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Abstract. Locked tree linkages have been known to exist in the plane
since 1998, but it is still open whether they have a polynomial-time char-
acterization. This paper examines the properties needed for planar trees
to lock, with a focus on finding the smallest locked trees according to
different measures of complexity, and suggests some new avenues of re-
search for the problem of algorithmic characterization. First we present
a locked linear tree with only eight edges. In contrast, the smallest pre-
vious locked tree has 15 edges. We further show minimality by proving
that every locked linear tree has at least eight edges. We also show that
a six-edge tree can interlock with a four-edge chain, which is the first
locking result for individually unlocked trees. Next we present several
new examples of locked trees with varying minimality results. Finally,
we provide counterexamples to two conjectures of [12], [13] by showing
the existence of two new types of locked tree: a locked orthogonal tree
(all edges horizontal and vertical) and a locked equilateral tree (all edges
unit length).

1 Introduction

A locked tree is a tree graph (linkage) embedded in the plane that is unable to
reconfigure to some other configuration if we treat the edges as rigid bars that
cannot intersect each other. The idea of locked trees goes back to 1997, in the
context of an origami problem [8]. Only four main families of locked trees have
been discovered so far. The first two locked trees, shown in Figure 1(a–b), were
discovered soon after in 1998 [3]. In 2000, it was established that locked trees
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must have vertices of degree more than 2 (the Carpenter’s Rule Theorem) [6,
14]. The third locked tree, shown in Figure 1c, shows that this result is tight: a
single degree-3 vertex suffices to lock a tree [5]. The fourth locked tree, shown
in Figure 1d, modified the first locked tree to reduce its graph diameter to 4,
which is the smallest of any locked tree [12].

All four trees have a similar structure: they arrange repeated pieces in a cycle
so that no piece can individually squeeze and so that no piece can individually
expand without squeezing the other pieces (which in turn is impossible). Do all
locked trees have this structure? This paper aims to find minimal examples of
locked trees, with the goal of finding the “heart” of being locked. In particular
we find smaller locked trees that lack the cyclic structure of previous examples.

It seems difficult to characterize locked trees. Toward this goal, some types
of trees are easy to prove locked via recent algorithmic tools [5, 4], and we use
this theory extensively here. On the other hand, deciding whether a tree linkage
can be transformed from one configuration to another is PSPACE-complete [2].
However, this hardness result says nothing about the special case of testing
whether a tree is locked. In the sections that follow, we describe several new
examples and counterexamples in locked trees, and suggest ways in which they
may hint at deeper results in the associated algorithmic theory.

Our results. We discover several new families of locked trees with several
previously unobtained properties. We also introduce a new general category of
locked tree, the linear locked tree, which in addition to being important for
the study of locked linkages also provides an interesting special case for the
algorithmic characterization of lockedness.

First, in Section 3, we present a locked tree with only eight edges. In contrast,
the smallest previous locked tree is Figure 1a with 15 edges. Our tree is also the
only locked tree other than Figure 1c that has just one degree-3 vertex (and
the other degrees at most 2). Therefore we improve the number of edges in the
smallest such tree from 21 to eight.

Our tree has the additional property that it is linear : its vertices lie (roughly)
along a line (see the full definition in Section 3). In Section 4, we prove that all
linear locked trees have at least eight edges, establishing minimality of our eight-
edge locked tree. We conjecture further that all locked trees have at least eight
edges, though this problem remains open.

(a) [3] (b) [3, tech. rep.] (c) [5] (d) [12]

Fig. 1: All previous families of locked trees. Shaded regions are tighter than drawn.



We also show in Section 4 that all linear locked trees have diameter at least 5.
In Section 5, we find a linear locked tree of precisely this diameter, using nine
edges, and further show that this is the smallest number of edges possible for a
diameter-5 linear locked tree. In contrast, the (nonlinear) locked tree in Figure 1d
has diameter 4, while no locked trees have diameter 3 [12].

Next we consider interlocked trees, in the spirit of interlocked 3D chains [9–
11]. In Section 6, we show that though diameter 3 trees cannot lock, they can
interlock. (In contrast, any number of diameter-2 trees cannot interlock, as they
are star-shaped [7, 15, 10].) As a consequence, caterpillar trees, which generalize
diameter-3 trees, can lock. Additionally, we prove for the first time that smaller
trees suffice for interlocking: a six-edge tree can interlock with a four-edge chain.

Finally we solve two conjectures about the existence of locked trees with
particular properties. On the easier side, we show in Section 7 that certain linear
locked trees, such as our eight-edge locked tree, can be transformed to obtain
locked orthogonal trees. Such trees were previously conjectured not to exist [13]
because all examples in Figure 1 critically use angles strictly less than 90◦.

