) = ∠(PR, B̂), then PL = PR, contradicting that X is a crease.

Therefore, ∠(PL, B̂) = ∠(B̂,PR) = ± 1
2∠(PL,PR). Because |∠(PL, B̂)| < 90◦,

we must in fact have ∠(PL, B̂) = ∠(B̂,PR) = 1
2∠(PL,PR), i.e., B̂ bisects the

convex angle ∠(PL,PR). Hence B̂ lies in between PL and PR within the half-

plane. Therefore the cross products PL×PR, PL× B̂, and B̂×PR are all parallel,
so their dot products with T have the same sign. �

6.2. Rule Segment. We can also define whether a rule segment bends the paper
mountain or valley; refer to Figure 6. Consider a relative interior point Y of a rule
segment with direction vector R, with top-side surface normal P. Then we can
construct a local Frenet frame at Y with tangent vector Q = R×P, normal vector
P, and binormal vector R. These frames define a 3D curve Y(t) where Y(0) = Y,
which follows the principle curvature of the surface. Parameterize this curve by arc
length.

P(t)

Q(t) R(t)

Y(t)

P(t)

R(t)Q(t) Y(t)

P1(t1)

P2(t2)

Q1(t1)

Q2(t2)

R1(t1)

R2(t2)

Figure 6. Defining a frame around an interior point to define
mountain vs. valley bending.

First consider the case when the surface is C2 at Y (t). The surface bends valley

at Y(t) if the curvature vector d2Y(t)
dt2 = dQ(t)

dt is on the top side, i.e., has positive

dot product with P(t); and it bends mountain if dQ(t)
dt ·P(t) < 0. In particular, at

t = 0, we determine whether the original rule segment bends mountain or valley at
Y.

If the surface is not C2 at Y (t), then the rule segment is a semicrease, which
connects two C2 surfaces sharing a surface normal at the crease; refer to Figure 7.
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In this case, the surface bends valley at Y(t) when the two surfaces bends valley;
or one of the surface is planar, and the other bends valley. Similarly, the surface
bends mountain at Y(t) when the two surfaces bends mountain; or one of the
surface is planar, and the other bends mountain. At an inflection point, there is no
mountain/valley assignment.

Valley No Assignment Mountain MountainValley

P

Figure 7. Definition of mountain and valley for a semicrease.

Lemma 22. A developable uncreased surface bends the same direction (mountain
or valley) at every relative interior point of a rule segment.

Proof. First consider the case when the surface is C2. Consider two points Y1 and
Y2 on the rule segment, with principle curvature frames (Qi(ti),Ri(ti),Pi(ti)).
Choose t2 as a function of t1 so that Y1(t1) and Y2(t2) lie on a common rule
segment. Then the frames are in fact identical: R1(t1) = R2(t2) is the common rule
direction, P1(t1) = P2(t2) is the common top-side surface normal, and Q1(t1) =
Q2(t2) is their cross product. Because the surface is locally C2 around the ruled
segment Y1 and Y2, we have dt2

dt1
> 0, so

dQ2(t2)

dt2
·P =

dQ1(t1)

dt2
·P =

dt2
dt1

dQ1(t1)

dt1
·P.

Therefore, the surface bends the same direction.
Next consider the case when the surface is not C2, i.e., the rule segment is a

semicrease between C2 surfaces S+ and S−. By the above argument, in a C2

patch, the inflection occurs along the rule segment where dQ(t)
dt ·P = 0 is satisfied.

Also, if surface is not C2, then it is on a rule segment. Therefore, if the S− surface
is bent in a different direction at limt→t−1

Y1(t) and limt→t−2
Y2(t2), then a path

from Y1 to Y2 must cross a rule segment. Because rule segments do not intersect,
S+ and S− keeps their own bending orientations. Therefore, the assignment for
the semicrease is unchanged along the segment. �

By Lemma 22, we can define the bending direction of a rule segment: a devel-
opable uncreased surface bends mountain or valley at a rule segment if a relative
interior point of the rule segment bends mountain or valley, respectively. Further-
more, because the frames are identical, we can define the principle curvature frame
(Q,R,P) of a rule segment by the principle curvature frame at any relative interior
point on the rule segment.

