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Abstract— Modular robots consist of many small units that
attach together and can perform local motions. By combining
these motions, we can achieve a reconfiguration of the global
shape. The term modular comes from the idea of grouping
together a fixed number of units into a module, which behaves
as a larger individual component.

Recently, a fair amount of research has focused on Crystalline
robots, whose units (and modules) fit on a cubic lattice. When
the proper module size is formed, these robots can reconfigure
in linear time within a rather physically restrictive model, or in
O(log n) time in a more unrestricted theoretical model.

In this paper, we show that the results for Crystalline robots
also apply to two other modular robots: M-TRAN and Molecube.
The common requirement, for each robot type, is that a fixed
number of units combine to create modules of specified shapes.
In this way, we are able to simulate the actions of Crystalline
modules. Previous reconfiguration bounds thus transfer automat-
ically, as long as the robots are composed of the module shapes
that we specify.

Index Terms— self-reconfiguring modular robots, cubical units,
lattice reconfiguration.

I. INTRODUCTION

A self-reconfiguring modular robot consists of a large num-
ber of independent units, or atoms, that can arrange themselves
into a structure best suited for a given environment or task.
For example, a robot may reconfigure into a thin, linear shape
to facilitate passage through a narrow tunnel, transform into
an emergency structure such as a bridge, or surround and
manipulate objects. Because modular robots comprise groups
of identical atoms, they are also more easily repaired, by
replacing damaged atoms with functional ones. Such robots are
well-suited for working in unknown and remote environments.

A variety of atom structures have been designed and pro-
totyped in the robotics community, differing in shape and in
the operations they perform. We focus here on lattice-based
modular robots in which atoms are arranged on a regular grid.
Crystalline robots [4] are one such example. A crystalline atom
is a cubical device equipped with an expansion/contraction
mechanism that allows it to extend each face out and retract
it back. When extended, a face is twice as far from the cube’s
center when compared to its retracted distance. Each cube

face has an attachment mechanism that allows it to attach
to (or detach from) adjacent atoms. When groups of atoms
perform these operations (expand, contract, attach, detach) in
a coordinated way, the atoms move relative to one another,
resulting in a reconfiguration of the robot (see Fig. 1).

Several universal reconfiguration algorithms are available
for transforming a crystalline robot from one configuration
to another. Common to all is the requirement that atoms are
grouped into modules.

In the most restricted model, where atoms are assumed to
have fixed strength and are able to move only at fixed speed,
any reconfiguration is possible in linear time, using modules of
2×2×2 atoms. The total number of atom operations (counting
multiple steps per time unit) is O(n2), and both bounds
are worst-case optimal [2]. This model even restricts the
communication range and on-board memory of each atom.

The total number of atom operations can be reduced to
O(n), although the static forces required may become linear
instead of constant [1].

When constant force is required, but velocities are allowed
to build up over time, reconfiguration is possible in O(

√
n)

time in 2D, using the third dimension as an intermediate [9].
By removing all such assumptions and restrictions, any

reconfiguration is possible in O(log n) time, using O(n log n)
total operations; however, the module size increases to 32×32
for 2D reconfiguration [3]. A straightforward (yet unpublished)
extension of this result achieves the same asymptotic bound in
3D, using larger but still constant-sized cube-shaped modules.

As far as we know, similar bounds for other lattice-based
modular robots such as Molecube [15] and M-TRAN [7] are
not yet known. In fact, we believe that most modular robots are
capable of the same theoretical bounds, given an appropriate
module design. For a comprehensive list of modular robot
types, see [8, 13].

In this paper we show that M-TRAN and Molecube robots
can also be efficiently reconfigured up to a scale factor.
In other words, much like in previous work on Crystalline
robots, reconfiguration assumes (and exploits) the existence
of specifically constructed modules. Reconfiguration bounds
apply to robots whose basic building block is such a module,
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Fig. 1. Crystalline robot reconfiguration (2D example). Atoms can attach to neighbors, and expand/contract their arms. [Figure from [3].]

as opposed to the finer atoms themselves. Unlike most previ-
ous work, however, the modules we use are not space-filling.