Our technically most challenging result is the design of a locked equilateral
tree, where every edge has the same length. The hexagonal analog of Figure 1b
is tantalizingly close to this goal, as the edges can have lengths arbitrarily close
to each other. But if the tree is to not overlap itself, the lengths cannot be
made equal. For this reason, equilateral locked trees were conjectured not to
exist [12]. Nonetheless, in Section 8, we find one. This result is quite challenging
because previous algorithmic frameworks were unable to analyze the lockedness
of trees with fixed edge lengths. Specifically, where previous locked trees were
very tightly locked (within an arbitrarily small constant), our locked equilateral
tree has fairly large positive gaps between edges, forcing us to carefully compute
the freedom of motion instead of simply using topological limiting arguments.

2 Terminology

Fig. 2: Flattening a linkage: the initial tree (left) can be continuously transformed
into the “flat” tree on the right, with all edges trailing off in the same direction from
the root.

A (planar) linkage is a simple graph together with an assignment of a nonneg-
ative real length to each edge and a combinatorial planar embedding (clockwise
order of edges around each vertex and which edges form the outer face). A con-



figuration of a linkage is a (possibly self-intersecting) straight-line drawing of
that graph in the plane, respecting the linkage’s combinatorial embedding, such
that the Euclidean distance between adjacent nodes equals the length assigned
to their shared edge.

We are primarily interested in nontouching configurations, that is, configu-
rations in which no edges intersect each other except at a shared vertex. The
set of all such configurations is called the configuration space of the linkage. A
motion of a nontouching configuration C is a continuous path in the configu-
ration space beginning at C. A configuration of a tree linkage can be flattened
if it has a motion transforming it as in Figure 2 so that all edges are trailing
off in the same direction from an arbitrarily chosen root node. Otherwise, it is
unflattenable. (Which node is chosen as the root does not affect the definition;
see [3].) We say a tree configuration is locked if it is unflattenable, and a tree
linkage is locked if it has a locked configuration.

To analyze nontouching configurations it is helpful to also consider self-
touching configurations, where edges may overlap as long as they do not cross
each other. This complicates the definitions, because edges can share the same
geometric location. Care is also needed in generalizing the definition of a mo-
tion, because two geometrically identical configurations may have different sets
of valid motions depending on the combinatorial ordering of the edges. A full
discussion of these details is beyond our scope, so we rely on the formalization
and results of [5], [4] and [1]. The reader who wishes for the intuition behind
this theory can think of a self-touching configuration as a convergent sequence
of nontouching configurations, but for the formal definitions see the references.

A self-touching configuration is rigid if it has no nonrigid motion. A configu-
ration is locked within ε if no motion can change the position of any vertex by a
distance of more than ε (modulo equivalence by rigid motions). A configuration
C is strongly locked if, for any ε > 0, for any sufficiently small perturbation of
C’s vertices (respecting the original combinatorial relations between edges—see
[5]), the resulting perturbed configuration is locked within ε. This property triv-
ially implies unflattenability, and thus also that the underlying linkage is locked.
Note that strongly locked configurations must be rigid and thus self-touching.

3 Minimal Locked Linear Tree
In this section we describe a new locked tree that is edge-minimal within an
important class of locked trees, and is conjectured to be edge-minimal among all
locked trees. Namely, a linear configuration is a (usually self-touching) configu-
ration of a linkage in which all vertices lie on a single line. A locked linear tree
is a tree linkage having an unflattenable linear configuration.

Note that our primary interest is still in nontouching configurations, but the
existence of a linear configuration has implications for the general configuration
space of the tree. Specifically, we make extensive use of the following lemma:

Lemma 1 (Theorem 8.1 from [5]). Any rigid self-touching configuration is
strongly locked.
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(a) Eight-bar locked lin-
ear tree. Shaded regions
are tighter than drawn. All
edges are straight lines,
but shown “pulled apart”.

(b) Reduced version
of the tree after ap-
plying Lemma 2 and
Lemma 3.

Fig. 3: The fewest-edge locked linear tree.

Because our proofs pro-
ceed by showing our linear
trees rigid, this result im-
plies that they remain locked
even when the parameters are
modified slightly to allow a
nontouching configuration.

Consider the self-touching
tree in Figure 3a. The lin-
ear geometry of this tree is
a straight vertical line with
only three distinct vertices at
the top, center and bottom,
but it is shown “pulled apart”
to ease exposition. We claim
this tree is rigid and thus, by
Lemma 1, strongly locked. To
show rigidity, we use two lem-
mas from [4]:

Lemma 2 (Rule 1 from [4]). If a bar b is collocated with another bar b′ of
equal length, and two other bars incident to b′ on each end form angles less than
90◦ on the same side as b, then any motion must keep b collocated with b′ for
some positive time.

