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Abstract. Nintendo’s Mario Kart is perhaps the most popular racing
video game franchise. Players race alone or against opponents to finish in
the fastest time possible. Players can also use items to attack and defend
from other racers. We prove two hardness results for generalized Mario
Kart: deciding whether a driver can finish a course alone in some given
time is NP-hard, and deciding whether a player can beat an opponent
in a race is PSPACE-hard.

1 Introduction

Mario Kart is a popular racing video game series published by Nintendo,
starting with Super Mario Kart on SNES in 1992 and since adapted to
eleven platforms, most recently Mario Kart 8 on Wii U in 2014; see Ta-
ble 1. The series has sold over 100 million game copies, and contains the
best-selling racing game ever, Mario Kart Wii [Gui14]. The games fea-
ture characters from the classic Nintendo series Super Mario Bros. and
Donkey Kong.

In this paper, we analyze the computational complexity of most Mario
Kart games, showing that optimal gameplay is computationally intractable.
Our results follow a series of recent work on the computational complex-
ity of video games, including the broad work of Forisek [For10] and Vigli-
etta [Vig14] as well as the specific analyses of classic Nintendo games
[ADGV15].

In Mario Kart, each player picks a character and a race track. There
are three modes of play: players race against each other (racing), a player
races alone to finish in the fastest time possible (time trial), and players
battle in an arena (battle). We focus here on the first two modes. Each
race track features its own set of obstacles and geometry.
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Game Title Game System Release Date Sales 3D?

1. Super Mario Kart Super NES August 27, 1992 8.76M no
2. Mario Kart 64 Nintendo 64 December 14, 1996 9.87M yes
3. Mario Kart: Super Circuit Game Boy Advance July 21, 2001 5.47M no
4. Mario Kart: Double Dash!! Nintendo GameCube November 7, 2003 6.95M yes
5. Mario Kart DS Nintendo DS November 14, 2005 23.56M yes
6. Mario Kart Wii Wii April 10, 2008 35.53M yes
7. Mario Kart 7 Nintendo 3DS December 1, 2011 12.19M yes
8. Mario Kart 8 Wii U May 29, 2014 5.87M yes

9. Mario Kart: Arcade GP arcade October 2005 ? yes
10. Mario Kart: Arcade GP 2 arcade March 14, 2007 ? yes
11. Mario Kart: Arcade GP DX arcade July 25, 2013 ? yes
Table 1. History and total sales [Sal] of Mario Kart. Our results apply to all games
with 3D tracks.

A particularly distinctive feature of Mario Kart is that players may
acquire items (also known as power-ups). Items temporarily give players
special abilities. Each Mario Kart game has its own set of items, but two
items are common to all Mario Kart games: Koopa shells and bananas.
Koopa shells come in multiple colors; our reduction only uses the green
shells, which we refer to simply as shells. Shells are shot at other players
and, upon contact, temporarily stun them, reducing their speed and con-
trol. Bananas can be dropped by players along the track, and any player
who runs over a banana becomes temporarily stunned. Crucially, shells
can destroy bananas.

In this paper, we consider generalized versions of time trial and racing.
We allow race tracks to be any size and have carefully placed items on
the track. We more precisely define our model of the game in Section 2.
In Section 3, we show that time trial is NP-hard, that is, it is NP-hard
to decide whether a lone player can finish a race track in time at most t.
In Section 4, we show PSPACE-hardness of racing: it is PSPACE-hard to
decide whether a player can win the race against even a single opposing
player. Finally, Section 5 considers upper bounds.

The items used in our reductions are present in all Mario Kart games.
Our reductions use the “Rainbow Road” style of racetrack. These tracks
are present in every game, but our reductions require them to be three-
dimensional, which they are in Mario Kart 64 and in every game since
Mario Kart: Double Dash!!. The proofs thus apply to nine of the Mario
Kart games (Games 2 and 4–11 in Table 1). Super Mario Kart and Mario
Kart Super Circuit lack tracks with multiple altitudes, presumably from
the lack of power in the Super NES and Game Boy Advance systems, and
so our proofs do not apply to them.



