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ABSTRACT
We extend linkage unfolding results from the well-studied
case of polygonal linkages to the more general case of link-
ages of polygons. More precisely, we consider chains of
nonoverlapping rigid planar shapes (Jordan regions) that are
hinged together sequentially at rotatable joints. Our goal
is to characterize the familes of planar shapes that admit
locked chains, where some configurations cannot be reached
by continuous reconfiguration without self-intersection, and
which families of planar shapes guarantee universal foldabil-
ity, where every chain is guaranteed to have a connected
configuration space. Previously, only obtuse triangles were
known to admit locked shapes, and only line segments were
known to guarantee universal foldability. We show that a
surprisingly general family of planar shapes, called slen-
der adornments, guarantees universal foldability: roughly,
the inward normal from any point on the shape’s boundary
should intersect the line segment connecting the two incident
hinges. In constrast, we show that isosceles triangles with
any desired apex angle < 90◦ admit locked chains, which
is precisely the threshold beyond which the inward-normal
property no longer holds.
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1. INTRODUCTION
In this paper, we explore the motion-planning problem of

reconfiguring or folding a hinged collection of rigid objects
from one state to another while avoiding self-intersection.
This general problem has been studied since the beginnings
of the motion-planning literature when Reif [14] proved that
deciding reconfigurability of a “tree” of polyhedra, amidst
fixed polyhedral obstacles, is PSPACE-hard. This result
has been strengthened in various directions over the years,
although the cleanest versions were obtained only very re-
cently: deciding reconfigurability of a tree of line segments
in the plane, and deciding reconfigurability of a chain of line
segments in 3D, are both PSPACE-complete [2]. This re-
sult is tight in the sense that deciding reconfigurability of a
chain of line segments in the plane is easy, in fact, trivial:
the answer is always yes [6].

These results illustrate a rather fine line in reconfigura-
tion problems between computationally difficult and com-
putationally trivial. The goal of our work is to characterize
what families of planar shapes and hingings lead to the latter
outcome, a universality result that reconfiguration is always
possible. The only known example of such a result, however,
is the family of chains of line segments, and that problem
was unsolved for about 25 years [6]. Even small perturba-
tions to the problem, such as allowing a single point where
three line segments join, leads to locked examples where re-
configuration is impossible [5].

What about chains of shapes other than line segments? It
is easy to see that a shape tucked into a “pocket” of a non-
convex shape immediately makes trivial locked chains with
two pieces. Back in January 1998, the third author showed



how to simulate this behavior with convex shapes, indeed,
just three triangles; see Figure 1(a). This example has cir-
culated throughout the years to many researchers (including
the authors of this paper) who have asked about chains of 2D
shapes. The only really unsatisfying feature of the example
is that some of the angles are very obtuse. But with a little
more work, one can find examples with acute angles, indeed,
equilateral triangles, albeit of different size; see Figure 1(b).
What could be better than equilateral triangles?

(a) (b)

Figure 1: Simple examples of locked chains of triangles. (a) A

locked chain of three triangles. (b) A locked chain of equilateral

triangles of different sizes. The gaps should be tighter than drawn.

It is therefore reasonable to expect, as we did for many
years, that there is no interesting class of shapes, other
than line segments, with a universality result—essentially
all other shapes admit locked chains. We show in this pa-
per, however, that this guess is wrong.

We introduce a family of shapes, called slender adorn-
ments, and prove that all open and closed chains, made up
of arbitrarily many different shapes from this family, can
be universally reconfigured between any two states. Indeed,
we show that these chains have a natural canonical con-
figuration, analogs of the straight configuration of an open
chain and convex configurations of a closed chain. Our re-
sult is based on the existence of a particularly strong notion
of expansive motions of polygonal chains, called “infinitesi-
mally strictly expansive motions”, proved but not explicitly
stated in [6]. Our techniques build on the theory of unfold-
ing chains of line segments, substantially generalizing and
extending the results from that theory. Our results go far
beyond what we thought was possible (until recently).

The family of slender adornments has several equivalent
definitions. The key idea is to distinguish the two hinge
points on the boundary of the shape connecting to the ad-
jacent shapes in the chain, and view the shape as an adorn-
ment to the line segment connecting those two hinges, called
the base. This view is without loss of generality, but pro-
vides additional information relating the shapes and how
they are attached to neighbors, which turns out to be crucial
to obtaining a universality result. An adornment is slender
if every inward normal of the shape hits the base. Equiva-
lently, as we show, an adornment is slender if and only if the
distance from either endpoint of the base to a point moving
along one side of the adornment changes monotonically.

Slender adornments are quite general. Figure 2 shows sev-
eral examples of slender adornment “halves”. These exam-
ples are themselves slender adornments, but also any pair
can be joined along their bases to make another slender
adornment. Our results imply that one can take any of these
slender adornments, link the bases together into a chain in
any way that the chain does not self-intersect, and the re-
sulting chain can be unfolded without self-intersection to a
straight or convex configuration, and thus the chain can be
folded without self-intersection into every configuration.