Lemma 3 (Rule 2 from [4]). If a bar b is collocated with an incident bar
b′ of the same length whose other incident bar b′′ forms a convex angle with b′

surrounding b, then any motion must keep b collocated with b′ for some positive
time.

Theorem 1. The tree in Figure 3a is strongly locked.

Proof: By Lemma 2, edges A and B must be collocated for positive time under
any continuous motion, as must edges C and D. With these identifications,
Lemma 3 shows that edges E and F must also remain collocated. We conclude
that for positive time, the tree is equivalent to Figure 3b, which is trivially rigid.
Therefore, the original tree is rigid and, by Lemma 1, strongly locked. �

4 Unfolding Linear Trees of Seven Edges
In Section 3, we presented a linear locked tree with eight edges. Now we will
show that this is minimal: linear trees with at most seven edges can always be
flattened. Because the full proof requires an extensive case analysis, we defer
this to the full paper, and here present a sketch of how our arguments exploit
the linearity of a tree.

Theorem 2. A linear tree of diameter 4 can always be flattened.

Lemma 4. A linear tree of seven edges and diameter 5 can always be flattened.



Lemma 5. A linear tree of seven edges and diameter 6 can always be flattened.

Proof sketch of Theorem 2, Lemma 4, Lemma 5: Because the tree’s initial
configuration lies on a line, many steps become simpler: first, if there are any
loose edges along the perimeter of the tree, we can immediately straighten these.
In Theorem 2, the tree has a center node, and we can then pivot all subtrees
around that node so they lie in the same direction. This allows us to sequentially
rotate out individual subtrees and straighten them one by one (a case analysis
shows that if distinct subtrees are tangled together they can be safely pulled
apart).

When the diameter is 5 or 6, the key observation is that the constraints do
not allow a double-triangle structure as in Figure 3b. Specifically, case analysis
shows the center edge cannot be formed, and thus the bounding quadrilateral
can be expanded. When this quadrilateral becomes convex, the tree pulls apart
easily. �

Because it was already shown in [6] that a seven-edge, diameter-7 tree (i.e., a
7-chain) cannot lock, combining these results immediately gives us the following:

Theorem 3. A linear tree of at most seven edges can always be flattened.

We thus conclude that the linear locked tree in Figure 3a has the fewest
possible edges.

5 Additional Locked Linear Trees

(a) A locked tree hav-
ing nine edges and the
lowest diameter (5) of
any possible locked lin-
ear tree.

B A
CDEF

G

(b) A 10-edge locked lin-
ear tree with a somewhat
different structure. Edge
labels appear to the right
of their respective edge.

AB
C

D

(c) Another symmetric
locked linear tree, this time
with 11 edges. Edge labels
appear to the right of their
respective edge.

Fig. 4: Additional locked linear trees.

Theorem 4. The trees in Figure 4 are strongly locked.



Like Theorem 1, all these theorems are proven by repeatedly applying Lem-
mas 2 and 3 until the configuration simplifies to Figure 3b, after which Lemma 1
applies.

By a slight extension to the results of Section 4, we can prove the minimality
of Figure 4a in a second sense, by showing that any diameter-5 linear locked tree
requires at least nine edges:

Theorem 5. A linear tree of 8 edges and of diameter 5 can always be flattened.

This claim is nearly implicit in the proof of Lemma 4; see the full paper.

6 Interlocked Trees

6.1 Diameter-3 Interlocked Trees. In this section we describe a set of
eight interlocked trees of diameter 3 (although four of the “trees” are in fact
2-chains). Because diameter-2 trees cannot interlock (as they are star-shaped [7,
15, 10]), this example is tight. Because diameter-3 trees cannot lock, this is also
the first example showing that the required diameter for interlocked (planar)
trees is strictly below that of locked trees.

(a) Interlocked configuration (shaded re-
gions are self-touching or very close).

(b) Identifications obtained from
Lemma 2 and Lemma 3 (darkened ar-
eas indicate edges glued together).

Fig. 5: Eight interlocked diameter-3 trees.

For our proof, we introduce a new general lemma in the spirit of Lemma 2
and Lemma 3. The proof requires a geometric computation which we defer to
the full version.

Lemma 6 (“Rule 3”). If endpoints v1 and v3 of incident bars v1v2 and v2v3

are collocated with the endpoints of a third bar b, and bars incident to b form
acute angles containing v1 and v3, then for positive time, any motion that moves
v1 or v3 with respect to b must strictly increase the distance between v2 and b.