Fig. 1. Screenshots of Rainbow Road tracks from Mario Kart 1–8 (Table 1).

2 Model

In our mathematical model of Mario Kart, each player’s state consists of a
position, orientation, and speed. The track is a two-dimensional surface in
Euclidean 3-space. The player generally controls their acceleration, with
limits on speed and position imposed by the track. Leaving the bounds
of the racetrack does not result in death, with players being respawned
on the track after a significant speed and time penalty.

Computationally, we assume that we can compute the optimal traver-
sal of a track described by a constant number of real parameters, and that
this optimal traversal time typically changes continuously with the real
parameters. This allows us to, for example, tweak multiple pieces of the
track to have nearly identical optimal traversal times. In fact, we require
that these assumptions hold only up to an error factor of 1 + O(1/nc),
that is, up to O(log n) bits. We leave to future work the careful analysis



of the physics and geometry of actual Mario Kart implementations, and
the evaluation of the validity of our assumptions.3

Players obtain items from item boxes which are at fixed locations on
the track, and regenerate after a fixed amount of time. We use two kinds
of items common to all Mario Kart games to date, each of which can be
used only once:

1. Bananas. Bananas are slippery. When a player drives over
a banana (or is hit by one), the driver slips and spins tem-
porarily out of control, resulting in a temporary slowdown.
Bananas can be dropped immediately behind the player,
or thrown up and ahead with a fixed trajectory. Once a
banana lands on the track, there are two ways to remove
it: either a player drives over it, or the banana is hit by a
shell (described below).

2. Green Shells. A green shell is one of the many attacks
in Mario Kart. The player can shoot a green shell like a
projectile. If a green shell hits a driver, the driver is tem-
porarily knocked out. A green shell can also remove a ba-
nana if the banana is hit first. (Green shells should not
be confused with red shells, which can lock onto a target
driver.) Green shells follow a particular direction, are sub-
ject to gravity, and bounce off of walls. After some time,
green shells become inactive and disappear.

A driver can possess only one item at a time. For example, if a driver
picks up a green shell, s/he cannot pick up another item until s/he uses
the green shell. However, in most Mario Kart games (with the notable
exception of Mario Kart 8), it is possible to “use” a green shell or banana
without throwing it: a driver can hold a green shell or banana behind the
car before throwing it, allowing them to pick up one additional item. The
items still must be used in order.

In our reductions, we will assume that some bananas have already
been placed on the track, but this does not occur in any real Mario Kart

3 We conjecture that implementations model the position and velocity vector of a
player by floating-point numbers, discretize time into fixed-duration intervals, and
model the track by a collection of succinctly describable segments and turns. For a
sufficiently fine discretization of time, this model should approach our continuous
model. To compute the optimal traversal time of a constant-complexity track, we
can finitely sample the position/velocity space and search the resulting state graph.
We conjecture that a polynomial-resolution sampling suffices to approximate the
optimal traversal time to the needed 1 + O(1/nc) accuracy for our reductions.



tracks. In fact, we assume that the game has already been played for some
time, e.g., previous laps of the track, and the computational question is
whether Player 1 can win within one final lap from the given track config-
uration. We can easily add “initialization” paths and banana item boxes
to the track, ensuring that the initial configuration of placed bananas
would actually be reachable from an initially empty track. By making
these initialization paths very long, they will not affect optimal play of
the final lap under consideration.

In this way, we can also assume that two players start at very dif-
ferent positions on the track. The finish line is shared between the two
players, but is fairly wide. Thus we can cross the finish line with two
equally elevated and separated paths for the two players, guaranteeing no
interaction near the finish, to effectively allow distinct goal locations for
the two players.

