
Efficient Reconfiguration of
Lattice-Based Modular Robots

Greg Aloupisa, Nadia Benbernoub, Mirela Damianc, Erik D. Demained, Robin
Flatlande,∗, John Iaconof, Stefanie Wuhrerg

aDépartement d’Informatique, Université Libre de Bruxelles, CP212, Boulevard du Triomphe,
1050 Bruxelles, Belgium

bMathematics Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, Massachusetts 02139 USA

cComputer Science Department, Villanova University, 800 Lancaster Avenue, Villanova, PA,
19085 USA

dComputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
32 Vassar Street, Cambridge, Massachusetts 02139 USA

eComputer Science Department, Siena College, 515 Loudon Road, Loudonville, New York, 12211
USA

fComputer Science and Engineering, Polytechnic Institute of New York University, Brooklyn, New
York, 11201 USA

gComputer Science Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario,
K1S 5B6 Canada

Abstract

Modular robots consist of many identical units (or atoms) that can attach together
and perform local motions. By combining such motions, one can achieve a recon-
figuration of the global shape of a robot. The term modular comes from the idea
of grouping together a fixed number of atoms into a metamodule, which behaves
as a larger individual component. Recently, a fair amount of research has focused
on algorithms for universal reconfiguration using Crystalline and Telecube meta-
modules, which use expanding/contracting cubical atoms.

From an algorithmic perspective, this work has achieved some of the best
asymptotic reconfiguration times under a variety of different physical models. In

∗Corresponding author
Email addresses: aloupis.greg@gmail.com (Greg Aloupis), nbenbern@MIT.EDU

(Nadia Benbernou), mirela.damian@villanova.edu (Mirela Damian),
edemaine@mit.edu (Erik D. Demaine), flatland@siena.edu (Robin Flatland),
jiacono@poly.edu (John Iacono), swuhrer@scs.carleton.ca (Stefanie Wuhrer)

Preprint submitted to Elsevier February 15, 2013

this paper we show that these results extend to other types of modular robots, thus
establishing improved upper bounds on their reconfiguration times. We describe a
generic class of modular robots, and we prove that any robot meeting the generic
class requirements can simulate the operation of a Crystalline atom by forming a
six-arm structure. Previous reconfiguration bounds thus transfer automatically by
substituting the six-arm structures for the Crystalline atoms. We also discuss four
prototyped robots that satisfy the generic class requirements: M-TRAN, Super-
Bot, Molecube, and RoomBot.

Keywords: self-reconfiguring modular robots, modular robot reconfiguration
algorithms, Crystalline atoms, cubical units, lattice-based modular robots

1. Introduction

A self-reconfiguring modular robot consists of a large number of independent
units, or atoms, that can arrange themselves into a structure best suited for a given
environment or task. For example, a robot may reconfigure into a thin linear
shape to facilitate passage through a narrow tunnel, transform into an emergency
structure such as a bridge, or surround and manipulate objects. Because modular
robots comprise groups of identical atoms, they are also more easily repaired, by
replacing damaged atoms with functional ones. Such robots are well-suited for
working in unknown and remote environments.

A variety of atom types have been designed and prototyped in the robotics
community, differing in shape and in the operations they perform. We focus
here on lattice-based modular robots in which atoms are arranged on a regular
grid. Examples of prototyped atoms include Crystalline [4], M-TRAN [11], Mole-
cube [25], SuperBot [19, 6], and RoomBot [20]. For a comprehensive list, see [14,
23]. Atoms are equipped with mechanisms that allow them to attach/detach to/from
neighboring atoms, and motion is typically achieved through the activation of one
or more revolute or prismatic joints.

One of the algorithmic challenges for these modular systems is to determine
efficient sequences of atom operations that transform a robot from one configura-
tion to another. A typical requirement is that the atoms maintain connectivity at all
times. As observed in [15], difficulties can arise from blocking constraints, such
as when an atom is unable to directly move into an adjacent empty position of
the lattice because it is blocked by tightly packed neighboring atoms. As a conse-
quence of such constraints, it is possible that for certain configurations of a robot,
no atom can move. This was demonstrated in [15] for hexagonal atoms. Certain

2

atom types require a sufficient number of neighboring atoms to move non-trivially.
For example, a 1 × n linear configuration of Crystalline atoms is not universally
reconfigurable.

To address some of these difficulties, the concept of metamodules was intro-
duced in [15, 10]. A metamodule is a small collection of atoms that behave as a
single unit. Rather than specifying robots at the atom level, they are specified in
terms of metamodules on a lower resolution lattice. These atoms combine to pro-
duce a synergistic effect, so that a metamodule has more freedom of movement
than any individual atom. It is often the case that metamodules are sparsely con-
structed, which enables them to pass very close to (or in some sense, through) each
other, without the type of blocking constraints mentioned previously. Throughout
this paper, we will refer to robots that have Θ(n) atoms and metamodules. That is,
we are only interested in metamodules consisting of a constant number of atoms.

Nguyen et al. [15] proposed metamodules consisting of 36 hexagonal atoms
arranged along the boundary of a larger hexagonal region with an empty interior.
They provided an algorithm to transform between any two “fat” robot configura-
tions in O(n) time. Prevas et al. [16] used metamodules consisting of 8 I-Cube
atoms and 16 links to achieve an O(n2) time universal reconfiguration algorithm.
Recently, there has been a fair amount of algorithmic research on universal recon-
figuration using metamodules of expanding/contracting cubical atoms. The two
main prototypes considered have been Crystalline and Telecube atoms, which are
similar enough that we will henceforth refer only to the former. Crystalline meta-
modules are k × k × k arrangements of atoms, where k is a small constant that
varies depending on the situation. Specifically, the size of a metamodule depends
on various factors, including the assumed physical capabilities of each atom.