Our method involves simulating a Crystalline atom with
a module of M-TRAN or Molecube atoms. For both cases
that we consider, the module shape has a six-arm structure,
called a 6-arm, that can simulate the operations of a crystalline
atom. Thus, a robot constructed from 6-arms can reconfigure
using any of the existing Crystalline algorithms (in fact the
robot must be constructed from even larger modules of 6-
arms, in accordance to the k × k × k requirements in each
existing Crystalline algorithm). We believe that the techniques
developed here can be applied to other types of modular robots
such as PolyBot G3 [12], Superbot [10, 5], RoomBot [11], and
ATRON [6].

II. THE 6-ARM MODULE FOR M-TRAN AND MOLECUBE

A. M-TRAN and Molecube atoms
An M-TRAN atom [7] consists of two identical elements

connected by a link. An element can be viewed as a half cube
glued to a half cylinder, as depicted in Fig. 2a; the bounding
box of an element is a unit cube.
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Fig. 2. The M-TRAN atom; (a) An M-TRAN element: front, back and bottom
faces are equipped with attachment mechanisms; (b) Straight M-TRAN atom;
(c) Bent M-TRAN atom.

An M-TRAN atom is equipped with six attachment mech-
anisms, one for each of its flat faces (three per element).
Each element can rotate independently about its axis by
±90◦, so that any of the bounding box faces can have an
attachment mechanism, if necessary. Fig. 2(b,c) shows two
possible orientations of the two elements of an M-TRAN atom
with respect to each other. We say that the M-TRAN atom sits
in a straight position in Fig. 2b (all flat faces are vertical), and
in a bent position in Fig. 2c. The arrow in Fig. 2b indicates
the in-place 90◦-rotation about the z-axis performed by the
rotating right element, that leads to the bent position.

A Molecube atom [14, 15, 16] is a cubical structure (with
rounded corners) equipped with a magnetic attachment mech-
anism on each of its faces. A diagonal cut extending from the
top to the bottom face separates the cube into two triangular
prisms (see Fig. 3a). This allows the atom to rotate its two
halves about a symmetry axis orthogonal to the cut plane and
passing through the center of the cube.

In both models, the rotating component temporarily exceeds
its unit cell. However it never extends beyond half a unit in
any direction.
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Fig. 3. (a) Molecube atom; (b→c) Transition of a Molecube block
from straight to bent position through a counterclockwise rotation; (d→e)
Clockwise rotation.

We define a Molecube block as two atoms attached face-
to-face, as shown in Fig. 3b. The attachment is such that the
axis of rotation for the right-hand atom is parallel to (1, 1, 1).

A given face – say, the right face R, as shown in Fig. 3b –
can rotate (by 120◦ counterclockwise) to an adjacent position
as shown in Fig. 3c. Note that the transition depicted in Fig-
ures 3(b→c) is functionally similar to the transition depicted in
Figures 2(b→c). As before, we refer to the configuration of the
Molecube block from Fig. 3b as straight, and the configuration
from Fig. 3c as bent. Figures 3(d→e) illustrate the effect of a
clockwise rotation.

From this point on, we will simply refer to an M-TRAN
atom as a block as well.

B. Design of 6-arm
We now show how to design a 6-arm that is suitable

for M-TRAN and Molecubes. Recall that a 6-arm is meant
to simulate the four Crystalline atom operations – expand,
contract, attach and detach. Our structure1 consists of six arms
connected to a common 2×2×2 center piece (see Fig. 4).

(a) (b)
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Fig. 4. A 6-arm module: (a) The four “horizontal” arms ; (b) entire structure
from a different viewpoint (horizontal arms are now yellow).

Notice the alternating colors (red/white) of cubic com-
ponents on the arms. This illustration is in accordance to

1For additional material including animations, the reader may visit:
http://www.csc.villanova.edu/∼mdamian/6arm
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Figures 2-3, and is meant to show adjacent elements (for M-
TRAN) or atoms (for Molecube). Each block is marked by a
black segment that connects a white cube to a red cube.