6.3. Crease vs. Rule Segment. Next we consider the mountain-valley relation
between a rule segment and a crease.

First consider a smoothly folded crease X with left and right surface ruling
vectors RL and RR, defined as unit vectors which lie along the rule segments on
surfaces SL and SR incident to X. (If there is a planar region incident to X, these
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ruling vectors will not be unique.) A left-side ruling vector RL lives in the plane
perpendicular to PL. Therefore, the vector can be represented by

RL = (cos θL)T + (sin θL)(PL ×T),

where we call θL the left-side ruling angle of the ruling, which is nonzero by
Lemma 12. Because the ruling angle is intrinsic, the ruling vector in 2D is rep-
resented by rL = (cos θL)t+(sin θL)b̂. The orientation of the left-side ruling vector

is chosen to orient to the left, i.e., rL · b̂ > 0, so θL is positive. Similarly, ruling vec-
tor RR on the right surface is represented by RR = (cos θR)T− (sin θR)(PR ×T),
using right-side ruling angle θR. The orientation is chosen to be on the right side,
so θR > 0.

Lemma 23. Consider a uniquely ruled smoothly folded crease X with locally C2

surfaces on both sides (no semicreases). Then the rule segment on the left side of
X bends valley if and only if N · PL > 0. Symmetrically, the surface bends valley
on the right side if and only if N ·PR > 0.

Proof. Build the principle curvature frame (Q(t),R(t),P(t)) of rule segment pa-
rameterized by the arclength t in the principle curvature direction. Consider corre-
sponding point X(s) and the arclength parameter s = s(t) along the crease at the
rule segment parameterized by t. Because the surface is locally C2 around the rule
segment, ds

dt > 0. Because we consider the left side of the surface, PL(s) = P(t).
Let θ be the angle between R(t) and T(s), i.e., T(s) = sin θQ(t) + cos θR(t). By
Lemma 12, 0 < θ < π, and we get

(1) Q = (csc θ)T− (cot θ)R.

Assume that the surface bends valley at the rule segment, i.e.,

(2) V (t) =
dQ(t)

dt
·P(t) > 0.

Using orthogonality of vectors Q and P, i.e., Q(t) ·P(t) = 0, and taking derivatives,
we obtain

dQ

dt
·P + Q · dP

dt
= 0.

Then,

V (t) = −Q · dP
dt

= −
(

(csc θ)T− (cot θ)R
)
· dP
dt

= −(csc θ)T · dP
dt
.

Here, we used Equation 1. By the orthogonality of vectors T and P, we get

T · dP
dt

=
dT

dt
·P.
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Then,

V (t) = (csc θ)
dT(s)

dt
·P(t)

= (csc θ)
ds

dt

dT(s)

ds
·P(t)

= (csc θ)
ds

dt
K(s)N(s) ·PL(s).

Because csc θ > 0, dsdt > 0, and K(s) > 0, Equation 2 is equivalent to N(s)·PL(s) >
0. �

Now we make a stronger statement, allowing the ruling vectors to be not unique
and the surfaces to be not C2.

Corollary 24. Consider a smoothly folded crease X. Then a rule segment on the
left side of X bends valley if and only if N · PL > 0. Symmetrically, the surface
bends valley on the right side if and only if N ·PR > 0.

Proof. Consider rule segments at X(s̃). By Theorem 15, the crease is cone free, so
a rule segment is either (1) between two C2 ruled surfaces, or (2) between a plane
and a C2 ruled surfaces.

Consider Case 1, and let S− and S+ be the two surfaces. Because there are no
cone rulings, S− and S+ are locally formed by unique rulings emanating from X(s)
at s < s̃ and s > s̃, respectively. Then

lim
s→s̃−

N(s) ·PL(s) = lim
s→s̃+

N(s) ·PL(s) = N(s) ·PL(s).