In the weakest and most realistic physical model, Crystalline atoms have con-
stant strength (i.e., they can push and pull a constant number of other atoms when
expanding and contracting) and the maximum speed they can reach during recon-
figuration is also bounded by a constant. Early reconfiguration algorithms that
used this model include the “melt-grow” algorithm of Rus and Vona [18], and that
of Vassilvitskii et al. [21], both of which reconfigure in O(n2) time. This was
improved in [1] to linear time using metamodules of 2×2×2 atoms, with a total of
O(n2) atom operations (counting operations performed in parallel). Both bounds
were shown to be worst-case optimal. The linear time algorithm also requires only
constant memory per atom and local communication between atoms.

More physically capable atoms naturally allow for faster reconfiguration al-
gorithms. For instance, the total number of atom operations can be reduced to
O(n) in a model that assumes that atoms have linear strength [2]. This means

3

that atoms can push and pull up to n other atoms when contracting and expand-
ing. When constant strength is assumed but velocities are allowed to build up over
time, reconfiguration is possible in O(

√
n) time in 2D, using 4×4 metamodules

and the third dimension as an intermediate [17].
In the most physically capable model where atoms have linear strength and

velocities can be instantly linear, any 2D reconfiguration is possible in O(log n)
time using O(n log n) total operations [3]; the algorithm uses metamodules of
size 4×4, but it is claimed that it can be reduced to 2×2. A straightforward (yet
unpublished) extension of this result achieves the same asymptotic bound in 3D,
using larger but still constant-sized cube-shaped metamodules.

To our knowledge, similar asymptotic bounds on universal reconfiguration for
other lattice-based modular robots are not yet known. In this paper, we extend the
Crystalline reconfiguration results to other lattice-based modular robots. Specifi-
cally, we describe a generic class of modular robots, and we prove that any robot
meeting the generic class requirements can simulate the operation of a Crystalline
atom by forming a structure called a 6-arm. We also discuss four prototyped
robots that meet the generic class requirements: M-TRAN, SuperBot, Molecube,
and RoomBot. By replacing Crystalline atoms with 6-arms in the k × k × k
metamodules used by existing Crystalline algorithms, the reconfiguration results
immediately apply. Thus as in the previous work, reconfiguration assumes (and
exploits) the existence of specifically constructed metamodules, and the reconfig-
uration bounds apply to robots composed of these metamodules. From an algo-
rithmic perspective, the asymptotic universal reconfiguration times achieved here
via the Crystalline algorithms using the 6-arm construction are the most efficient
known for the M-TRAN, SuperBot, Molecube, and RoomBot robots.

The term “efficient” in this paper refers to the asymptotic time complexity of
the reconfiguration algorithms. We point out that cost and physical limitations
of prototyped atoms make the work here a theoretical contribution, rather than a
practical one. The number of atoms in the 6-arm is 58, which renders the 6-arm
construction and its operation impractical with existing hardware implementations
of prototyped atoms. Our goal has been to establish that several prototypes have
no fundamental geometric disadvantages compared to Crystaline atoms (meta-
modules). The limiting effects of torque, motor abilities, and gravity are not of
primary concern here.

Our aim has been to establish a global simulation structure. The 6-arm meta-
module is a general construction that can be applied to a variety of atom types.
One would naturally expect that customizing a metamodule for each type of atom
would lead to smaller constructions. For example, it has been shown that an 8

4

atom customized M-TRAN metamodule can simulate a 2D Crystalline atom [12].
Using one prototyped module to simulate others has gained popularity. A re-

cent paper by Davey et al. [7] demonstrates that the SMORES robot can emulate
(either exactly or approximately) other robots such as PolyBot [22], SuperBot,
CONRO [5], and a system from Johns Hopkins University [13]. In other work,
Dewey et al. [8] developed a universal reconfiguration algorithm for an abstract
robot system in which metamodules can absorb adjacent metamodules into their
interior and transfer them out again into adjacent metamodules or into empty lat-
tice locations. The algorithm may be used with any atom type for which it is pos-
sible to form metamodules capable of these operations. They demonstrated how
this can be done for three different atom types using customized constructions.
Although they did not address the asymptotic worst-case time complexity of their
reconfiguration algorithm, experimental results suggest that the time complexity
is linear.

The remainder of this paper is organized as follows. In Section 2 we describe
the functionality of the Crystalline atom. In Section 3 we describe a generic class
of robots with properties sufficient to design a 6-arm. In Section 4 we discuss
four prototyped robots that meet the generic class requirements. The 6-arm con-
struction is described in Section 5, and then in Section 6 we prove that the 6-arm
correctly simulates a Crystalline atom. In Section 7, we summarize the Crystalline
reconfiguration results that apply (via the 6-arm structure) to all robots satisfying
the generic class requirements. We conclude in Section 8 with some directions for
future work.

2. Crystalline Atom Operations

Because we seek to simulate the operations of the Crystalline atom, we detail
its functionality here. A Crystalline atom is a cubical device equipped with an
expansion/contraction mechanism that allows it to extend each face out and retract
it back. When extended, a face is twice as far from the cube’s center, compared to
its retracted distance. Each cube face has an attachment mechanism that allows it
to attach to (or detach from) adjacent atoms. When groups of atoms perform these
operations (expand, contract, attach, detach) in a coordinated way, the atoms move
relative to one another, resulting in a reconfiguration of the robot (see Fig. 1).

3. Generic Model

In this section we describe a generic class of lattice-based modular robots
which possess certain sufficient properties to design a 6-arm. Robots in this class

5

Figure 1: Crystalline robot reconfiguration (2D example). Atoms can attach to neighbors, and
expand/contract their arms. Figure borrowed from [3].

must be capable of forming a generic block U satisfying the following three crite-
ria:

1. Structure. U consists of two parts occupying two adjacent cells L,R on a
3D cubic lattice. For simplicity, we will use L to refer to both the lattice cell
and the piece of U that lies in that lattice cell. This should be clear from the
context. We assume that each lattice cell has dimensions 1×1×1. Without
loss of generality, for our descriptions we assume that R is on the right of L
(see Fig. 2a).