An arm can be viewed as a chain with four joints. A joint
is a block which we allow to straighten and bend. An arm
has two functional states: expanded and contracted (much like
a Crystalline atom face). In an expanded state, all joints (and
thus all blocks) of an arm are in a straight position (Fig. 5b for
Molecubes and Fig. 6b for M-TRAN). In its contracted state,
an arm forms a Π-shaped bend (Fig. 5a for Molecubes and
Fig. 6a for M-TRAN). The tip of each arm occupies 2×2 cells
and has an attachment mechanism that allows it to connect to
an adjacent tip of another 6-arm.
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Fig. 5. (a) Contracted Molecube arm. U1 attaches to the center piece of the
6-arm; (b) Extended arm.
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Fig. 6. (a) Contracted M-TRAN arm. U1 attaches to the center piece of the
6-arm; (b) Extended arm.

Observe that when an arm is contracted, the distance from
the tip to the center is 8 lattice units (7 along the arm, and 1
in the center piece). By simultaneously having joints U1, U3,
U5, and U7 straighten, the arm expands, doubling the distance
from tip to center.

An arm expands by rotating (straightening) its joints in
a coordinated way. By performing the four joint rotations
simultaneously, we ensure that the tip attachment moves
parallel to a coordinate axis. This is discussed in Section III.

Next we discuss the details of constructing an arm. Fix a
coordinate system with the origin at the center of the 2×2×2
center piece. Let the terms right, left, top, bottom, front, and
back refer to the +x, −x, +y, −y, +z, −z directions, respec-
tively. For ease of presentation, we focus on the right arm only.
As seen in Fig. 5a, it is composed of nine blocks U1, . . . , U9,
of which four behave as joints. The first eight blocks rest in
a horizontal plane, whereas U9 attaches directly above U8;
the reason for this particular attachment is to perfectly align
the arm tip with the center piece. The center piece comprises

four blocks arranged in a 2×2×2 configuration, as illustrated
in Fig. 7. The four blocks are all in bent position, with the
two right blocks oriented horizontally and the two left ones
oriented vertically. The six attachment points for the arms are
marked in Fig. 7b. Observe that the right arm attaches to the
lower layer of the center piece, and thus by adding block U9

above the main arm level the tip aligns with the center piece.

left arm

(a) (b) (c)
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top arm 
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Fig. 7. (a) The center piece consists of four blocks in a 2×2×2 grid of cells.
(b) Molecube; (c) M-TRAN; The left and right halves of the center pieces
are shown separated, with dotted lines indicating how the two halves attach
in 3D. Attachment points for the arms are marked.

For M-TRAN, the orientation of blocks is straightforward,
and can be seen easily in Fig. 6a. Each block is positioned so
that an arm can only move within its initial plane.

For Molecubes, the situation is slightly more complicated.
On a Molecube arm, the four joints are oriented so that the
rotation axes of U1 and U3 are parallel, as are the rotation
axes of U5 and U7. To see that this is possible, notice that
U1 in Fig. 5a is an instance of the block shown in Fig. 3b
that has been rotated by 90◦ clockwise (cw) about x; U3 is
an instance of Fig. 3b that has been rotated by 90◦ counter-
clockwise (ccw) about y. With these orientations, both joints
have a rotation axis parallel to (1, 1,−1).

To avoid collisions in the 6-arm, we have designed two
variations of the Molecube arm. Fig. 8 illustrates the design
of the right arm for Molecubes; we call this design a type-A
arm. In a type-A arm, the rotation axis used by joints J1 and
J3 is parallel to (1, 1,−1), and the rotation axis used by J5

and J7 is parallel to (1,−1, 1). Fig. 8b shows the arm position
after J1 and J5 rotate by −60◦ and J3 and J7 rotate by 60◦.
Note that the tip of the arm has translated along the x-axis.
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Fig. 8. Type-A Molecube right arm: (a) Contracted state; (b) After J1 and
J5 rotate by angle −60◦, while J3 and J7 rotate by 60◦; (c) Space swept
by the arm through a rotation of 120◦ (view from x = +∞).