So both surfaces S− and S+ bend valley if and only if N(s) ·PL(s) > 0.
Next consider Case 2. By symmetry, assume that S− is planar and S+ is C2

ruled surface. Then S+ is locally formed by unique rule segments emanating from
X(s) at s > s̃. Hence S+, and thus the rule segment, bends valley if and only if
N(s) ·PL(s) > 0. �

Theorem 25. Consider a smoothly folded curved crease X. A rule segment inci-
dent to X(s̃) on the convex side of X(s̃) has the same mountain/valley assignment
as the crease, while a rule segment incident to X(s̃) on the concave side of X(s̃)
has the opposite mountain/valley assignment as the crease.

Proof. Assume by symmetry that the left side of the paper is the convex side (k̂(s) <

0). Also, assume that the crease is a valley, i.e., (B̂×PL) ·T = (PL ×B) ·T > 0.

Then the top-side normal of the osculating plane is B̂ = −B, and thus N̂ = −N.
Now

(PL ×B) ·T = (PL × (T×N)) ·T
= (T(PL ·N)−N(PL ·T)) ·T > 0.

The second term disappears because PL ·T = 0. Therefore PL ·N > 0, so the left
side is valley. �
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cone rulings from

multiple vertices
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Figure 8. Ruling conditions for a lens tessellation.

6.4. Creases Connected by a Rule Segment. Now consider two creases con-
nected by a rule segment. By Lemma 25, we get the following.

Corollary 26. Consider two smoothly folded creases connected by a rule segment.
If the rule segment is on the concave sides of both creases, or on the convex sides of
both creases, then the creases must have the same direction (mountain or valley).
If a rule segment is on the convex side of one crease and the concave side of the
other crease, then the creases must have the opposite direction (one mountain and
one valley).

7. Lens Tessellation

In this section, we use the qualitative properties of rulings obtained in previous
sections to reconstruct rule segments from a crease pattern of the generalized version
of lens tessellation.

First, as illustrated in Figure 8, we define the lens tessellation parameterized
by a convex C2 function ` : [0, 1] → [0,∞) with `(0) = `(1) = 0, horizontal offset
u ∈ [0, 1), and vertical offset v ∈ (0,∞), to consist of

(1) mountain creases γ±i,2j = {(t+ i,±`(t) + jv) | t ∈ [0, 1]} for i, j ∈ Z; and

(2) valley creases γ±i,2j+1 = {(1 − t + i + u,±`(1 − t) + (j + 1
2 )v)} | t ∈ [0, 1]}

for i, j ∈ Z.

Define the vertices to be points of the form Vi,2j = (i, jv) and Vi,2j+1 = (i+u, (j+
1
2 )v). Four creases meet at each vertex.

Because `(t) is convex, it has a unique maximum `(t∗) at some t = t∗. Define
the apex Ai,k of crease γ±i,k to be the point of the crease at t = t∗, i.e., A±i,2j =

(t∗ + i,±`(t∗) + jv) and A±i,2j+1 = (1− t∗ + i+ u,±`(1− t∗) + (j + 1
2 )v).

7.1. Necessary Conditions. Consider a crease point x(s). A point y on the
crease pattern (a vertex or crease point) is visible from x(s) on the left (right) side

of x at x(s) if the oriented open line segment
−−−→
x(s)y is on the left (right) side of x(s)
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and does not share a point with the crease pattern. If x(s) and y are the endpoints
of a rule segment, then certainly they must be visible from each other.

Theorem 27. A lens tessellation can smoothly fold only if there is a vertex Vi,1
visible from every point on crease γ+0,0 on the convex side.