Figure 2: Examples of (half of) slender adornments. The base

is drawn bold. Any two of these examples could be glued together

along a common base.

We also demonstrate the tightness of the family of slender
adornments by giving examples of locked chains of shapes
that are not slender. Specifically, we show that, for any
desired angle θ < 90◦, there is a locked chain of isosceles
triangles with apex angle θ. This is precisely the family of
isosceles-triangle adornments that are not slender. Thus, for
chains of triangles, obtuseness is really desirable, contrary to
our intuition from Figure 1(a): the key is that the apex angle
opposite the base (in the adornment view) be nonacute, not
any other angle. The proof that our examples are locked use
the self-touching theory developed for trees of line segments
in [5].

Figure 3: Hinged dissection of square to equilateral triangle, de-

scribed by Dudeney [10]. Different shades show different folded

states (overlapping slightly).

Motivation. Hinged collections of rigid objects have been
studied previously in many contexts, particularly robotics.
One recent body of algorithmic work by Cheong et al. [4]
considers how chains of polygonal objects can be immobilized
or grasped by a robot with a limited number of actuators.
Grasping is a natural first step toward robotic manipula-
tion, but the latter challenge requires a better understand-
ing of reconfigurability. This paper offers the first theoretical



underpinnings for reconfiguration of chains of rigid objects
(other than line segments).

Another potential application is to continuous folding of
hinged dissections. Hinged dissections are chains or trees
of polygons that can be reconfigured into two or more self-
touching configurations with desired silhouettes. For exam-
ple, Figure 3 shows a classic hinged dissection from 1902 of
a square into an equilateral triangle of the same area. Many
general families of hinged dissections have been established
in the recent literature [1, 8, 9, 11, 12]. One problem not
addressed in this literature, however, is whether the reconfig-
urations can actually be executed without self-intersection,
as in Figure 3. Our results provide potential tools, previ-
ously lacking, for addressing this problem. While hinged
dissections have frequently been considered in recreational
contexts, they have recently found applications in nanoman-
ufacturing [13] and reconfigurable robotics [9].

Outline. This paper is organized as follows. Section 2 de-
fines the model and slender adornments more precisely, and
proves several basic properties. Section 3 describes the nec-
essary background from unfolding chains of line segments,
for proving in Section 4 that chains of slender adornments
can always be unfolded. Section 5 describes our examples of
locked chains of isosceles triangles, including the necessary
background from self-touching trees.

2. SLENDER ADORNMENTS
This section provides a formal statement of the objects we

consider—adorned chains consisting of slender adornments—
and proves several basic results about them.

2.1 Adorned Chains
Our object of study is a chain of nonoverlapping rigid

planar shapes (Jordan regions) that are hinged together se-
quentially at rotatable joints. Another way to view such a
chain is to consider the underlying polygonal chain of line
segments connecting successive joints. (For an open chain,
there is some freedom in choosing the endpoints for the first
and the last bar of the chain.) On the one hand, these line
segments can be viewed as bars that move rigidly with the
shapes to which they belong. On the other hand, the shapes
can be viewed as “adornments” to the bars of an underly-
ing polygonal chain. This view leads to the concept of an
“adorned polygonal chain” which we now proceed to define
more precisely.

An adornment is a simply connected compact region in
the plane, called the shape, together with a line segment
ab connecting two boundary points, called the base. There
are two boundary arcs from a to b which enclose the shape,
called sides. We require the base to be contained in the
shape. (In other words, the base must be a chord of the
shape.)

An adorned polygonal chain is a set of nonoverlapping
adornments whose bases form a polygonal chain. We permit
the shapes to touch on their boundary and to slide along
each other. However, we require the underlying polygonal
chain to be strictly simple: the bases of two shapes are not
allowed to touch except at common hinges of the polygonal
chain.

The viewpoint of a chain of shapes as an adorned poly-
gonal chain is useful for two reasons. First, we can more
easily talk about the kind of shapes, and their relation to
the locations of the incident hinges, in a family of chains:

this information is captured by the adornments. Second, the
underlying polygonal chain provides a mechanism for fold-
ing the chain of shapes, as well as a natural unfolding goal:
straighten the underlying open chain or convexify the un-
derlying closed chain. Indeed, we show that, in some cases,
unfolding motions of the polygonal chain induce valid un-
folding motions of the chain of shapes.

2.2 Slender Adornments
The class of adornments that we treat have additional

regularity requirements on their boundary: we require that
each side of the boundary is differentiable except at a count-
able number of points, and that one-sided (clockwise and
counterclockwise) tangents exist everywhere. This class es-
sentially describes all piecewise-smooth shapes with count-
ably many smooth pieces and well-behaved joints between
the pieces. We categorize boundary points into two types,
smooth points and corners, according to whether the bound-
ary is differentiable at that point.

We can define the angle of a boundary point x to be the
angle of the counterclockwise wedge from the counterclock-
wise tangent ray of x to the clockwise tangent ray of x. See
Figure 4. Any line that passes through x and is either en-
tirely inside or entirely outside this wedge is called a tangent
line; the pencil of tangent lines includes at its extremes the
two lines extending the two tangent rays of x. At a smooth
boundary point x, the clockwise and counterclockwise tan-
gent rays lie in opposite directions along a common line, the
sole tangent line, and the angle of x is always 180◦.