An alternate design for the right arm is depicted in Fig. 9a;
we will refer to this as a type-B arm. In the type-B arm, the
rotation axis used by joints J1 and J3 is parallel to (1,−1,−1),
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and the rotation axis used by J5 and J7 is parallel to (1, 1, 1).
The arm extends by rotating its joints in directions opposite
to those of a type-A arm. Fig. 9b shows the arm position after
J1 and J5 rotate by 60◦ and J3 and J7 rotate by −60◦.

y

xz

J 1

J 3

J 5

J7

(a) (b)

J 1

J 3 J 5

J7

(c)

Fig. 9. Type-B Molecube right arm: (a) Contracted state; (b) After J1 and
J5 rotate by 60◦, while J3 and J7 rotate by −60◦; (c) Space swept by the
arm through a rotation of 120◦ (view from x = +∞).

The main difference between the type-A and type-B arms
is the space swept during extension/contraction (see Fig. 8c
vs. 9c). We carefully design the Molecube 6-arm so that the
spaces swept by the six arms are disjoint and therefore no
collisions occur. This is achieved as follows: the right and back
arms are type-A, and the top, bottom, front and left arms are
type-B.

Our 6-arm design works with both the Molecube and M-
TRAN models, which differ only in the orientations of the
rotation axes and the amount of rotation required for a joint
to transition between its bent and straight positions.

III. SIMULATION OF CRYSTALLINE ATOM OPERATIONS

In this section we prove that a 6-arm can simulate the
operations of a Crystalline atom.

For a fixed coordinate system, let Rv(θ) denote the 4×4
matrix that rotates a (homogeneous) point by θ degrees (ccw)
about an axis parallel to the unit vector v = (vx, vy, vz)
with fixed point at the origin. Let T (dx, dy, dz) denote the
translation matrix that translates a point by dx, dy and dz

units in the directions x, y and z, respectively. Let Ji denote
the rotating half of Ui, for i = 1, 3, 5, 7, and let Oi denote the
center of Ji. We denote the x-coordinate of Oi by x(Oi).

Lemma 1: Throughout the expansion/contraction of the
right arm, the component connecting J3 and J5 remains
parallel to the x-axis and does not rotate about O3O5.

Proof: The matrix that determines the position and
orientation of J3 relative to O1 is given by

Ra(−θ)T (0, 0,−4)Ra(θ) (1)

where a is the rotation axis of J1 and J3. For any axis a, the
two rotations in the matrix product cancel each other out, and
the net result is that J3 undergoes only translational motion.
This suffices for our proof because the component between J3

and J5 moves rigidly with J3.

The next lemma is very intuitive and its formal proof is
given in the appendix.

Lemma 2: Throughout the expansion/contraction of the
right arm, x(O1) ≤ x(O3) < x(O5) ≤ x(O7).

Lemma 3: During the expansion/contraction of the right
arm, the attachment at its tip moves parallel to the x-axis.

Proof: By Lemma 1, the midpoint m of the segment
O3O5 undergoes a translation. Furthermore, by Lemma 2, this
motion is x-monotone.

We can divide the arm into two halves, which are mirror
images of each other, through a plane parallel to x=0, con-
taining m. The second half can follow the motions of the first
half symmetrically, in order to complete the desired motion.

Let a be the rotation axis for the first two joints, and b the
axis for the last two joints. Let θ be the amount of rotation for
each joint. Formally, the matrix that determines the position
of J7 relative to O1 is

Ra(−θ)T (0, 0,−4)Ra(θ)T (4, 0, 0)Rb(−θ)T (0, 0, 4)Rb(θ) (2)

Recall that we have chosen a and b to satisfy (ax, ay, az) =
(bx,−by,−bz). Then the product in equation (2) is a transla-
tion matrix having zero y- and z-components and a positive
x-component.

Lemma 4: An arm does not self-intersect during expan-
sion/contraction.

Proof: We prove the claim for the right arm. By
Lemma 1, the segment O3O5 remains parallel to the x-axis
throughout the arm motion, meaning that x(O3)+4 = x(O5).
Along with Lemma 2, this implies that

x(O1) + 4 ≤ x(O3) + 4 = x(O5) ≤ x(O7)

Thus any pair of points in the set defined by the Cartesian
product {O1, O3}×{O5, O7} are separated by at least 4 units
in the x-dimension. This guarantees non self-intersection for
the right arm. By symmetry, the arguments hold for the other
arms as well.

Theorem 1: A 6-arm always remains inside the axis-aligned
bounding box determined by the tips of its arms.