3 Time Trial is NP-Hard

First we study the following solo (“time trial”) variant of Mario Kart:

Theorem 1. It is NP-hard to determine whether a driver can finish a
given course in at most t time, in the absence of opponents.

3.1 Proof Structure

The reduction is from 3SAT. Given a Boolean formula φ with variables
x1, x2, . . . , xn, we build a level with the “Rainbow Road” style. The driver
first drives through each variable gadget in sequence. In each variable
gadget, the player can decide whether to set each variable to true or
false. After setting all the variables, the driver must traverse each clause
gadget. The driver will be able to complete the level without delay if and
only if the variable assignments chosen in the gadgets form a satisfying
assignment for φ.

Figure 2 gives a schematic overview of the reduction. Each node la-
beled xi corresponds to a variable gadget, and each node labeled ci cor-
responds to a clause gadget. The solid lines correspond to the path in the
level. The dashed lines indicate that a variable or its negation is contained
in a given clause. In our case, the dashed lines also correspond to clause
gadgets being reachable by green shells when thrown from the variable
gadgets. We prevent players from following the dashed paths.
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Fig. 2. General reduction structure. Dashed lines correspond to reachability of green
shells.

3.2 Variable Gadget

For each variable xi, we have one variable gadget as shown in Figure 3.
The variable gadget first splits the road into two. The driver must choose
which of the two directions to follow, corresponding to the truth setting
of xi. We refer to the two split roads as literal roads xi and xi. Both literal
roads have the same optimal travel time.

Each literal road has a sequence of visits to clause gadgets correspond-
ing to clauses containing the literal. Literal road xi goes above the clauses
containing the literal xi, and similarly for xi. Each road has a green shell
item which can be fired into the clause gadget. When a literal road is
above each clause, the driver can pick up a green shell and shoot it down
to the clause, where it will remove a banana.

Fig. 3. A variable gadget where
Player 1 assigns xi. Player 1 goes
left to set xi to true, and goes right
to set xi to true.

Fig. 4. Clause gadgets split into three
literals. They are considered false if a
banana remains on the path.



3.3 Clause Gadget

The clause gadget, seen in Figure 4 splits the road into three equal-length
paths, one for each literal, that later merge. Each path has an initially
placed and unavoidable banana. Thus, if any of the bananas has been
destroyed by a green shell, the player can choose that path and traverse
the gadget quickly. Otherwise, the player must hit a banana and incur
a speed and time penalty—assuming that the player is not carrying any
green shells.

3.4 Clearing Held Items

To guarantee that the player traverses the sequence of clause gadgets
without any green shells, we add a clearing gadget between the sequence of
variable gadgets and the sequence of clause gadgets. The clearing gadget,
shown in Figure 5, forces the driver to afterward hold no items (behind
the car or otherwise).

There are actually two different gadgets, depending on whether the
Mario Kart game permits carrying a second item behind the car. For
games where this is impossible (currently just Mario Kart 8), the gad-
get consists of a single green shell item box followed by an already placed
banana. Otherwise, we have two green shell item boxes followed by two al-
ready placed bananas. The distance between the item boxes and bananas
is longer than the lifetime of a shell. Thus, to avoid slowdown from the
bananas, the player must use all storable green shells (either just picked
up or stored from before) and be left holding nothing.

Fig. 5. Two types of
Clear Gadgets.

Fig. 6. A Crossover
Gadget. The vertical
path is placed higher
in the level with a
wall along the track.

Fig. 7. Variable gadget being able
to unlock clause. Once Player 1 as-
signs xi, it can shoot shells to un-
lock clauses where xi appears.



3.5 Crossover Gadget

Crossover gadgets are relatively simple given the three-dimensional nature
of Rainbow Road levels, so one road can pass over another road; see
Figure 6. To ensure that the player does not jump from the upper road
to the lower road, and that the player does not throw a shell from the
upper road to the lower road, we surround the sides of the upper road
with vertical walls, for sufficient length before and after the intersection.