2. Attach/Detach Mechanisms. Both L and R have attachment mechanisms
that can be positioned so that all six y-parallel faces surrounding U contain
an attachment, as shown in Fig. 2a. In this configuration, U can attach
to an adjacent block along any of these faces. When the six attachment
mechanisms are positioned in this way, we say the block is in a straight
configuration. This is in contrast with the bent configuration, which we
describe next.

A

(a) (b)

L R

x
y

z

A

(c)

r l
AlAr r

Al A

Figure 2: The generic block. (a) straight configuration, (b,c) bent configurations. Positions of
attach/detach mechanisms are marked as small, lightly shaded squares.

3. Rotational Motion. Let Ar be the attachment mechanism on the right face
of cell R, as labeled in Fig. 2a. U has a rotational degree of freedom that
allows Ar to rotate to a top horizontal position, while the three attachments
in cellL remain stationary, as shown in Fig. 2b. We will refer to the resulting
configuration as bent.
Let (ax, ay, az) be a unit vector parallel to the rotation axis about which Ar

rotates. To ensure a compact rotational motion, we impose four require-
ments on R.

6

3.a) The rotation axis passes through the center of cell R.
3.b) In the coordinate system of Fig. 2, we have that ax, ay, az ≥ 0.
3.c) The rotation of R that takes it from straight to bent position is a coun-

terclockwise rotation of at most 180◦.
3.d) The rotation maps the center point of cell R’s right face to the center

point of R’s top face.
This last requirement of the rotational motion implies that ax = ay. To see
why, consider a coordinate system centered in cellR. In this coordinate sys-
tem, observe that points pr = (1

2
, 0, 0) and pt = (0, 1

2
, 0) (i.e., the center of

the right and top faces of cell R) must lie in a common plane perpendicular
to the rotation axis, since the rotation transforms one point into the other.
This means that vector (pr − pt) and the rotation axis are orthogonal, and
thus their dot product is zero: (1

2
,−1

2
, 0) · (ax, ay, az) = 0, and so ax = ay.

This observation will be useful in proving that the generic 6-arm correctly
simulates the Crystalline atom.
In Fig 2b, a corner of the rotating cell is marked to indicate the signed
orientation of (ax, ay, az). Specifically, the corresponding components of
(ax, ay, az) and the vector directed from the center of the rotating cell to the
marked corner have the same signs.
Depending on the prototyped atoms used to construct a block, the final po-
sition of the other two attachments on R may vary. In fact, their locations
in the bent configuration are not relevant to our 6-arm construction. This is
why we purposely omit marking the other two attachment mechanisms on
R in Fig. 2b.
The intuition here is that any structure attached to Ar rotates along with
it and assumes a new position on top of R. We will not allow a bend to
occur while other components are attached to other faces of R. Structures
attached to L do not move.
L is a mirror reflection ofR, thus capable of mirroring the rotational motion
and moving A` from left vertical to top horizontal, as shown in Fig. 2c. In
particular, the rotation axis for the left half is parallel to (−ax, ay, az) and
the rotation from straight to bent is clockwise.

4. Prototyped Blocks

4.1. SuperBot and M-TRAN blocks
The SuperBot atom [19, 6] and its predecessor M-TRAN atom [11] consist

of two identical elements connected by a link. An element can be viewed as a

7

half-cube glued to a half cylinder, as depicted in Fig. 3a; the bounding box of an
element is a unit cube. Each of the atom’s six flat faces (all vertical in Fig. 3a)
is equipped with an attachment mechanism. In addition, each element can rotate
independently±90◦ about a center axis perpendicular to the top/bottom of its half
cylinder. We note that the M-TRAN atom has one additional rotational degree of
freedom and the SuperBot atom has two, but these are unnecessary to meet the
requirements of a generic block.

(a) (b) (c)

y
x

z

Ar

Ar Al

Figure 3: The M-TRAN block. (a) straight configuration, (b,c) bent configurations.

We show now that the SuperBot and M-TRAN atoms satisfy the generic block
requirements of Section 3. Clearly they satisfy the criteria for structure and at-
tach/detach mechanisms. For the rotational motion, they can go from straight to
bent position by rotating their right element 90◦ counterclockwise, and similarly
by rotating their left element 90◦ clockwise, as shown in Figs. 3b,c. With the
rotation axis of the right element passing through its center and being parallel to
(0, 0, 1) (as oriented in Fig. 3) and the left atom being a mirror image of the right,
the SuperBot and M-TRAN atoms satisfy the rotational requirements 3.a-3.d.

4.2. Molecube block

A Molecube atom [24, 25, 26] is a cubical structure (with rounded corners)
equipped with a magnetic attachment mechanism on each of its faces. A diagonal
cut extending from the top to the bottom face separates the cube into two trian-
gular prisms (see Fig. 4a). This allows the atom to rotate its two halves about a
symmetry axis orthogonal to the cut plane and passing through the center of the
cube.

We define a Molecube block as two atoms attached face-to-face, as shown in
Fig. 4. The attachment is such that the right atom’s axis of rotation is parallel to
(1, 1, 1)/

√
3, and the left atom’s is parallel to (−1, 1, 1)/

√
3. We now show that

a Molecube block satisfies the generic block requirements of Section 3. Clearly it
satisfies the criteria for structure and attach/detach mechanisms. For the rotational
motion, the Molecube block can go from straight to bent position by rotating the

8

(a) (b) (c)

y
xz

Ar

Ar
Al

Figure 4: (a) Molecube block. (a) straight configuration, (b,c) bent configurations.

top half of the right atom by 120◦ counterclockwise, which brings the right face
to the top. Similarly, the block can also go to bent position by rotating the top
half of the left atom by 120◦ clockwise, which brings the left face to the top. With
the rotation axis of the right atom passing through its center and being parallel
to (1, 1, 1)/

√
3 and the left atom being a mirror image of the right, the Molecube

block satisfies the rotational requirements 3.a-3.d.