Slenderness requires the notion of “inward normals” of a
boundary point x. The two primary inward normals at x are
the rays emanating from x obtained by rotating the clock-
wise tangent vector of x clockwise 90◦ and by rotating the
counterclockwise tangent vector of x counerclockwise 90◦.
More generally, an inward normal is a ray emanating from
x in the convex wedge formed by the primary inward nor-
mals, or equivalently, that is perpendicular to a tangent line
and whose direction lies in the same semicircle as the two
primary inward normals.

We call an adornment slender if every inward normal of
the shape intersects the base (possibly at the base’s end-
points). Figure 2 shows examples of slender adornments.
In particular, such a shape cannot have any strictly acute
corners. As we show in the next section, this condition has
two equivalent formulations: (1) requiring just that every
primary inward normal of the shape intersects the base,
and (2) requiring that the distance between an endpoint of
the base and a point moving along either side of the shape
changes monotonically. Also, we characterize the largest
slender adornment (in the partial order defined by set con-
tainment) as the crescent enclosed by the two circles cen-
tered at one endpoint of the base and passing through the
other endpoint of the base.

2.3 Basic Properties
In this section we prove some basic results about when

adornments are slender. We begin with the simple equiva-
lence between constraining all inward normals and just pri-
mary inward normals:

Lemma 1. An adornment is slender if and only if every
primary inward normal of the shape hits the base.

An equivalent characterization of slender adornments con-
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Figure 4: Tangents and inward normals at a corner boundary point.

In each case, the circular arc shows the angle of the corner.

strains the distance between an endpoint of the base and a
point along the boundary of the shape:

Lemma 2. An adornment is slender if and only if, for a
point moving on either side of the shape, the distance to each
endpoint of the base changes monotonically.

a b

x

Figure 5: The monotone-distance property for slender shapes.

Proof. Let x(s) be a clockwise arc-length parameteriza-
tion of a side, starting at one base endpoint a and ending at
the other base endpoint b. By the assumptions, the distance

function f(s) = ‖x(s)− a‖ is smooth except at a countable
set of points. The directions of the clockwise and counter-
clockwise tangents at x(s) determine the sign of the left and
right derivatives f ′−(s) and f ′+(s), via a straightforward ge-
ometric relation (see Figure 5): f ′+(s) ≥ 0 if and only if the
inward normal to the clockwise tangent at x points into the
halfspace to the right of the line ax, and similarly for f ′−(s).

Thus, monotonicity of f is equivalent to the condition
that the primary inward normals lie in the 180◦ range of
directions on one side of the line xa. Similarly, monotonicity
of the distance from b means that the inward normals point
into the halfspace to the left of the line bx. Together, this is
equivalent to the condition that the primary inward normals
intersect the base segment ab.

x y

Figure 6: The largest slender adornment with a given base is a

crescent.

This lemma allows us to determine the largest (in the
partial order defined by set containment) possible shape of
a slender adornment:

Corollary 3. The shape of a slender adornment is con-
tained in the crescent enclosed by the two circles centered at
one endpoint of the base and passing through the other end-
point of the base.

Proof. Refer to Figure 6. Let x and y be the two end-
points of the adornment’s base. Let p be a point moving
from x to y along one of the adornment’s sides. At the be-
ginning, p = x, the distance ‖x− p‖ is 0. At the end, p = y,
the distance ‖x−p‖ is ‖x−y‖. By Lemma 2, at all times in
between, ‖x−p‖ must be between 0 and ‖x−y‖. Therefore,
all points p along the boundary of the adornment’s shape
must be inside or on the circle centered at x and passing
through y. By symmetry, all such points p must also be
inside or on the circle centered at y and passing through x.
Therefore all such points p must be inside or on the bound-
ary of the crescent enclosed by these two circles.

The containment partial order on slender adornments in
fact forms a lattice with join and meet operators:

Lemma 4. Slenderness of adornments with the same base
is closed under union and intersection.

3. EXPANSIVE MOTIONS OF
POLYGONAL CHAINS

Unfoldability of polygonal chains is established in [6] using
“expansive” motions. We use a particularly strong notion
of expansiveness, called infinitesimal strict expansiveness,
which follows from the results of [6] although it is not explic-
itly mentioned in that paper. In contrast, other approaches
to linkage unfolding cannot guarantee infinitesimal strict ex-
pansiveness: the motions of [15] satisfy a somewhat weaker



condition (expansiveness), and the motions of [3] satisfy a
much weaker condition (energy monotonicity).

We begin with the definition of motions and strict expan-
siveness, which are the main notions considered in [6]. A
motion of a polygonal chain is an assignment, for each ver-
tex v of the chain, of a continuous function v(t) mapping
any time t ∈ [0, 1] to a point, representing the location of
vertex v at time t. A valid motion must satisfy that the
length ‖v(t) − w(t)‖ of each bar {v, w} is constant over all
time t ∈ [0, 1]. A motion is strictly expansive if every dis-
tance ‖v(t)−w(t)‖ is a strictly increasing function of time t
up until the time at which v(t) and w(t) are connected by a
straight chain of bars, after which the distance is constant.