3.6 Putting Gadgets Together

Figure 7 shows how a literal road of a variable gadget interacts with
each clause gadget containing the literal. By bringing the variable road
somewhat close and above the clause road, the player can shoot the green
shell from the variable and destroy the banana in the clause, without
slowing down. This action “unlocks” the clause gadget for later traversal,
corresponding to satisfying the clause.

However, we cannot place the roads too close to each other, or else
the player could jump from the variable road to the lower clause road.
Fortunately, there is a suitable distance traversable by shells but not by
players, because shells move faster than players. (Alternatively, even if
players could move as fast as shells, this property could be arranged by
having the shell bounce off of a floating vertical wall, which the player
could not do.)

Finally we describe how to lay out the gadgets. Because there is a
constant maximum speed that can be attained on a flat track, there a
constant size of gadget with straight tracks as inputs/outputs that guar-
antees two properties: (1) the player cannot traverse from a gadget to
a gadget not logically connected to it, and (2) the player normalizes
to a standard maximum straight-away speed before entering the next
gadget. We use this constant gadget size as our unit size. The literals,
crossovers, and their connecting lines can be laid out orthogonally on an
O(n + m) × O(n + m) unit square grid in polynomial time [BK94]. We
may then need to tweak some of the path distances to have the same
optimal traversal times. If we scale up the grid by a factor of c(n + m),
then we can “wiggle” each track segment on the grid to have length be-
tween c(n + m) and c2(n + m)2, which suffices to unify paths of length
between 1 and O(n + m) on the original grid. It is important that we
are able to make separate tracks take close to the same traversal time
because the reduction separates the winning kart by the constant amount
of time lost by hitting a banana. Because we choose different routes for



each clause and variable, we need to be able to match track lengths with
an accuracy of 1/(n+m)O(1) with only a (n+m)O(1) blowup in size and
using a polynomial amount of computation time. This is covered by our
model assumptions in Section 2. Thus we can lay out the gadgets in a
polynomial-time reduction.

4 Racing is PSPACE-Hard

We now study the following two-player variant of Mario Kart, where
players race against each other:

Theorem 2. It is PSPACE-hard to decide whether Player 1 has a forced
win in a two-player Mario Kart race from given starting positions for the
players.

4.1 Proof Structure

start x1 x2 x3 x4

c3c2c1

y1 y2 y3 y4

clear

threat

Fig. 8. General reduction structure for 2 players. Dashed lines correspond to reacha-
bility of green shells and bananas.

The reduction is from Q3SAT: decide a quantified Boolean formula
φ = ∃x1 : ∀y1 : ∃x2 : ∀y2 : · · · ∃xn/2 : ∀yn/2 : φ′(x1, . . . , xn/2, y1, . . . , yn/2)
where φ′ is in 3CNF, has a satisfying assignment. We construct the track
similar to the NP-hardness proof, but with Player 1 setting the existen-
tially quantified variables and Player 2 setting the universally quantified
variables; refer to Figure 8. As in the proof for NP-hardness, Player 1
will shoot shells from an elevated road to clear bananas from clause gad-
gets. Player 2, who sets the universal quantified variables is on a separate
elevated road throwing bananas into clause gadgets. While each player
sets a variable, the other player is forced along a higher road of the same
traversal time, within visual range so that both players know the vari-
able setting; see Figure 10. This way, we get the alternating behavior



and perfect information while setting variables. The overall path Player 1
takes is slightly shorter than Player 2. So if Player 1 can get through the
clauses without hitting any bananas, s/he will win. If Player 1 runs over
any bananas and slips, Player 2 will win.

Player 2 can “cheat” in a variety of ways, but all of them consume
time. For these cases, Player 1 has an alternative winning path that by-
passes all clauses, but takes longer than if Player 2 plays “straight”. This
threat prevents Player 2 from cheating (in optimal play).