4.3. RoomBot block
The RoomBot atom [20] (see Fig. 5) is designed to be suitable for reconfig-

urable furniture. For our purposes, its functionality is similar to that of the Mole-
cube block in Section 4.2. The RoomBot atom consists of two spherical elements.
Each spherical element is sliced into two half-spheres by a diagonal plane of the
lattice cell containing the sphere. Each half-sphere can rotate independently about
the diametrical axis perpendicular to the cut. When configured as in Fig 5, the ro-
tation axis of the top left half-sphere is parallel to the rotation axis of the left atom
of the Molecube block from Fig. 4, and similarly for the right counterpart. Like
the Molecube block, the RoomBot atom has ten attachment mechanisms, allowing
it to connect to any atom sharing an adjacent lattice face. These common char-
acteristics of the Roombot and Molecube atoms enable us to apply the discussion
from Section 4.2 directly to the Roombot, establishing that the RoomBot atom
satisfies the generic block requirements of Section 3.

(a) (b) (c)

y

x
z

Ar

AlAr

Al

Figure 5: (a) RoomBot block. (a) straight configuration, (b,c) bent configurations.

9

5. Design of the Generic 6-arm

We now show how to construct a 6-arm out of generic blocks. Recall that a
6-arm is meant to simulate the four Crystalline atom operations: expand, contract,
attach and detach. Our structure (see Fig. 6)1 consists of six arms connected to a
common 2×2×2 center piece.

(a) (b)

y

xz

Figure 6: A 6-arm metamodule: (a) The four “horizontal” arms ; (b) entire structure from a
different viewpoint.

An arm can be viewed as a chain of blocks with four revolute joints, henceforth
referred to simply as joints. A joint is a block which we allow to straighten and
bend. In Fig. 6, each block is marked with a black segment that connects its two
cubes. Blocks that serve as joints are colored orange and white, in accordance
with Figure 2. Blocks that remain straight throughout are gray. An arm has two
functional states: expanded and contracted (like a Crystalline atom face). In an
expanded state, all joints (and thus all blocks) of an arm are in a straight position
(Fig. 7b). In its contracted state, an arm forms a Π-shaped bend (Fig. 7a). The tip
of each arm occupies 2×2 cells and has an attachment mechanism that allows it to
connect to an adjacent tip of another 6-arm. An arm constructed out of Molecube

1For animations of the Molecube 6-arm, the reader may visit:
http://www.csc.villanova.edu/˜mdamian/6arm

10

blocks is shown in Fig. 7 and one constructed out of M-TRAN blocks is shown in
Fig. 8.

U1 U2 U4

U3

U5

U6
U7

U8

U9

y

xz
(a) (b)

Figure 7: (a) Contracted Molecube arm. U1 attaches to the center piece of the 6-arm; (b) Extended
arm.

U1

U2
U4

U3

U5

U6
U7

U8

U9

(a) (b)

y

xz

Figure 8: (a) Contracted M-TRAN arm. U1 attaches to the center piece of the 6-arm; (b) Extended
arm.

Observe that when an arm is contracted, the distance from the tip to the center
is 8 lattice units (7 along the arm, and 1 in the center piece). By simultaneously
having jointsU1, U3, U5, andU7 straighten, the arm expands, doubling the distance
from tip to center.

An arm expands by rotating (straightening) its joints in a coordinated way. By
performing the four joint rotations simultaneously, we ensure that the tip attach-
ment moves parallel to a coordinate axis. This is discussed in Section 6.

11

Next we discuss the details of constructing an arm. Let the terms right, left,
top, bottom, front, and back refer to the +x, −x, +y, −y, +z, −z directions,
respectively. For ease of presentation, we focus on the right arm which extends
out in the positive x direction, as seen in Fig. 7. It is composed of nine blocks
U1, . . . , U9, of which four behave as joints, i.e., U1, U3, U5, U7. The first eight
blocks rest in a horizontal plane, whereasU9 attaches directly aboveU8; the reason
for this particular attachment is to perfectly align the arm tip with the center piece.
The center piece comprises four blocks arranged in a 2×2×2 configuration, as
illustrated in Fig. 9. The four blocks are all in bent position, with the two right
blocks oriented horizontally and the two left ones oriented vertically. The six
attachment points for the arms are marked in Fig. 9b. Observe that the right arm
attaches to the lower layer of the center piece, and thus by adding block U9 above
the main arm level the tip aligns with the center piece.

left arm

(a) (b) (c)

back arm

right arm
front arm

top arm

z

y

x
bottom arm

Figure 9: (a) The center piece consists of four blocks in a 2×2×2 grid of cells. (b) Molecube;
(c) M-TRAN; The left and right halves of the center pieces are shown separated, with dotted lines
indicating how the two halves attach in 3D. Attachment points for the arms are marked.

The four arm joints are oriented so that the rotation axes of U1 and U3 are
parallel, as are the rotation axes of U5 and U7. To see that these parallel alignments
are possible, notice that U1 in Fig. 7a is an instance of the block shown in Fig. 2b
that has been rotated by 90◦ clockwise about a center x parallel axis; U3 is an
instance of Fig. 2c that has been rotated by 90◦ clockwise about a center x parallel
axis, and then 90◦ clockwise about a center y parallel axis. It is straightforward to
show that Rx(−90)(ax, ay, az)

T = Ry(−90)Rx(−90)(−ax, ay, az)T when ax =
ay (as specified by rotational requirement 3.d.), and so the two joints have parallel
rotation vectors. U5, U7 are similar.