Proof. Refer to Figure 8. By Corollary 13, there must be a rule segment emanating
from A+

0,0 on the convex side of γ+0,0. The other endpoint B of that rule segment

must be visible from A+
0,0 on the convex side of γ+0,0. Because the tangent line of γ+0,0

at A+
0,0 is horizontal, any such visible point B must lie on the union of creases γ−i,1

and vertices Vi,1 for i ∈ Z. By Theorem 26, B cannot be on the relative interior of
one of the valley creases γ−i,1 because then the rule segment would be on the concave
sides of creases of opposite direction. Thus B must be among the vertices Vi,1 for
i ∈ Z.

First consider the case that only one vertex Vn,1 is visible from A+
0,0 on the

convex side of γ+0,0. Then A+
0,0Vn,1 must be a rule segment. By symmetry, V1,0A

−
n,1

is also a rule segment. Consider a point on γ+0,0 between A+
0,0 and V0,1, which by

Corollary 13 has a rule segment on the positive side of γ+0,0. This rule segment

cannot cross the existing rule segments A+
0,0Vn,1 and V1,0A

−
n,1, so its other endpoint

must be Vn,1, A−n,1, or between Vn,1 and A−n,1 on curve γ−n,1. By Theorem 26, the
only possible ruling is to have a cone apex at Vn,1. Similarly, rule segments from
points between V0,0 and A+

0,0 on γ+0,0 must end at Vn,1. Therefore Vn,1 is visible

from every point on crease γ+0,0 on the convex side.
Second consider the case in which more than one vertex Vi,1 is visible from apex

A+
0,0 on the convex side of γ+0,0. Suppose for contradiction that there is no common

vertex visible from the entire curve γ+0,0. Similar to the previous case, there must

be a rule segment from apex A+
0,0 to one of the vertices Vn,1. But we assumed that

some other point of γ+0,0 cannot see Vn,1. By symmetry, suppose that point is to

the right of A+
0,0. There is a transition point P on the relative interior of γ+0,0 when

the endpoints of rulings change from Vn,1 to either (a) another vertex Vm,1 with
m > n or (b) a point on γ+1,0. (See Figure 8.) At such a point P , we have two
rule segments. By Theorem 15, P cannot be a cone apex. Hence there must be a
planar region between the two rule segments. Specifically, in case (a), the triangle
PVn,1Vm,1 is planar, which contains all of γ−n,1, contradicting that the folded piece

of paper is not C1 on γ−n,1. In case (b), let Q be the point on γ+1,0. The triangle

PQVn,1 is planar. This triangle cannot intersect γ−n,1, because the folded piece of

paper is not C1 on γ−n,1. In particular, the curve γ−n,1 cannot intersect the segment

Vn,1V0,1 (which begins in the triangle). Because γ+1,0 is a 180◦ rotation of γ−n,1
mapping Vn,1 to V0,1, we symmetrically have that the curve γ+1,0 cannot intersect
the same segment Vn,1V0,1. Thus this segment is a visibility segment, as is Vn,1V0,0.
By convexity of the lens, Vn,1 can see the entire curve γ+1,0. Therefore there is in

fact a common vertex visible from the curve γ+0,0. �

7.2. Existence / Sufficiency. Finally we prove that the condition from Theo-
rem 27 is also sufficient:

Theorem 28. A lens tessellation can fold smoothly if there is a vertex Vi,1 visible
from every point on crease γ+0,0 on the convex side.
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Figure 9. A modular kite structure.

Proof. First we construct the folding of one “gadget”, (i, j) = 0; refer to Figure 9.
We can add an integer to u to assume that V0,1 is the visible vertex from apex
A+

0,0. In 2D, this gadget is bounded by a quadrangle of rule segments with vertex

coordinates V0,0 = (0, 0), V0,−1 = (u,− 1
2v), V1,0 = (1, 0), V0,1 = (u, 12v). This kite

module is decomposed by its creases into an upper wing part U , middle lens part
M , and lower wing part L. We assume that M is ruled parallel to y axis: the rule
segments of M are of the form (t, `(t)) and (t,−`(t)) parameterized by t. (We can
make this assumption because we are constructing a folded state.) We also assume
that U consists of cone rulings between V0,1 and (t, `(t)) while L consists of cone
rulings between V0,−1 and (t,−`(t)) using the same parameter t.