The main result of [6], restricted to the case of a single
polygonal chain, is as follows:

Theorem 5. [6, Theorem 1] Every strictly simple poly-
gonal chain has a piecewise-differentiable strictly expansive
motion to a straight or convex configuration.

The “piecewise-differentiable” property hints at a stronger
notion of strict expansiveness, which is what we need. A
motion of a polygonal chain is piecewise differentiable if the
derivative dv(t)/dt of the motion v(t) of every vertex v of the
chain is defined at all but finitely many times t. While the
derivative of a piecewise-differentiable motion is not defined
at all times t, we can sometimes define the forward deriva-
tive dv(t)/dt+ at any time t < 1 by taking the limit from

the positive side: dv(t)/dt+ = limh→0+
v(t+h)−v(t)

h
. We call

dv(t)/dt+ the velocity vector of vertex v at time t. A motion
is forward differentiable if the velocity vector dv(t)/dt+ of
every vertex v is defined for all times t < 1.

A forward-differentiable motion is infinitesimally strictly
expansive if, for every two vertices v and w, and for any time
t at which v and w are not connected by a straight chain
of bars, the forward derivative of their Euclidean distance is
strictly positive at time t: d‖v(t) − w(t)‖/dt+ > 0. Equiv-
alently, a motion is infinitesimally strictly expansive if, for
every two vertices v and w, and for any time t at which v
and w are not connected by a straight chain of bars, we have„

dv(t)

dt+
− dw(t)

dt+

«
·

“
v(t)− w(t)

”
> 0. (1)

Theorem 5 can be strengthened as follows:

Theorem 6. [6] Every strictly simple polygonal chain has
a forward-differentiable infinitesimally strictly expansive mo-
tion to a straight or convex configuration.

Proof. Theorem 5 shows the existence of a strictly ex-
pansive motion, but such a motion could strictly increase a
distance between two vertices only to the second order, so
that the forward derivative of the distance is zero instead of
positive. However, [6] proves the theorem by showing that
a system with constraints stronger than (1), namely, (7–10)
of [6], has a solution. Therefore, the proof in fact establishes
the desired stronger result.

In fact, a strictly expansive motion not only increases
vertex-to-vertex distances, but it also increases point-to-
point distances:

Lemma 7. [6] Any infinitesimally strictly expansive mo-
tion of a polygonal chain has a strictly positive forward deriva-
tive d‖p(t) − q(t)‖/dt+ for any time t < 1 and for any two

points p and q not connected by a straight chain of bars,
where each of p and q is chosen to be a vertex or a fixed
position along a bar of the chain.

Proof. A weaker form of this lemma is proved as Corol-
lary 1 of [6], but the same argument applies. At a high
level, it suffices to prove the lemma when p is a vertex and
q is along a bar; then the general lemma can be obtained
by applying this case twice. Lemma 1 of [6] shows that the
distance ‖p(t) − q(t)‖ never decreases, and gives an exact
condition of when it does not increase, which cannot hold
if p and q are not connected by a straight chain of bars.
The proof of Lemma 1 of [6] can easily be generalized to
show that the forward derivative is positive in the same sit-
uation.

Our proofs of unfoldability of chains of slender adorn-
ments crucially use both Theorem 6 and Lemma 7.

4. SLENDER ADORNMENTS
CANNOT LOCK

In this section we prove our main positive result:

Theorem 8. A strictly simple polygonal chain adorned
by slender adornments can always be straightened or con-
vexified.

Proof. We claim that any infinitesimally strictly expan-
sive motion of the underlying polygonal chain straightens
or convexifies the adorned chain without self-intersection.
Combining this claim with Theorem 6 then proves the the-
orem.

Suppose for contradiction that two slender adornments
intersect in their interiors during an infinitesimally strictly
expansive motion of the underlying polygonal chain. Let
T denote the set of times at which two slender adornments
intersect in their interiors. By continuity and because the
adornment interiors are open sets, T is a disjoint union of
open intervals, and therefore open. Let inf T denote the in-
fimum of T ; here we parameterize time between 0 and 1, so
by the least-upper-bound property of R, T has an infimum.
By the approximation property of inf in R, there is an in-
finite sequence t′1 > t′2 > · · · of times in T whose unique
accumulation point is inf T . Because there is a finite num-
ber of adornments, for some two adornments A and B, there
is an infinite subsequence t1 > t2 > . . . of times at which A
and B intersect in their interiors, which must have the same
unique accumulation point inf T . Associate with each time
ti a point ai of A’s interior and a point bi of B’s interior
that are collocated at time ti. By compactness of A and B,
and therefore compactness of A × B, the infinite sequence
(a1, b1), (a2, b2), . . . of points in A×B has an accumulation
point (pA, pB) in A × B. By continuity of the motion, pA

and pB must be collocated at time inf T , say at a point p in
the plane. Because T is open, the interiors of A and B do
not intersect at time inf T , so pA and pB must be points on
the boundaries of A and B, respectively.