To avoid collisions in the 6-arm, we have designed two variations of the

12

generic arm. Fig. 10 illustrates the design of the right arm; we call this design
a type-A arm. In a type-A arm, the rotation vector of joints J1 and J3 has compo-
nents with signs (+,+,−), and the rotation vector of J5 and J7 has components
with signs (+,−,+). During an extension of the arm, J1, J5 rotate clockwise
and J3, J7 rotate counterclockwise. With this design, the arm sweeps downwards
when extending and contracting. The amount of downward sweep varies depend-
ing on the rotation vector, and in the special case when the rotation vector is
(0, 1, 0) the arm stays horizontal with no downward sweep. For example, Fig. 10b
shows the arm position after J1 and J5 rotate by −60◦ and J3 and J7 rotate by
60◦, for the case when J1, J3 have rotation vector (1, 1,−1)/

√
3 and J5, J7 have

rotation vector (1,−1, 1)/
√

3. Note that the tip of the arm has translated along the
x-axis.

J 1

J 3

J 7

J5

y

xz
(a) (b) (c)

J 1

J 3

J 5

Figure 10: Type-A Molecube right arm: (a) Contracted state; (b) After J1 and J5 rotate by angle
−60◦, while J3 and J7 rotate by 60◦; (c) Space swept by the arm through a rotation of 120◦ (view
from x = +∞).

An alternate design for the right arm is depicted in Fig. 11a; we will refer
to this as a type-B arm. In the type-B arm, the rotation vector of joints J1 and
J3 has components with signs (+,−,−), and the rotation vector of J5 and J7
has components with signs (+,+,+). The arm extends by rotating its joints in
directions opposite to those of a type-A arm. With this design, the arm sweeps
upwards when extending and contracting. For example, Fig. 11b shows the arm
position after J1 and J5 rotate by 60◦ and J3 and J7 rotate by −60◦, for the case
when J1, J3 have rotation vector (1,−1,−1)/

√
3 and J5, J7 have rotation vector

(1, 1, 1)/
√

3.
The main difference between the type-A and type-B arms is the space swept

during extension/contraction (see Fig. 10c vs. 11c). We carefully design the 6-arm
so that the spaces swept by the six arms are disjoint and therefore no collisions

13

J 1

J 3

J 7

J5

y

xz
(a) (b) (c)

J 1

J 3

J 5

Figure 11: Type-B Molecube right arm: (a) Contracted state; (b) After J1 and J5 rotate by 60◦,
while J3 and J7 rotate by−60◦; (c) Space swept by the arm through a rotation of 120◦ (view from
x = +∞).

occur. This is achieved as follows: the right and back arms are type-A, and the
top, bottom, front and left arms are type-B.

6. Simulation of Crystalline Atom Operations

In this section we prove that a 6-arm can simulate the operations of a Crys-
talline atom. Let Ru(θ) denote the matrix that rotates a point by θ degrees (coun-
terclockwise) about an axis parallel to the unit vector u = (ux, uy, uz) with fixed
point at the origin. (See Equation (A.1) in the Appendix.) Let T (dx, dy, dz) denote
the translation matrix that translates a point by dx, dy and dz units in the directions
x, y and z, respectively. Let Ji denote the rotating half of Ui, for i = 1, 3, 5, 7, and
let Oi denote the center of Ji. We denote the x-coordinate of Oi by x(Oi), and
similarly for the y and z-coordinates of Oi.

Lemma 1. Throughout the expansion/contraction of the right arm, the compo-
nent connecting J3 and J5 remains parallel to the x-axis and does not rotate about
O3O5.

Proof. Fix a coordinate system with origin at O1. The matrix that determines the
position and orientation of J3 is given by

M3 = Ra(−θ)T (0, 0,−4)Ra(θ) (1)

where a is the rotation vector for J1 and J3 and θ is the joint rotation. For any axis
a, the two rotations in the matrix product cancel each other out, and the net result

14

is that J3 undergoes only translational motion. This suffices for our proof because
the component between J3 and J5 moves rigidly with J3. �

The next intuitive lemma shows that the joint centers maintain their ordering
in the x direction.

Lemma 2. Throughout the expansion/contraction of the right arm, x(O1) ≤ x(O3) <
x(O5) ≤ x(O7).

Proof. Fix a coordinate system with origin at O1. Since J1 undergoes no trans-
lation, x(O1) = 0 throughout the expansion motion. The value of x(O3) is given
by the x-translation component of the matrix M3 from Equation 1. With the ro-
tational requirements (3.b) and (3.d) of Section 3 adjusted for the orientation of
units U1, U3 of the right arm, we have ay ≥ 0 and ax = −az. With the rotational
requirement (3.c), we have 0 ≤ θ ≤ 180, and so sin(θ) ≥ 0. Thus

x(O3) = −4(1− cos(θ))azax + 4sin(θ)ay

≥ −4(1− cos(θ))azax (as ay ≥ 0 and sin(θ) ≥ 0)
≥ 0 (as azax ≤ 0 and 1− cos(θ) ≥ 0)

Thus we obtain the relation x(O1)≤x(O3). The value of x(O5) is given by the x-
translation component of the matrix M3T (4, 0, 0)Rb(−θ), where b is the rotation
vector for J5 and J7. This shows that x(O5)=x(O3)+4. Finally, x(O7) is given
by the x translation component of M3T (4, 0, 0)Rb(−θ)T (0, 0, 4)Rb(θ). Simple
calculations show that

x(O7) = −8azax + 8cos(θ)azax + 8sin(θ)ay + 4

= 2 ∗ x(O3) + 4

= x(O5) + x(O3)

≥ x(O5) (as x(O3) ≥ 0)

�

Lemma 3. During the expansion/contraction of the right arm, the attachment at
its tip moves parallel to the x-axis.

15

Proof. By Lemma 1, the midpoint m of the segment O3O5 undergoes a transla-
tion. Furthermore, by Lemma 2, this motion is x-monotone.

We can divide the arm into two halves, which are mirror images of each other,
through a plane parallel to x=0, containing m. The second half can follow the
motions of the first half symmetrically, in order to complete the desired motion.