Proof: Our claim is equivalent to saying that the tip of
the right arm is always the point with strictly maximum +x
coordinate. The range of the right tip is 8 ≤ x ≤ 16. It suffices
to show that no other arm ever enters the x≥8 halfplane.

The length of any arm is 15. One end of the arm is anchored
to the center piece and the tip is constrained to a coordinate
axis, by Lemma 3. Furthermore, by Lemma 1, the segment
O3O5 is constrained to be parallel to this axis.

Therefore the arm is confined within a cylindrical region
aligned with the coordinate axis, with radius strictly less than
6. Thus the cylindrical region avoids the x≥8 halfplane.

Define the octant of the right arm as the intersection of three
halfplanes: (x≥1, y≤1, z≤1). This contains the right arm in
its contracted position. Notice that two of the octant boundary
halfplanes are tangent to the arm tip, and all three are tangent
to the center piece. The origin of the octant is on a corner of
the center piece, on the same face but diagonally across the
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connection of the right arm. The octant of each other arm can
be defined symmetrically.

Lemma 5: An arm remains within its own octant during
expansion/contraction.

Proof: We only focus on the expanding motion of the
right arm in this proof. Other arms are handled symmetrically.
First note that the right arm is type-A. Recall that, because it
is horizontal, this means that some of its components will
temporarily move downward.

By Lemma 2 and the fact that x(O1) = 2.5, we know that
the arm lies within the x≥1 halfplane.

Next we show that the right arm stays in the z≤1 halfplane.
Consider an arm component between the rotating halves of two
consecutive joints. Among all points on such a component,
the point with the highest z-coordinate must lie on a joint
(i.e, on one of the component endpoints). Thus, it suffices to
focus only on the z-coordinates of joints (J1, J3, J5, J7). Note
that for any point p∈J1, z(p)≤1. Also observe that, for any
point p∈J3, the value of z(p) is no greater than 1 plus the
z-translation component of the matrix

M3 = Ra(−θ)T (0, 0,−4)Ra(θ) (3)

Simple calculations (detailed in the Appendix) show that the
z-component of M3 is never greater than 0 for the values of
a and θ restricted to the M-TRAN and the Molecube models.
This implies that z(p)≤1 for any p ∈ U3. By Lemma 1, the
same holds true for p ∈ U5. Finally, by Lemma 3 and the fact
that U7 is glued to the arm tip, we conclude that z(p)<1, for
any p ∈ U7.

The calculations regarding the y≤1 constraint are similar.
It can be verified that the y translation component of M3 is
never positive (see proof in the appendix).

Theorem 2: A 6-arm cannot self-intersect.
Proof: By Lemma 4, no arm self-intersects. By definition

of the six octants, it can be verified that no octants intersect.
By Lemma 5, this means that no two arms intersect.

Because a 6-arm always avoids self-intersection (Theo-
rem 2), stays within the bounding box determined by its tips
(Theorem 1), and each tip moves only along the normal of its
axis-aligned face (Lemma 3), we conclude that an M-TRAN
or Molecube 6-arm correctly simulates a Crystalline atom.

IV. EFFICIENCY OF 6-ARM RECONFIGURATION FOR
M-TRAN AND MOLECUBES

We have established that a 6-arm simulates one Crystalline
atom. Moreover, the number of atoms used to construct a
6-arm is constant, for both prototyped robots that we have
considered. Thus any motion carried out by a 6-arm can
be considered to use constant force and achieve constant
velocities. In other words, our 6-arm construction does not
affect any of the models considered in the literature. Let a 6-
arm k-module be a k×k×k collection of 6-arm modules. By
substituting 6-arm modules for Crystalline modules, in prior
work in the literature, we obtain identical upper bounds, while
worst-case optimality is obtained in an almost identical way:

Theorem 3: [1] We can universally reconfigure n 6-arm 2-
modules in O(n) time using O(n) operations.

We note here that the number of operations in Theorem 3
is asymptotically optimal in the worst case. In [1] this was
demonstrated by a simple example of reconfiguring from a
horizontal line to a vertical line. However, for M-TRAN and
Molecube, this can be done in constant time. Instead, we can
use the simple reconfiguration from all blocks straight, to an
alternating straight-bent pattern. Then every other block must
reconfigure.