The folding f(M) is a cylindrical surface with parallel rulings. We orient the

folded form such that this ruling direction is parallel to y axis and
−−−−−−−−−−→
f(V0,0)f(V1,0) is

parallel to the positive direction of x axis. Then the orthogonal projection of f(M)
to xz plane is a curve γ, and a ruling at t on M corresponds to a point on γ(t)
while t is the arclength parameter.

We further assume that the folded state is symmetric with respect to reflection

through a plane passing through
−−−−−−−−−−→
f(V0,0)f(V1,0) and parallel to xz plane. Let the

distance between f(V0,−1) and f(V0,1) be denoted by v∗ where 0 < v∗ < v. We will
show that there is a valid folded state for arbitrary v∗ if it is sufficiently close to v.

Consider the set of rule segments of U , M , and L at parameter t and its folding.
Then, by our symmetry assumption, these segments form a planar polyline which
together with segments f(V0,−1) and f(V0,1) form an isosceles trapezoid with the
base length v∗ and top length 2`(t). The legs are the length of the rule segments,

which can be calculated from the crease pattern as r(t) =
√

(u− t)2 + (v/2− `(t))2.
Such a trapezoid exists because 0 < v∗ < v ≤ 2`(t) + 2r(t). The height of the
trapezoid h(t) is given by

h(t) =

√
(v − v∗)

(
v + v∗

4
− `(t)

)
+ (t− u)2.
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Now consider the projection of this trapezoid in xz plane. This projection is a
line segment between two points, namely the projections of V0,1 and γ(t), and it
must have length of h(t). We use the following lemma to solve for γ:

Lemma 29. If an arc-length parameterized crease x(s) have unique rule segments
on one side incident to cone apex a, then an embedding f is a proper folding if and
only if folded curve X = f ◦ x is also arc-length parameterized, and rule segments
from a to x(s) maps isometrically to rule segments from A to X(s), where A = f ◦a.

Proof. Necessity (only if part) is obvious, so we prove the sufficiency (if part).

The folded curve is arc-length parameterized by s as dX(s)
ds = dx(s)

ds = 1, and the
length of ruling segment L(s) must be equal L(s) = ‖x(s) − a‖ = ‖X(s) − A‖.
Let r(s) denote the unit ruling vectors from the apex toward the curve in 2D,
i.e., r(s) = (x(s) − a)/L(s). Similarly denote unit ruling vector in 3D by R(s) =
(X(s) −A)/L(s). Consider a coordinate system using arc length s and radius `.
The conical portion of the face formed by the crease and a point is uniquely ruled
at any point, so (s, `) uniquely represent a point on the portion. A point (s, `) in
2D corresponds to a + `r(s), which is mapped to 3D to A + `R(s). Consider a 2D
C1 curve y(t) represented by (s(t), `(t)), where t is the arc-length parameterization.
Then the total derivative of y(t) = a + `(t)r(s(t)) is

dy

dt
=
∂y

∂s

ds

dt
+
∂y

∂`

d`

dt
= `

dr

ds

ds

dt
+ r

d`

dt
.

Then, by taking the dot product with itself,∥∥∥∥dydt
∥∥∥∥2 = `2

∥∥∥∥drds
∥∥∥∥2(dsdt

)2

+ 2`
dr

ds
· r
(
ds

dt

)(
d`

dt

)
+ ‖r‖2

(
d`

dt

)2

= `2
∥∥∥∥drds

∥∥∥∥2(dsdt
)2

+

(
d`

dt

)2

,

where we used r · r = 1 and 2drds · r = d
ds (r · r) = 0. Because L(s)r(s) = x(s) − a,

taking derivatives yields

L
dr

ds
+
dL

ds
r =

dx

ds
.