As noted previously, the matrix that determines the orientation and position of
J7 relative to O1 is

M3T (4, 0, 0)Rb(−θ)T (0, 0, 4)Rb(θ) (2)

The 6-arm construction and the requirements of the generic block ensure that the
rotation vectors a and b of the right arm satisfy (ax, ay, az) = (bx,−by,−bz).
Then the product in Equation (2) is a translation matrix having zero y- and z-
components and a positive x-component. �

Lemma 4. An arm does not self-intersect during expansion/contraction.

Proof. We prove the claim for the right arm. By Lemma 1, the segment O3O5

remains parallel to the x-axis throughout the arm motion, meaning that x(O3) +
4 = x(O5). Along with Lemma 2, this implies that

x(O1) + 4 ≤ x(O3) + 4 = x(O5) ≤ x(O7)

Thus any pair of points in the set defined by the Cartesian product {O1, O3} ×
{O5, O7} are separated by at least 4 units in the x-dimension. This guarantees
non self-intersection for the right arm. By symmetry, the arguments hold for the
other arms as well. �

Lemma 5. A 6-arm always remains inside the axis-aligned bounding box deter-
mined by the tips of its arms.

Proof. Our claim is equivalent to saying that the tip of the right arm is always the
point with strictly maximum +x coordinate. For a coordinate system with origin
centered in the center piece, the range of the right tip is 8 ≤ x ≤ 16. It suffices to
show that no other arm ever enters the x≥8 halfplane.

16

The length of any arm is 15. One end of the arm is anchored to the center
piece and the tip is constrained to a coordinate axis, by Lemma 3. Furthermore,
by Lemma 1, the segment O3O5 is constrained to be parallel to this axis.

Therefore the arm is confined within a cylindrical region aligned with the co-
ordinate axis, with radius strictly less than 6. Thus the cylindrical region avoids
the x≥8 halfplane. �

Define the octant of the right arm as the intersection of three halfplanes: (x≥1,
y≤1, z≤1). This contains the right arm in its contracted position. Notice that two
of the octant boundary halfplanes are tangent to the arm tip, and all three are
tangent to the center piece. The origin of the octant is on a corner of the center
piece, on the same face but diagonally across the connection of the right arm. The
octant of each other arm can be defined symmetrically.

Lemma 6. An arm remains within its own octant during expansion/contraction.

Proof. We only focus on the expanding motion of the right arm in this proof.
Other arms are handled symmetrically. First note that the right arm is type-A.
Recall that, because it is horizontal, this means that some of its components will
temporarily move downward when it expands and contracts.

Fix a coordinate system with origin centered in the center piece. By Lemma 2
and the fact that x(O1) = 2.5, we know that the arm lies within the x≥1 halfplane.

Next we show that the right arm stays in the z≤1 halfplane. Consider an
arm component between the rotating halves of two consecutive joints. Among all
points on such a component, the point with the highest z-coordinate must lie on a
joint (i.e, on one of the component endpoints). Thus, it suffices to focus only on
the z-coordinates of joints (J1, J3, J5, J7). Note that for any point p∈J1, z(p)≤1.
Also observe that, for any point p∈J3, the value of z(p) is less than z(O3) + 1,
where z(O3) is the z-translation component of matrix M3.

A straightforward argument detailed in Lemma 7 of the Appendix shows that
the z-translation component of M3 is never greater than 0 for our generic model.
This implies that z(p) < 1 for any p ∈ J3. By Lemma 1, the same holds true
for p ∈ J5. Finally, by Lemma 3 and the fact that J7 is glued to the arm tip, we
conclude that z(p)<1, for any p ∈ U7.

The calculations regarding the y≤1 constraint are similar. Lemma 7 in the
Appendix shows that the y-translation component of M3 is never positive. �

17

Theorem 1. A 6-arm cannot self-intersect.

Proof. By Lemma 4, no arm self-intersects. By definition of the six octants, it can
be verified that no octants intersect. By Lemma 6, this means that no two arms
intersect. �

Because a 6-arm always avoids self-intersection (Theorem 1), stays within the
bounding box determined by its tips (Lemma 5), and each tip moves only along
the normal of its axis-aligned face (Lemma 3), we conclude that the generic 6-arm
correctly simulates a Crystalline atom.

7. Efficiency of 6-arm reconfiguration

We have established that a generic 6-arm simulates a Crystalline atom. More-
over, the number of atoms used to construct a 6-arm is constant for all prototyped
robots that we have considered. Thus any motion carried out by a 6-arm can be
considered to use constant force and achieve constant velocities. In other words,
our 6-arm construction does not affect any of the models considered in the litera-
ture. Let a 6-arm k-metamodule be a k×k×k collection of 6-arm metamodules.
By substituting 6-arm k-metamodules for Crystalline metamodules, in prior work
in the literature, we obtain identical upper bounds, while worst-case optimality is
obtained in an almost identical way:

Theorem 2. [2] We can universally reconfigure n 6-arm 2-metamodules in O(n)
time using O(n) operations.

We note here that the number of operations in Theorem 2 is asymptotically
optimal in the worst case. In [2] this was demonstrated by a simple example of
reconfiguring from a horizontal line to a vertical line. However, for M-TRAN
and Molecube, this can be done in constant time. Instead, we can use the simple
reconfiguration from all blocks straight, to an alternating straight-bent pattern.
Then every other block must reconfigure.

Theorem 3. [3] We can universally reconfigure n 6-arm constant-size metamod-
ules inO(log n) parallel steps andO(n log n) operations.2 The number of parallel
steps is optimal for labeled metamodules.

2The result in [3] is restricted to 2D and the constant is 32, but a straightforward extension
applies to 3D. The best constant remains to be rigorously verified.

18

Theorem 4. [1] If only constant forces and velocities are allowed, we can uni-
versally reconfigure n 6-arm 2-metamodules in O(n) parallel steps and O(n2)
operations, and these bounds are optimal in the worst case. Furthermore, this
can be done using only constant memory per atom, and with only local communi-
cation.