At time inf T , A and B touch at point p but have disjoint
interiors. If the angle of pA on A and the angle of pB on B
are both nonreflex, then A and B have a common tangent
line ` through p. See Figures 7(a) and 7(b). This tangent
line ` induces an inward normal of A at p and an inward
normal of B at p, pointing in opposite directions. Because
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Figure 7: Two slender adornments A and B touching on the

boundary at p.

A and B are slender, these inward normals meet their bases,
say at points a and b, respectively. Rotate the diagram so
that ` is vertical and A is left of B; thus, a, pA, pB , and b
are ordered left to right along a horizontal line.

We would like to apply Lemma 7 to argue that the mo-
tion strictly increases the distance between a and b to the
first order at time inf T : d‖a− b‖/dt|t=inf T > 0. However,
Lemma 7 does not apply when a and b are connected by a
(horizontal) straight chain of bars in the underlying poly-
gonal chain (including the special case when a = b). We
handle this situation separately. Assume by symmetry that
the chain is (just) above A and B. By expansiveness, the
chain must move rigidly as a unit. Consider the motion of
A and B relative to the chain (viewing the chain as pinned
to the plane): A can rotate clockwise around a, and B can
rotate counterclockwise around b. During any such motion,
any point of A moves clockwise along a circular arc centered
at a, and any point of B moves counterclockwise along a
circular arc centered at b. Because a and b are base end-
points of the slender adornments A and B, respectively, by
Lemma 2 these circular arcs must remain within the origi-
nal positions of A and B (at time inf T ), respectively, until
exiting along the “other side” of A or B that is not touching
B or A. We can bound the extent of this other side of A as
being contained in the clockwise wedge from A’s base to the
vertical upward ray from a, and similarly bound the other
side of B as contained in the counterclockwise wedge from

B’s base to the vertical upward ray from b. Assuming A’s
base is not itself horizontal (because in that case no motion
of A is possible in an expansive motion), the other side of
A is bounded away from the vertical ray by some strictly
positive angle; and similarly for B. Thus, for a sufficiently
short time interval [inf T, inf T +ε), all points in A and B re-
main within the union of the original positions of A and B,
respectively, and the surrounding wedge to a vertical ray.
These regions of confinement have disjoint interiors, so for
a sufficiently short time interval [inf T, inf T + ε), A and B
must keep disjoint interiors. Because inf T is an accumula-
tion point, there is an index i for which ti ∈ [inf T, inf T +ε).
We conclude that A and B have disjoint interiors at time ti,
contradicting that ai and bi were defined to be interior points
of A and B, respectively, that are collocated at time ti.

Now we return to the case in which we can apply Lemma 7
to conclude that d‖a− b‖/dt|t=inf T > 0. Consider the mo-
tion of A relative to B (pinning B to the plane), with points
pA and a tracking the motion of A, and with points pB

and b remaining fixed, starting at time inf T . By the trian-
gle inequality, this distance ‖a − b‖ is always at most the
sum of the two distances ‖a − pA‖ and ‖pA − b‖. At time
inf T , this inequality holds with equality. During the mo-
tion, the first distance ‖a− pA‖ remains fixed because both
a and pA move relative to A. Therefore the second distance
‖pA − b‖ must strictly increase to the first order at time
inf T : d‖pA − b‖/dt|t=inf T > 0. Equivalently, the velocity
vector v of pA at time inf T must have a strictly negative x
component.

Define the cone C of directions to consist of a closed in-
terval of directions, containing the direction of v in its strict
interior, such that all directions in C have a strictly nega-
tive x component. (For example, one such choice of C is the
closed interval of directions between the two bisectors be-
tween the direction of v and the two vertical directions.) Let
C(q) denote the translation of the cone C to have its apex
at point q. By forward differentiability of pA(t), in any suffi-
ciently small time interval [inf T, inf T +ε), pA(t) remains in
its original cone C(pA(inf T )). (Here and at other necessary
places in the proof, we explicitly write the parameterization
of pA with respect to time t.) Because A moves rigidly, the
velocity vector of a point in A at time inf T varies linearly as
a function of that point. Thus, points of A nearby pA have
a velocity vector at time inf T similar to v. By forward dif-
ferentiability again, for any sufficiently small time interval
[inf T, inf T +ε), there is a small enough constant δ > 0 such
that any point q of A with ‖q − pA‖ < δ satisfies that q(t)
remains in its original cone C(q(inf T )) for the entire time
interval [inf T, inf T + ε). We can also guarantee that q(t)
remains within a distance of 2ε‖v‖ from its original position
q(inf T ) for the duration of the time interval, because q(t)
travels at a speed of roughly ‖v‖ for small enough ε and δ.