Theorem 6. The eight diameter-3 trees in Figure 5a are strongly (inter)locked.

Proof: As with previous examples we begin by applying Lemma 2 and Lemma 3.
The edge identifications from this process are shown in Figure 5b. It is enough
to prove that the resulting figure is rigid, and the rest will follow from Lemma 1.



Now, observe that the 2-chains inside each of the four regions of the figure
satisfy the requirements of Lemma 6, and that therefore the long diagonal edges
are rigid: any rotation on their part would decrease the angular space allocated
to some region, and push the center of the corresponding 2-chain closer to the
opposing edge, contradicting the lemma. But then Lemma 6 implies the 2-chains
themselves are glued in place for positive time.

The preceding leaves only the four loose edges around the outside. But be-
cause the 2-chains glue to their base vertices and to the long diagonals, Lemma 3
now applies, so these edges too are locked in place. �

6.2 Six-Edge Interlocked Tree. Here we describe a simple transformation
that applies to many locked linear trees, yielding a smaller tree interlocked with a
chain. Applying this transformation to Figure 4a, we obtain the smallest known
instance of a tree interlocked with a chain. This is the first example of a planar
interlocking tree strictly smaller than known locked trees.

(a) Interlocked version
of Figure 4a.

(b) Interlocked version of
Figure 4c.

Fig. 6: Interlocked variations of our locked trees.

Figure 6 shows the trans-
formation. The basic idea
is to disconnect a subtree
at one end of the tree, re-
placing the connection with
an extra edge that serves
the same purpose, that is,
such that the edge also con-
strains the subtree to re-
main adjacent to the same
node. In Figure 6a, this
gives us a 6-edge tree inter-
locked with a 4-edge chain,
the best known.

Theorem 7. The configu-
rations in Figure 6a and
Figure 6b are interlocked.

As with their locked predecessors, successive applications of Lemma 2 and Lemma 3
suffice to prove rigidity of the configurations; see the full paper.

6.3 (Inter)locked Caterpillar. Here we describe an interesting example
originally inspired by the search for the diameter-3 interlocked trees of Sec-
tion 6.1. A caterpillar graph is a graph where removal of all leaf vertices and
their incident edges results in a path. Because every vertex is at most one edge
away from the central chain, the leaf vertices form the “legs” of the central chain
“body” of the caterpillar. The intuition is of a graph that is locally low-diameter,
or almost chain-like. Caterpillars provide a natural intermediate structure be-
tween collections of diameter-3 graphs and the full power of diameter 4, which
was already known to lock.



(a) Interlocked caterpillar
(black) and two 9-chains.

(b) Identifications ob-
tained from Lemma 2.

(c) Simplified linkage af-
ter identifications and re-
moval of extraneous bars.

Fig. 7: A locked caterpillar.

Fig. 8: Orthogonal
version of Figure 3a.

Because a caterpillar can take the place of any num-
ber of diameter-3 graphs, we can implicitly obtain a locked
caterpillar directly from Figure 5a. However, in this sec-
tion we describe a much simpler structure, and one that
can be realized as the interlocking of a single ten-edge
caterpillar and two 9-chains (or one 22-chain). We can
also produce a single locking (not interlocking) caterpillar
by merging the separate chains into the main body of the
caterpillar.

Theorem 8. The configuration in Figure 7a is rigid, and
therefore strongly locked.

This claim follows from successive applications of
Lemma 2, Lemma 3 and Lemma 6, similar to Theorem 6.

7 Locked Orthogonal Tree
We now show that a simple transformation of the locked tree in Section 3 pro-
duces a locked orthogonal tree (a tree configuration such that all edges are
axis-aligned), resolving a conjecture of Poon [13].

A modification to Figure 3a makes it orthogonal: see Figure 8. This diagram
is still unflattenable (if the dimensions are chosen appropriately). The key is that
this diagram can still be viewed as a small perturbation of the original tree if we
add a zero-length edge to Figure 3a wherever Figure 8 has a horizontal edge, and
thus we can again apply Lemma 1. Unfortunately, existing proofs of Lemma 1
do not work when the self-touching configuration has zero-length edges. It is a
straightforward but technical matter to extend the lemma in this way. We defer
the formal details to the full version.



8 Locked Equilateral Tree

(a) The locked unit tree, having seven arms
of radius 2.

O

E

A B

C

D

A′

β γ

α

(b) Close-up of two adjacent arms.
Roman letters refer to vertices,
Greek to angles.