We note that the worst-case optimality cannot be deduced directly from [1],
because we have only proved a one-way reduction. However, the same reasoning
and example suffice: reconfiguring from a horizontal straight configuration to a
vertical straight configuration. First, a constant fraction of the metamodules must
change their vertical coordinate by an additive Ω(n), for a total change of Ω(n2).
Second, each constant-force operation changes the vertical coordinates of a con-
stant number of metamodules by an additive constant, for a total change of O(1).
Therefore, the total number of operations must be at least Ω(n2). Each parallel
step can perform at most O(n) operations (one per unit), so the total number of
parallel steps must be Ω(n2/n) = Ω(n).

Theorem 5. [17] If constant forces are required (but velocity is unrestricted),
we can universally reconfigure between any two 2D configurations of n 6-arm
constant-size metamodules in O(

√
n) time, using the third dimension as an inter-

mediate. 3

8. Comments and Future Work

Our results show that all modular robots meeting the requirements of our
generic block can be reconfigured within the same asymptotic time bounds as
Crystalline robots, provided an appropriate metamodule structure is used. We dis-
cussed four prototypes that fit our generic model. These prototypes are represen-
tatives of two main classes of hinge models: the M-TRAN and SuperBot robots
are edge-hinged, and the Molecube and RoomBot are central-point-hinged. We
believe that the techniques developed here can be applied to other modular robots
such as PolyBot G3 [22] and ATRON [9], so this is one direction for future work.
Another direction is to customize our 6-arm metamodule for each type of robot
to minimize its size while preserving its functionality. This was done in 2D for

3The constant is not specified in [17], but metamodules of size at least k = 4 are necessary to
carry out the operations upon which their algorithm is based.

19

the M-TRAN robot [12]. It would also be interesting to use space-filling meta-
modules (densely filling a k × k × k cube) or prove such a reduction impossible.
Another interesting question is whether any modular robot is fundamentally more
powerful than the Crystalline robot in the sense that it can reconfigure itself in
o(log n) time, because other bounds seem to be tight for any model.

References

[1] G. Aloupis, S. Collette, M. Damian, E. D. Demaine, D. El-Khechen, R. Flat-
land, S. Langerman, J. O’Rourke, V. Pinciu, S. Ramaswami, V. Sacristán,
and S. Wuhrer. Realistic reconfiguration of Crystalline and Telecube robots.
In Proceedings of the 8th International Workshop on Algorithmic Founda-
tions of Robotics, pages 433–447, 2008.

[2] G. Aloupis, S. Collette, M. Damian, E. D. Demaine, R. Flatland, S. Langer-
man, J. O’Rourke, S. Ramaswami, V. Sacristán, and S. Wuhrer. Linear re-
configuration of cube-style modular robots. Computational Geometry: The-
ory and Applications, 42(6,7):652–663, 2009.

[3] G. Aloupis, S. Collette, E. D. Demaine, S. Langerman, V. Sacristán, and
S. Wuhrer. Reconfiguration of cube-style modular robots using O(log n)
parallel moves. In Proceedings of the 19th International Symposium on Al-
gorithms and Computation, volume 5369 of LNCS, 2008.

[4] Z. Butler, R. Fitch, and D. Rus. Distributed control for unit-compressible
robots: Goal-recognition, locomotion and splitting. IEEE/ASME Transac-
tions on Mechatronics, 7(4):418–430, 2002.

[5] A. Castano, A. Behar, and P. Will. The CONRO modules for reconfigurable
robots. IEEE/ASME Transactions on Mechatronics, 7(4):403–409, 2002.

[6] H. Chiu, M. Rubenstein, and W. Shen. Multifunctional Superbot with rolling
track configuration. In Workshop on Self-Reconfigurable Robots & Systems
and Applications, pages 50–53, November 2007.

[7] J. Davey, N. Kwok, and M. Yim. Emulating self-reconfigurable robots -
design of the SMORES system. In Proceedings of the International Confer-
ence on Intelligent Robots and Systems, pages 4464–4469, 2012.

20

[8] D. J. Dewey, M. P. Ashley-Rollman, M. D. Rosa, S. C. Goldstein, and
T. C. Mowry. Generalizing metamodules to simplify planning in modular
robotic systems. In Proceedings of the International Conference on Intelli-
gent Robots and Systems, pages 1338–1345, 2008.

[9] M. W. Jørgensen, E. H. Østergaard, and H. H. Lund. Modular ATRON:
Modules for a self-reconfigurable robot. In Proceedings of the International
Conference on Intelligent Robots and Systems, pages 2068–2073, 2004.

[10] K. Kotay and D. Rus. Algorithms for self-reconfiguring molecule motion
planning. In Proceedings of the IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 2184–2193, 2000.

[11] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and S. Murata.
Self-reconfigurable modular robot M-TRAN: distributed control and com-
munication. In Proceedings of the 1st International Conference on Robot
Communication and Coordination, pages 1–7. IEEE Press, 2007.

[12] H. Kurokawa, E. Yoshida, K. Tomita, A. Kamimura, S. Murata, and
S. Kokaji. Self-reconfigurable M-TRAN structures and walker generation.
Robotics and Autonomous Systems, 54:142–149, 2006.

[13] M. Kutzer, M. Moses, C. Brown, D. Scheidt, G. Chirikjian, and M. Ar-
mand. Design of a new independently-mobile reconfigurable modular robot.
In Proceedings of the IEEE International Conference on Robotics and Au-
tomation, pages 2758–2764, 2010.

[14] S. Murata and H. Kurokawa. Self-reconfigurable robots: Shape-changing
cellular robots can exceed conventional robot flexibility. IEEE Robotics &
Automation Magazine, 14(1):43–52, 2007.

[15] A. T. Nguyen, L. Guibas, and M. Yim. Controlled module density helps
reconfiguration planning. In Proceedings of the 4th International Workshop
on Algorithmic Foundations of Robotics, pages 15–27, 2000.