By taking the dot product,

L2

∥∥∥∥drds
∥∥∥∥2 +

(
dL

ds

)2

=

∥∥∥∥dxds
∥∥∥∥2 = 1,

again using dr
ds · r = 0 and r · r = 1. Thus,∥∥∥∥dydt

∥∥∥∥2 =
`2

L2

(
1−

(
dL

ds

)2
)(

ds

dt

)2

+

(
d`

dt

)2

.

The mapped crease Y(t) in 3D is defined by Y(t) = A + `(t)R(s(t)). Then,∥∥∥∥dYdt
∥∥∥∥2 =

`2

L2

(
1−

(
dL

ds

)2
)(

ds

dt

)2

+

(
d`

dt

)2

,

similarly using R ·R = 1, dRds ·R = 0, and
∥∥dX
ds

∥∥2 = 1. Therefore
∥∥∥dydt ∥∥∥2 =

∥∥dY
dt

∥∥2 =

1 and the mapping is isometric. �

A similar argument works for cylindrical surfaces.
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Lemma 30. If an arc-length parameterized crease x(s) have unique rule segments
on one side parallel to r, such that r is perpendicular to segment c. then an embed-
ding f is a proper folding if and only if folded curve X = f ◦x is also arc-length pa-
rameterized, and the perpendicular rule segments from x(s) to c maps isometrically
to rule segments from X(s) perpendicularly to a planar curve C, where C = f ◦ c.

Proof. Necessity (only if part) is obvious, so we prove the sufficiency (if part). The

folded curve is arc-length parameterized by s as dX(s)
ds = dx(s)

ds = 1, and the length
of ruling segment L(s) must be equal L(s) = ‖x(s) − c(s)‖ = ‖X(s) −C(s)‖. Let
r denote the unit ruling vectors from the apex toward the curve in 2D, i.e., x(s) =
c(s) + L(s)r. Similarly denote unit ruling vector in 3D by X(s) = C(s) + L(s)R.
Consider a coordinate system using arc length s and length along the ruled segments
`. The face is uniquely ruled between the crease and the curve at any point, so
(s, `) uniquely represent a point on the portion. A point (s, `) in 2D corresponds
to c(s) + `r, which is mapped to 3D to C(s) + `R. Consider a 2D C1 curve y(t)
represented by (s(t), `(t)), where t is the arc-length parameterization. Then the
total derivative of y(t) = c(s) + `(t)r is

dy

dt
=
∂y

∂s

ds

dt
+
∂y

∂`

d`

dt
=
dc

ds

ds

dt
+ r

d`

dt
.

Then, ∥∥∥∥dydt
∥∥∥∥2 =

∥∥∥∥dcds
∥∥∥∥2(dsdt

)2

+ 2
dc

ds
· r
(
ds

dt

)(
d`

dt

)
+ ‖r‖2

(
d`

dt

)2

=

∥∥∥∥dcds
∥∥∥∥2(dsdt

)2

+

(
d`

dt

)2

,

where we used r · r = 1 and dc(s)
ds · r = 0. Now differentiate L(s)r + c(s) = x(s) to

obtain
dc

ds
+
dL

ds
r =

dx

ds
.

By taking the dot product,∥∥∥∥dcds
∥∥∥∥2 +

(
dL

ds

)2

=

∥∥∥∥dxds
∥∥∥∥2 = 1,

again using dc
ds · r = 0 and r · r = 1. Thus,∥∥∥∥dydt

∥∥∥∥2 =

(
1−

(
dL

ds

)2
)(

ds

dt

)2

+

(
d`

dt

)2

.