Fig. 9: A locked unit tree.

In [13], Poon conjectured that an equilateral tree (a tree linkage all of whose
edges are equal length) could not lock. We provide a counterexample, shown in
Figure 9a. This follows the “pinwheel” style of previous locked trees (Figure 1).
The difference is that all previous locked trees (including the other examples in
this paper) select their edge lengths so as to obtain an infinitesimally tight fit,
whereas with unit edges we are limited to explicit numerical constraints.

Theorem 9. The tree in Figure 9a is locked.

Proof sketch: To prove lockedness in the absence of machinery derived from
rigidity theory, we consider the angles and vertices labelled in Figure 9b. We
claim that, under any continuous motion, the following invariants hold:

√
3 ≤ ‖A−A′‖ ≤

√
3 + 0.025 (1)

1.94 ≤ ‖A−O‖ (2)
0.2850989π ≤ α ≤ 0.28941π (3)

∣∣β − π
6

∣∣ ≤ 0.078π (4)
π
3 ≤ γ ≤ π

(
1
3 + 0.02

)
(5)

‖C −AE‖ ≤ 0.386 (6)
We do so by showing that, if these inequalities hold for some valid config-

uration, then they actually hold strictly, that is, every instance of ≤ above is
actually <. Thus, these properties are preserved by any continuous motion. Due
to space constraints, we give here the proofs for Equation 1 and Equation 3.

Consider Equation 3. The minimal α is attained when A and A′ are at min-
imum distance from each other and maximum distance from the center vertex
O. The latter is trivially 2, and the former is

√
3 by Equation 1. The angle so

obtained is 2 arcsin(
√

3
2·2 ) > 0.2850989π, as required. On the other hand, there are

seven arms in the tree, and by the preceding that leaves < 2π − 7(0.2850989)π



of angular free space, and even if one pair of arms uses all of it, we still have
α < 2π − 6(0.2850989)π < 0.28941π, so Equation 3 holds strictly.

Now consider the distance ‖A−A′‖ between two adjacent arms. If we look at
the line from A to A′, (4) and (5) show that it must pass through edge BC (and,
by symmetry, that of the neighbor arm). The distance from A to BC is least
when the three vertices form an equilateral triangle, in which case it is

√
3/2.

Because this is true for both arms, and because the tree is not self-touching,
the true distance between A and A′ must be strictly greater than

√
3. On the

other hand, by (3) the maximum angular distance between A and A′ is 0.28941π.
Given this, ‖A − A′‖ is maximized when both vertices are at distance 2 from
the center (it could be higher if one of the vertices approached the center very
closely, but (2) prevents this; see below). In this case, the distance between them
is 2 · 2 sin(0.28941π/2) <

√
3 + 0.25, proving Equation 1 strict. �

9 Open Problems

The results of this paper open up several new questions, both in terms of their
optimality and in exploring the newly discovered class of locked linear trees.

Figure 3a has eight edges. Is this the smallest possible for a locked (not
necessarily linear) tree? We conjecture yes. We believe that a proof along the
general outline of Theorem 3 may work, but the case analysis must be arranged
more carefully in a general tree.

The orthogonal tree in Figure 8 has 14 edges. Is this minimal? We suspect so.
A possible path to proving this conjecture is to show that any smaller orthogonal
tree can be projected down to a locked linear tree with fewer than eight edges,
contradicting Theorem 3.

Stefan Langerman proposed the idea of interlocked trees by asking whether
multiple diameter-3 trees could interlock, which we have shown in Section 6 to
be the case. However, this leaves minimality open: four diameter-3 trees can
interlock with four 2-chains. Can this be done with fewer trees? Fewer edges?

Our results suggest some more general algorithmic questions. All of our locked
trees were reduced to the two triangles of Figure 3b by repeated applications of
Lemmas 2 and 3. This may not be a coincidence. Can every rigid linear tree can
be reduced to a set of connected triangles by applying these lemmas, or simple
extensions of them? In particular, we believe that rigidity in linear trees is a
purely combinatorial (rather than geometric) property. Even more generally, is
there an efficient algorithm to decide rigidity of linear trees? We suspect so.

In linear trees, there may also be a closer connection between rigidity and
lockedness than is (known to be) true in general. If we start with a locked
linear tree, and extend its loose edges until they are tightly constrained (and
hence possibly satisfy the preconditions for Lemma 2 and Lemma 3), does the
resulting graph have a rigid subtree? This is true for all the examples we are
aware of, and may provide a starting point for an algorithmic characterization.
Analysis of linear trees seems much more feasible than the general case. Is there
an efficient algorithm to decide lockedness?
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