[16] K. C. Prevas, C. Ünsal, M. Önder Efe, and P. K. Khosla. A hierarchical
motion planning strategy for a uniform self-reconfigurable modular robotic
system. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 787–792, 2002.

21

[17] J. H. Reif and S. Slee. Optimal kinodynamic motion planning for self-
reconfigurable robots between arbitrary 2D configurations. In Robotics: Sci-
ence and Systems Conference, 2007.

[18] D. Rus and M. Vona. Crystalline robots: Self-reconfiguration with com-
pressible unit modules. Autonomous Robots, 10(1):107–124, 2001.

[19] W. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, and J. Venkatesh.
Multimode locomotion via Superbot reconfigurable robots. Autonomous
Robots, 20(2):165–177, 2006.

[20] A. Sproewitz, A. Billard, P. Dillenbourg, and A. Ijspeert. Roombots - me-
chanical design of self-reconfiguring modular robots for adaptive furniture.
In Proceedings of the IEEE International Conference on Robotics and Au-
tomation, pages 4259–4264, 2009.

[21] S. Vassilvitskii, J. Kubica, E. Rieffel, J. S., and M. Yim. On the general
reconfiguration problem for expanding cube style modular robots. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation,
pages 801–808, 2002.

[22] M. Yim, K. Roufas, D. Duff, Y. Zhang, C. Eldershaw, and S. Homans. Mod-
ular reconfigurable robots in space applications. Autonomous Robots, 14(2-
3):225–237, 2003.

[23] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and
G. S. Chirikjian. Modular self-reconfigurable robots systems: Challenges
and opportunities for the future. IEEE Robotics & Automation Magazine,
14(1):43–52, 2007.

[24] V. Zykov, A. Chan, and H. Lipson. Molecubes: An open-source modular
robotics kit. In IROS-2007 Self-Reconfigurable Robotics Workshop, 2007.

[25] V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson. Self-reproducing ma-
chines. Nature, 435(7038):163–164, 2005.

[26] V. Zykov, P. Williams, N. Lassabe, and H. Lipson. Molecubes extended:
Diversifying capabilities of open-source modular robotics. In IROS-2008
Self-Reconfigurable Robotics Workshop, 2008.

22

Appendix A. Lemma 7 Proof

In what follows we will refer to the 4×4 rotation matrix Ru(θ) below that
rotates a (homogeneous) point by θ degrees (counterclockwise) about an axis par-
allel to the unit vector u = (ux, uy, uz) with fixed point at the origin:

Ru(θ) =

c+ (1− c)u2x (1− c)uyux − suz (1− c)uzux + suy 0

(1− c)uxuy + suz c+ (1− c)u2y (1− c)uzuy − sux 0
(1− c)uxuz − suy (1− c)uyuz + sux c+ (1− c)u2z 0

0 0 0 1

(A.1)

where c = cos(θ) and s = sin(θ).

Lemma 7. The z and y translation components of matrix M3 of Equation 1 are
less than or equal to zero throughout the expansion and contraction of the right
arm.

Proof. We show that the z-translation component, Z3, of the matrix M3 is always
less than or equal to 0. Matrix multiplication shows thatM3 is a translation matrix,
and its z component is:

Z3 = −4(cos(θ) + (1− cos(θ))a2z)

Observe that since ax = −az, this can be rewritten as Z3 = −4(cos(θ) + (1 −
cos(θ))a2x). Now note that the second factor in this expression is precisely the x
component of the (homogeneous) vector Ra(θ)(1, 0, 0, 0)T . (See Equation (A.1)
for Ra(θ).) Let 0 ≤ θ ≤ θmax be the range of θ that takes the unit between
straight and bent position. Under the rotational requirement (3.d) of our generic
model, we have that Ra(θmax)(1, 0, 0, 0)T = (0, 0,−1, 0)T . We give a geometric
argument that vector Ra(θ)(1, 0, 0, 0)T stays in the positive x halfspace, for 0 ≤
θ ≤ θmax. Recall that ax, ay ≥ 0 and ax = −az (by rotational requirements (3.b)
and (3.d), adjusted for the orientation of U3). Thus when vector a is rooted at
the origin, its tip may lie anywhere on the quarter circle in the ax = −az plane
that is delimited by vectors (0, 1, 0) and (1/

√
2, 0,−1/

√
2). For each of these

two delimiting vectors and a third intermediate vector in this range, Figure A.12
illustrates the corresponding circular motion path (in green) that is traced by the
tip of vector Ra(θ)(1, 0, 0, 0)T , as it rotates between the +x and −z axis. The

23

+x

+y

-z
(0,1,0)

(1,0,1)/ 2�
(1,1,1)/ 3�

Figure A.12: Paths traced by tip of vector as it rotates between the positive x axis and the−z axis,
for three rotation axes.

full rotation circles are shown (in thin black) to give better perspective. Note that
each rotation circle is labeled with its corresponding rotation axis. The rotation
axes are not illustrated, but they are perpendicular to the plane containing the
corresponding rotation circle. Observe that in each case the (green) path swept
out is confined to the (x ≥ 0, y ≤ 0, z ≤ 0) octant. Since the x component is
positive throughout the sweep, we have (cos(θ) + (1 − cos(θ))a2x) ≥ 0 and thus
Z3 ≤ 0.

Next we show that the y-translation component, Y3, of matrix M3 is always
less than or equal to 0. The value of Y3 is:

Y3 = −4((1− cos(θ))azay + sin(θ))ax)

Since ax = −az, the right term can be rewritten as 4((1−cos(θ))axay +sin(θ)az).
Note that the second factor in this expression is the y component of the vector
Ra(θ)(1, 0, 0, 0)T . As discussed above, the y component of this vector is at most
zero as it rotates between the +x and −z axis, and so we have that Y3 ≤ 0. �

24