4.2 Clause Gadget

As shown in Figure 11, the clause gadget is a road that splits into one road
per literal, as in the NP-hardness proof. The literals of existentially quan-
tified variables are initially blocked by a banana, as in the NP-hardness
proof, while literals of universally quantified variables are initially empty.

4.3 Variable Gadget

Player 1’s (existential) variable gadgets are the same as in the NP-hardness
proof (Figure 3): each gadget forks to make the player choose between
setting xi or xi to true, with each fork passing by all the clauses con-
taining that literal, so the player can shoot a shell down to remove the
banana from that existential variable’s literal instance.

Player 2’s (universal) variable gadgets have the same structure, but
as shown in Figure 9, the player instead sets yi or yi to false by shooting
bananas (picked up from item boxes in the variable) down into literal
instances in the clause gadgets, filling what was initially empty.

4.4 Putting Gadgets Together

Existential variable gadgets and clause gadgets interact as in the NP-
hardness proof. Universal variable gadgets interact with clause gadgets
at a closer distance, given the lobbed trajectory of bananas. To prevent
Player 2 from jumping down to the clause gadget in this situation, we
can use a vertical wall or rail that is tall enough to block the player but
not tall enough to block a thrown banana.

We use the same crossover gadgets as the NP-hardness proof (Fig-
ure 6), and the same clearing gadget (Figure 5) before Player 1 enters
the sequence of clause gadgets. Everywhere else, whenever a player would
be helped by an item, that item is presented by an item box, so it never
helps to hold onto an item for later. (Note that it does not help to block



Fig. 9. Variable
gadget for Player
2. Player 2 as-
signs yi and grabs
bananas to throw
to the clause
gadgets.

Fig. 10. Observation
of other player.
The variable gad-
get (grayed out)
appears below in
3-dimensional space.

Fig. 11. Clause gadget split into liter-
als. A clause splits into the three lit-
erals which comprise the clause. Note
that since yk is a variable set by Player
2, there is no banana on the path until
Player 2 throws a banana down.

a literal with two bananas instead of just one. A single banana penalty is
enough for Player 2 to win.)

After all variables have been set, Player 1 drives through the clause
gadgets while Player 2 drives along a winding road slightly longer to tra-
verse than the road through the clause gadgets. If all clauses are satisfied
(have at least one literal branch without a banana), Player 1 wins; other-
wise, Player 1 must drive through at least one banana and slow down. In
this case, Player 2 wins, by setting the “slightly longer” amount to strictly
less than the banana penalty. (For a more comfortable construction, we
can repeat every clause k times, allowing the difference to be strictly less
than k times the banana penalty.)

Player 2 can attempt to “cheat” in a couple of ways: traversing both
sides of a universal variable gadget, or waiting to choose the value of a
universal variable gadget until after Player 1 chooses the next variable
(breaking the quantifier structure). In this case, Player 2 will fall behind
relative to the intended traversal. This would be worthwhile if Player 2
could slow down Player 1 substantially as a result, but the availability of
the slightly longer threat path means that Player 1 can avoid all clauses
and thus all slowdowns in this case. Player 1 also cannot afford to cheat
in these ways, because s/he starts with only a small advantage, and is
unable to slow down Player 2.

Gadget layout can be done analogous to Section 3.



5 Conclusion

In practice, players in Mario Kart generally make forward progress on the
track, other than short aberrations caused by attacks, and have knowledge
(via the minimap) of the state of all players. These assumptions imply a
polynomial bound on the length of solutions, which in turn implies that
our results are tight: time trial is NP-complete and racing is PSPACE-
complete. Without the game-length assumption, however, we only know
containment in PSPACE and EXPTIME, respectively, and it is plausible
that we could establish corresponding hardness. With hidden information
(unknown state of the track or items held by opponents), Mario Kart
racing is potentially as hard as 2EXPTIME.
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