Let R(ε, δ) denote the set of points z in the plane con-
tained in a cone C(q(inf T )) and satisfying ‖z − q(inf T )‖ <
2ε‖v‖ for some q in A with ‖q − pA‖ < δ. Because the ver-
tical line ` is a common tangent between A and B at time
inf T with A to the left of B, and because C is a closed
interval of directions strictly left of vertical, R(ε, δ) is dis-
joint from the interior of B for sufficiently small ε > 0 and
δ > 0. By the argument above, for any sufficiently small
time interval [inf T, inf T + ε), there is a small enough con-
stant δ > 0 such that any point q of A with ‖q − pA‖ < δ
satisfies that q(t) remains in R(ε, δ) for the entire time in-



terval [inf T, inf T + ε). However, because pA and inf T are
accumulation points, for any such ε > 0 and δ > 0, there is
an index i such that ‖ai−pA‖ < δ and ti ∈ [inf T, inf T +ε).
Therefore, for sufficiently small ε > 0 and δ = δ(ε) > 0,
ai(ti) is in R(ε, δ), contradicting that ai(ti) is interior to B.

On the other hand, suppose that the angle of pA on A is
convex and that the angle of pB on B is reflex. See Fig-
ure 7(c). In this case, we consider the clockwise tangent ray
r and the counterclockwise tangent ray r′ of B at p. These
rays induce the primary inward normals of B at p. Suppose
they meet B’s base at points b and b′, respectively. Because
A is convex at p and interior-disjoint from B, the lines ex-
tending r and r′ are also tangent to A at p. Thus, they also
induce inward normals of A at p, pointing in the opposite
directions as the primary inward normals of B at p. Suppose
they meet A’s base at points a and a′, respectively.

Applying part of the argument from the previous case,
twice, we conclude that the velocity vector v of pA at time
inf T must have positive dot product with both of the in-
ward normals of p at A. Equivalently, the velocity vector
v must point strictly interior to the counterclockwise wedge
from r to r′. Then we can define a cone C of a closed interval
of directions, strictly contained within this counterclockwise
wedge and containing the direction of v in its strict interior.
The rest of the argument proceeds as in the previous case:
the identically defined region R(ε, δ) is disjoint from the in-
terior of B for sufficiently small ε > 0 and δ > 0, and for
sufficiently small ε > 0 and δ = δ(ε) > 0, there is an index
i such that ai(ti) is in R(ε, δ), contradicting that ai(ti) is
interior to B.

5. LOCKED CHAINS OF
SHARP TRIANGLES

An isosceles triangle with an apex angle of ≥ 90◦ and with
the nonequal side as the base is a slender adornment. By
Theorem 8, any chain of such triangles can be straightened.
In this section we show that this result is tight: for any
isosceles triangle with an apex angle of < 90◦ and with the
nonequal side as a base, there is a chain of these triangles
that cannot be straightened.

Figure 8(a) shows the construction for equilateral trian-
gles (of slightly different sizes). This figure is drawn with
the pieces loosely separated, but the actual construction has
arbitrarily small separations and arbitrarily closely approx-
imates the self-touching geometry shown in Figure 8(b).
Stretching the triangles in this self-touching geometry, as
shown in Figure 9, defines our construction for any isosceles
triangles with an opposite angle of any value less than 90◦.
In this case, however, our construction uses two different
scalings of the same triangle.

5.1 Theory of Self-Touching
Configurations

This view of the construction as a slightly separated ver-
sion of a self-touching configuration allows us to apply the
program developed in [5] for proving a configuration locked.
This theory allows us to study the rigidity of self-touching
configurations, which is easier because vertices cannot move
even slightly, and obtain a strong form of lockedness of non-
self-touching perturbations drawn with sufficiently small (but
positive) separations.

To state this relation precisely, we need some terminology

(a) (b)

Figure 8: A locked chain of nine equilateral triangles. (a) Drawn

loosely. Separations should be smaller than they appear. (b) Drawn

tightly, with no separation, as a self-touching configuration.

Figure 9: Variations on the self-touching configuration from Fig-

ure 8(b) to have any desired angle < 90◦ opposite the base of each

triangle.

from [5]. Call a linkage configuration rigid if it cannot move
at all. Define a δ-perturbation of a linkage configuration to
be a repositioning of each vertex within distance δ of its
original position, without regard to preserving edge lengths
(better than ±2δ), but consistent with the combinatorial
information of which vertices are on which side of which
bar. Call a linkage locked within ε if no motion that leaves
some bar pinned to the plane moves any point by more than
ε. Call a self-touching linkage configuration strongly locked
if, for any desired ε > 0, there is a δ > 0 such that all δ-
perturbations are locked within ε. Thus, if a self-touching
configuration is strongly locked, then the smaller we draw
the separations in a non-self-touching perturbation, the less
the configuration can move. In particular, if we choose ε
small enough, the linkage must be locked in the standard
sense of having a disconnected configuration space.

Theorem 9. [5, Theorem 8.1] If a self-touching linkage
configuration is rigid, then it is strongly locked.

Therefore, if we can prove that the self-touching config-
uration in Figure 8(b) (and its variations in Figure 9) are



rigid, then sufficiently small perturbations along the lines
shown in Figure 8(a) are rigid.