The mapped crease Y(t) in 3D is defined by Y(t) = C(s) + `(t)R. Then,∥∥∥∥dYdt
∥∥∥∥2 =

(
1−

(
dL

ds

)2
)(

ds

dt

)2

+

(
d`

dt

)2

,

similarly using R ·R = 1, dCds ·R = 0, and
∥∥dX
ds

∥∥2 = 1. Therefore
∥∥∥dydt ∥∥∥2 =

∥∥dY
dt

∥∥2 =

1 and the mapping is isometric. �

By Lemmas 29 and 30, the existence of the folded form is ensured by constructing
the folded crease f(γ) such that in the folded state, the distance between the V0,1
and f(γ(t)) is always r(t), and the distance from zx plane is always `(t). If we view
the projection of the curve, this is equivalent to constructing a curve represented
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by polar coordinate (θ(t), h(t)) (θ ∈ R), such that (i) the curve has arclength t and
(ii) θ(t) is a monotonic function (in order to avoid self-intersection). Condition (i)
yields a differential equation

1 = h2
(
dθ(t)

dt

)2

+ h′(t)2.

Condition (ii) gives us 0 < dθ(t)
dt and h(t) > 0, so the differential equation becomes

dθ(t)

dt
=

1

h(t)

√
1−

(
dh(t)

dt

)2

,

which has solution

θ(t) =

∫ t

0

1

h(t)

√
1−

(
dh(t)

dt

)2

dt

if and only if
(
dh(t)
dt

)2
≤ 1 for t ∈ (0, 1). Combined with condition (ii),

(
dh(t)
dt

)2
< 1.(

dh(t)

dt

)2

=

[
(t− u)− 1

2 (v − v∗)`′(t)
]2

(t− u)2 + (v − v∗)
[
1
4 (v + v∗)− `(t)

] < 1,

which is equivalent to

−1

4
(v − v∗)

[
1 +

(
d`(t)

dt

)2
]

+

[
1

2
v −

(
`(t) +

d`(t)

dt
(u− t)

)]
> 0.

Because `(t) + d`(t)
dt (u − t) represents the y coordinate of the intersection be-

tween the tangent line to γ+0,0 at t and a vertical line passing through V0,1, v
2 −(

`(t) + d`(t)
dt (u− t)

)
is always positive. Also 1 +

(
d`(t)
dt

)2
is positive, so the condi-

tion is given by

v − v∗ <
4
[
v
2 −

(
`(t) + d`(t)

dt (u− t)
)]

1 +
(
d`(t)
dt

)2 .

If we define v∗lim < v as

v − v∗lim = 4

[
v

2
−
(
`(t) +

d`(t)

dt
(u− t)

)]
/

[
1 +

(
d`(t)

dt

)2
]
,

then there exists a continuous solution for v∗ in (v∗lim, v).
Now that we have folded an individual gadget, we can tile the gadget to get a

proper folding of the overall crease pattern. Here we use the fact that the oriented
folded module, for a sufficiently small fold angle, projects to a kite in the xy plane.

Consider inversions of the oriented folded module through the midpoints of its
boundary edges, followed by negating all normals to swap the top and bottom sides
of the paper (Figure 10). If we consider the xy projection, the operation corresponds
to 180◦ rotation around the midpoint of the kite, resulting in a tessellation. Thus, in
particular, there are no collisions between the copies of the folded module. Because
each connecting edge is mapped onto itself in 3D, this tessellation has no gap in
3D. Also, because the boundary is on a ruled segment, the surface normal vector is
constant along each edge. The surface normal is flipped by the inversion, and then
negated back to its original vector, so the surface normals at corresponding points
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Figure 10. The connection of kite structures.

match. Thus the shared boundaries remain uncreased in the tessellated folding. To
show that this tessellated folding comes from one sheet of paper, we can apply the
same tiling transformation to the crease-pattern module, which is also a kite, so it
tiles the plane with the same topology and intrinsic geometry. Therefore the plane
can fold into the infinitely tiled folding. �

8. Conclusion

We still have a long way to go to obtain a general theory of curved creases.
Nonetheless we hope that the tools built in this paper will enable the design and
analysis of more curved-crease origami models, and serve as a useful foundation to
build up the underlying mathematics.
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