Theorem 4: [3] We can universally reconfigure n 6-
arm constant-size modules in O(log n) parallel steps and
O(n log n) operations.2 The number of parallel steps is op-
timal for labeled modules.

Theorem 5: [2] If only constant forces and velocities are
allowed, we can universally reconfigure n 6-arm 2-modules in
O(n) parallel steps and O(n2) operations, and these bounds
are optimal in the worst case. Furthermore, this can be done
using only constant memory per atom, and with only local
communication.

We note that the worst-case optimality cannot be deduced
directly from [2], because we have only proved a one-way
reduction. However, the same reasoning and example suffice:
reconfiguring from a horizontal straight configuration to a
vertical straight configuration. First, a constant fraction of the
modules must change their vertical coordinate by an additive
Ω(n), for a total change of Ω(n2). Second, each constant-
force operation changes the vertical coordinates of a constant
number of modules by an additive constant, for a total change
of O(1). Therefore, the total number of operations must be at
least the ratio Ω(n2). Each parallel step can perform at most
O(n) operations (one per unit), so the total number of parallel
steps must be Ω(n2/n) = Ω(n).

Theorem 6: [9] If constant forces are required (but velocity
is unrestricted), we can universally reconfigure n 6-arm 2-
modules in O(

√
n) time, using the third dimension as an

intermediate.

V. COMMENTS AND FUTURE WORK

Our results show that certain modular robots can be recon-
figured within the same asymptotic time bounds as Crystalline
robots, provided an appropriate module structure is used. It
remains interesting to construct smaller custom-made modules
for each robot type, in hope of achieving the same bounds. It
would also be interesting to use space-filling modules (densely
filling a k×k×k cube) or prove such a reduction impossible.

Another interesting question is whether any modular robot
is fundamentally more powerful than Crystalline. Essentially
this can be rephrased as asking whether any modular robot
can reconfigure in o(log n) time, because other bounds seem
to be tight for any model.

2The result in [3] is restricted to 2D and the constant is 32, but a
straightforward extension applies to 3D. The best constant remains to be
rigorously verified.
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M-TRAN and Molecubes can be viewed as representative
examples of two main types of hinge models. The former is
edge-hinged and the latter is central-point-hinged.

We believe that several other (in particular, hinged) modular
robots can be handled in the same way as presented here.
In fact, our aim is to characterize a generic block, with a
list of required properties that suffice for it to be used in the
construction of a “global” 6-arm model. This will allow for
a relatively simple way to verify that many modular robots
can simulate Crystalline atoms. In fact, the number of specific
atoms used to build the generic block will directly give the
sufficient 6-arm module size in each case.
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[3] Greg Aloupis, Sébastien Collette, Erik D. Demaine, Stefan Langerman,
Vera Sacristán, and Stefanie Wuhrer. Reconfiguration of cube-style
modular robots using O(log n) parallel moves. In Proc. 19th Intl. Symp.
on Algorithms and Computation (ISAAC), volume 5369 of LNCS, 2008.

[4] Zack Butler, Robert Fitch, and Daniela Rus. Distributed control for
unit-compressible robots: Goal-recognition, locomotion and splitting.
IEEE/ASME Trans. on Mechatronics, 7(4):418–430, 2002.

[5] Harris Chiu, Michael Rubenstein, and Wei-Min Shen. Multifunctional
superbot with rolling track configuration. In IROS’07: Workshop on
Self-Reconfigurable Robots & Systems and Applications, pages 50–53,
November 2007.

[6] Morten Winkler Jørgensen, Esben Hallundbæk Østergaard, and Hen-
rik Hautop Lund. Modular ATRON: Modules for a self-reconfigurable
robot. In Proc. of the International Conference on Intelligient Robots
and Systems, pages 2068–2073, 2004.

[7] Haruhisa Kurokawa, Kohji Tomita, Akiya Kamimura, Shigeru Kokaji,
Takashi Hasuo, and Satoshi Murata. Self-reconfigurable modular robot
m-tran: distributed control and communication. In RoboComm ’07:
Proceedings of the 1st international conference on Robot communication
and coordination, pages 1–7, Piscataway, NJ, USA, 2007. IEEE Press.