The theory of [5] also provides tools for proving rigidity
of a self-touching configuration. Specifically, we can study
infinitesimal motions which just define the beginning of a
motion to the first order. Call a configuration infinitesimally
rigid if it has no infinitesimal motions.

Lemma 10. [5, Lemma 6.1] If a self-touching linkage con-
figuration is infinitesimally rigid, then it is rigid.

v

w1

w2

u

Figure 10: Two zero-length connections between vertices u and v.

A final tool we need from [5] is for proving infinitesimal
rigidity. For each vertex u wedged into a convex angle be-
tween two bars {v, w1} and {v, w2}, we say that there are
two zero-length connections between u and v, one perpendic-
ular to each of the two bars {v, wi}.1 See Figure 10. These
connections must increase to the first order because u must
not cross the two bars {v, wi}. In proving infinitesimal rigid-
ity, we can choose to discard any zero-length connections we
wish, because ignoring some of the noncrossing constraints
only makes the configuration more flexible. Together, the
bars and the zero-length connections are the edges of the
configuration. Define a stress to be an assignment of real
numbers (stresses) to edges such that, for each vertex v,
the vectors with directions defined by the edges incident to
v, and with magnitudes equal to the corresponding stresses,
sum to the zero vector. We denote the stress on a bar {v, w}
by ωvw, and we denote the stress on a zero-length connec-
tion between vertex u and vertex v perpendicular to {v, w}
by ωu,vw.

Lemma 11. [5, Lemma 7.2] If a self-touching configura-
tion has a stress that is negative on every zero-length con-
nection, and if the configuration is infinitesimally rigid when
every zero-length connection is treated as a bar pinning two
vertices together, then the self-touching configuration is in-
finitesimally rigid.

5.2 Locked Chains
We are now in the position to state the precise senses in

which the chains of isosceles triangles in Figures 8 and 9 are
locked:

Theorem 12. The self-touching chains of nine isosceles
triangles shown in Figures 8(b) and 9 are rigid provided that
the apex angle is < 90◦.

Applying Theorem 9, we obtain the desired result:

1The definition of such connections in [5] is more general,
but this definition suffices for our purposes.

Corollary 13. The self-touching chains of nine isosce-
les triangles shown in Figures 8(b) and 9 are strongly locked
provided that the apex angle is < 90◦. Therefore, any suf-
ficiently small non-self-touching perturbation, similar to the
one shown in Figure 8(a), is locked.

Sections 5.3–5.4 prove Theorem 12.

5.3 Simplifying Rules
We introduce two rules that significantly restrict the al-

lowable motions of the self-touching configuration of isosce-
les triangles.

Rule 1. If a bar b is collocated with another bar b′ of
equal length, and the bars incident to b′ form angles less
than 90◦ on the same side as b, then any motion must keep
b collocated with b′ for some positive time. See Figure 11.

b′

b

<90◦ < 90◦

Figure 11: Rule 1 for simplifying self-touching configurations.

Proof. The noncrossing constraints at the endpoints of
b and b′ prevent b from moving relative to b′ until the angles
at the endpoints of b′ open to ≥ 90◦, which can only happen
after a positive amount of time.

We can apply this rule to the region shown in Figure 12,
resulting in a simpler linkage with the same infinitesimal
behavior. Although the figure shows positive separations
for visual clarity, we are in fact acting on the self-touching
configuration of Figure 8(b).

Rule 1

Figure 12: Applying Rule 1 to the chain of nine equilateral triangles

from Figure 8.

Rule 2. If a bar b is collocated with an incident bar b′ of
the same length whose other incident bar b′′ forms a convex
angle with b′ surrounding b, then any motion must keep b
collocated with b′ for some positive time. See Figure 13.

Proof. The noncrossing constraints at the endpoint of b
surrounded by the convex angle formed by b′ and b′′ prevent
b from moving relative to b′ until the convex angle opens to
≥ 90◦, which can only happen after a positive amount of
time.



b′

b

b′′
< 90◦

Figure 13: Rule 2 for simplifying self-touching configurations.

Rule 2

Rule 2

Figure 14: Applying Rule 2 twice to the configuration from Fig-

ure 12.

We can apply this rule twice, as shown in Figure 14, to
further simplify the linkage.

The final simplification comes from realizing that the cen-
tral quadrangle gap between triangles is effectively a triangle
because the right pair of edges are a rigid unit. Thus the
gap forms a rigid linkage (though it is not infinitesimally
rigid, because a horizontal movement of the central vertex
would maintain distances to the first order), so we can treat
it as part of a large rigid block. Figure 15 shows a simplified
drawing of this self-touching configuration, which is rigid if
and only if the original self-touching configuration is rigid.

A
B

B′

CC′

DD′

E

Figure 15: The simplified configuration from Figure 14.

5.4 Stress Argument
Finally we argue that the simplified configuration of Fig-

ure 15 is infinitesimally rigid using Lemma 11. The configu-
ration is clearly infinitesimally rigid if B is pinned against B′,
C is pinned against C′, and D is pinned against D′. It re-
mains to construct a stress that is negative on all length-zero
connections. The stress we construct is nonzero only on the
edges connecting points with labels in Figure 15; we also set
ωAD = 0.