[8] Satoshi Murata and Haruhisa Kurokawa. Self-reconfigurable robots:
Shape-changing cellular robots can exceed conventional robot flexibility.
IEEE Robotics & Automation Magazine, 14(1):43–52, 2007.

[9] John H. Reif and Sam Slee. Optimal kinodynamic motion planning
for self-reconfigurable robots between arbitrary 2D configurations. In
Robotics: Science and Systems Conference, Georgia Institute of Tech-
nology, 2007.

[10] Wei-Min Shen, Maks Krivokon, Harris Chiu, Jacob Everist, Michael
Rubenstein, and Jagadesh Venkatesh. Multimode locomotion via super-
bot reconfigurable robots. Autonomous Robots, 20(2):165–177, 2006.

[11] Alexander Sproewitz, Aude Billard, Pierre Dillenbourg, and Auke
Ijspeert. Roombots-mechanical design of self-reconfiguring modular
robots for adaptive furniture. In International Conference on Robotics
and Automation, 2009. To appear.

[12] Mark Yim, Kimon Roufas, David Duff, Ying Zhang, Craig Eldershaw,
and Sam Homans. Modular reconfigurable robots in space applications.
Auton. Robots, 14(2-3):225–237, 2003.

[13] Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll,
Hod Lipson, Eric Klavins, and Gregory S. Chirikjian. Modular self-
reconfigurable robots systems: Challenges and opportunities for the
future. IEEE Robotics & Automation Magazine, 14(1):43–52, 2007.

[14] Victor Zykov, Andrew Chan, and Hod Lipson. Molecubes: An open-
source modular robotics kit. In IROS-2007 Self-Reconfigurable Robotics
Workshop, 2007.

[15] Victor Zykov, Efstathios Mytilinaios, Bryant Adams, and Hod Lipson.
Self-reproducing machines. Nature, 435(7038):163–164, 2005.

[16] Victor Zykov, Phelps Williams, Nicolas Lassabe, and Hod Lipson.
Molecubes extended: Diversifying capabilities of open-source modular
robotics. In IROS-2008 Self-Reconfigurable Robotics Workshop, 2008.

APPENDIX

Proof of Lemma 2. Fix a coordinate system with origin at
the center of the rotating half of U1. Then x(U1) = 0 remains
true throughout the expansion motion. The value of x(U3) is
given by the x-translation component of the matrix M3 =
Ra(−θ)T (0, 0,−4)Ra(θ) from (3). Recall that azax= −1 for
Molecubes, and azax=0 for M-TRAN. Thus

x(U3) = −4(1− cos(θ))azax + 4sin(θ)ay

≥ −4(1− cos(θ))azax (as ay ≥ 0 and sin(θ) ≥ 0)
≥ 0 (as azax ≤ 0 and 1− cos(θ) ≥ 0)

Thus we obtain the relation x(U1)≤x(U3). The value of
x(U5) is given by the x-translation component of the ma-
trix M3T (4, 0, 0)Rb(−θ), which shows that x(U5)=x(U3)+4.
Finally, x(U7) is given by the x translation component of
Ra(−θ)T (0, 0,−4)Ra(θ)T (4, 0, 0)Rb(−θ)T (0, 0, 4)Rb(θ).
It can be shown that

x(U7) = −8azax + 8cos(θ)azax + 8sin(θ)ay + 4
= 2 ∗ x(U3) + 4
= x(U5) + x(U3)
≥ x(U5) (as x(U3) ≥ 0)

Proof of Lemma 5. We show that the z-translation component
of the matrix from (3) is always less than or equal to 0.
Call this component Z3. The value of Z3 is given by the z-
translation component from (3):

Z3 = −4(cos(θ) + (1− cos(θ))a2
z)

It can be easily verified that Z3 ≤ 0 for the values of az and
θ imposed by the Molecube and M-TRAN models.

Next we show that the y-translation component of the matrix
from (3) is always less than or equal to 0. Call this component
Y3. The value of Y3 is given by the y-translation component
from (3):

Y3 = −4((1− cos(θ))azay + sin(θ))ax)

It can be easily verified that Y3 ≤ 0 for the values of a and θ
imposed by the Molecube and M-TRAN models.