We start by assigning the stresses incident to A. We
choose ωAB < 0 arbitrarily, and set ωAB′ := −ωAB > 0.
A is now in equilibrium because these stress directions are
parallel.

We symmetrically assign ωBC := ωAB < 0 and ωB′C′ =
ωA′B′ > 0. The resulting forces on B and B′ are verti-
cal. They can be balanced by an appropriate choice of the

stresses ωB,B′A = ωB,B′C′ < 0, which, taken together, also
point in the vertical direction.

Vertex D′ has exactly three incident stresses—ωC′D′ ,
ωD′,DC , and ωD′,DE—which do not lie in a halfplane. Thus
there is an equilibrium assignment to these stresses, unique
up to scaling, and the stresses all have the same sign.
Because zero-length connections must be negative, we are
forced to make all three of these stresses negative. We also
choose this scale factor to be substantially smaller than the
stresses that have been assigned so far.

By assigning ωCD = −ωC′D′ , we establish equilibrium at
vertex D as well: the forces at D are the same as at D′, only
with reversed signs.

Vertex C feels two stresses assigned so far—ωCD > 0 and
ωBC < 0. By the choice of scale factors, the latter force
dominates, leaving us with a negative force in the direction
close to CB, and two stresses ωC,C′B′ and ωC,C′D′ which
can be used to balance this force. The three directions do
not lie in a halfplane. Therefore ωC,C′B′ and ωC,C′D′ can
be assigned negative stresses.

Finally, vertex C′ is also in equilibrium because ωB′C′ =
−ωBC , ωC′D′ = −ωCD, and the stress from the zero-length
connections are the same as for C but in the opposite direc-
tion.

In summary, we have shown the existence of a stress that
is positive on all zero-length connections. By Lemma 11,
the self-touching configuration is infinitesimally rigid, so by
Lemma 10, the configuration is rigid. By the simplification
arguments above, the original self-touching configuration is
also rigid. By Theorem 9, the original self-touching config-
uration is strongly locked, so sufficiently perturbations are
locked.

We remark that an argument similar to the one above,
using an assignment of stresses, can also be used for proving
Rules 1 and 2, with an appropriate modification of Lemma 11;
however, the direct argument that we have given is simpler.

The argument relied on the isosceles triangles having an
apex angle of < 90◦ (but no more) in order to guarantee
that particular triples of stress directions are or are not in
a halfplane. It also relies on the symmetry of the configu-
ration through a vertical line (excluding the triangle in the
upper right). Thus the argument generalizes to all isosceles
triangles sharper than 90◦.

5.5 Locked Equilateral Triangles
Figure 16 shows another, simpler example of a locked

chain of equilateral triangles, using just seven triangles in-
stead of nine. However, this example cannot be stretched
into a locked chain of triangles with an arbitrary apex angle
of < 90◦, as in Figure 9.

To prove that this example is locked, we first apply Rule 1
and then Rule 2, as shown in Figure 17. Unlike the previ-
ous example, the resulting simplified configuration is not
infinitesimally rigid (the middle vertex can move infinitesi-
mally horizontally), so we cannot use a stress argument. In
this case, however, we can use a more direct argument to
prove rigidity of the simplified configuration (and thus of
the original self-touching configuration).

Let ` denote the side length of the triangles in any of the
self-touching configurations. Consider the two dashed chains
connecting vertices A and B in the simplified configuration.
The left chain of two bars forces the distance between A
and B to be at most 2`, with equality as in the original



(a) (b)

Figure 16: A locked chain of seven equilateral triangles. (a) Drawn

loosely. Separations should be smaller than they appear. (b) Drawn

tightly, with no separation, as a self-touching configuration.

Rule 1

Rule 2

A

B

Figure 17: Applying Rules 1 and 2 to the chain of seven equilateral

triangles from Figure 16.

configuration only if the angle between the two bars remains
straight. The right chain of three bars can only open its
angles, because of the three triangles on the inside, so the
right chain acts as a Cauchy arm. The Cauchy-Steinitz Arm
Lemma (see, e.g., [7]) proves that the endpoints of such a
chain can only get farther away from each other. Thus the
distance between A and B is at least 2`, with equality only
if the angles in the right chain do not change. These upper
and lower bounds of 2` on the distance between A and B
force the bounds to hold with equality, which prevents any
angles from changing except possibly for the angles at A
and B. However, it is impossible to change fewer than four
angles of a closed chain such as the one formed by the left
and right dashed chains. (This simple fact was also proved
by Cauchy [7].) Therefore, the configuration is rigid.

Applying Theorem 9, we obtain that the self-touching con-
figuration is strongly locked:

Theorem 14. The self-touching chain of seven equilat-
eral triangles shown in Figure 16(b) is rigid and thus strongly
locked. Therefore, any sufficiently small non-self-touching
perturbation, similar to the one shown in Figure 16(a), is
locked.
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