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Abstract

In memory of our friend, Ferran Hurtado.

Given a set S = {R1, R2, . . . , R2n} of 2n disjoint open
regions in the plane, we examine the problem of com-
puting a non-crossing perfect region-matching: a perfect
matching on S that is realized by a set of non-crossing line
segments, with the segments disjoint from the regions. We
study the complexity of this problem, showing that, in gen-
eral, it is NP-hard. We also show that a perfect matching
always exists and can be computed in polynomial time if
the regions are unit (or more generally, nearly equal-size)
disks or squares. We also consider the bipartite version of
the problem in which there are n red regions and n blue
regions; in this case, the problem is NP-hard even for unit
disk (or unit square) regions.

1 Introduction

We consider a natural geometric matching problem on pla-
nar regions. Given a set S = {R1, R2, . . . , R2n} of 2n
disjoint regions in the plane, we examine the problem of
computing a non-crossing perfect region-matching: de-
termine whether there exists a set of n pairs of regions,
{(P1, Q1), (P2, Q2), . . . , (Pn, Qn)}, of S (Pi, Qi ∈ S)
such that there exist non-crossing (disjoint interiors) line
segments, piqi, that realize the matching, with pi ∈ Pi,
qi ∈ Qi, and piqi disjoint from the interiors of the regions
of S (i.e., the regions of S are obstacles through which the
edges of the matching are not allowed to pass).

Related Work. This problem is related to two problems
posed by Ferran Hurtado at his Barcelona workshops.

First, Aloupis et al. [4] considered the problem of real-
izing a given matching (i.e., with a pairing of the regions
specified) by a set of non-crossing line segments connect-
ing each pair of regions in the matching. They particularly
studied the problem in which one region of each given pair
is a single point, while the other region is either a discrete
point set or a line segment, possibly in a special config-
uration. The bottleneck version of this problem has been

studied by Abu-Affas et al. [3].
Second, Ábrego et al. [1, 2] studied a variant of geomet-

ric matching, called C-matching, in which a set S of points
are to be matched using regions of a specified type (e.g.,
squares) from a set C; the regions serve as the “edges” of
the C-matching. In a perfect C-matching, each point of S
lies in exactly one of the |S|/2 regions of the C-matching,
and each such region contains exactly two points of S. If
the regions are pairwise-disjoint, the matching is strong.

Preliminaries. We are given a set S = {R1, . . . , R2n}
of 2n disjoint (open) regions; most of our attention is fo-
cused on the case of regions that are circular disks or axis-
aligned squares. The complement, <2 \ (∪iRi) of the set
of regions is a (closed) connected set, which we call the
free space. Consider the region visibility graph, G, whose
nodes are the regions S and whose edges E correspond to
pairs of regions, Ri andRj , that are weakly visible, mean-
ing that there exist points pi ∈ ∂Ri and pj ∈ ∂Rj such
that the line segment pipj lies fully within the free space.
A set of line segments is a non-crossing matching for S
if the segments all lie within the free space, are pairwise
non-crossing (no point lies in the relative interior of two
distinct segments), and there is a matching in the graph G
for which the segments are a geometric realization. Note
that even if the graph G on S has a perfect matching, it
may not be possible to realize it with non-crossing line
segments; see Figure 1(a), where the only realization by
straight segments of a perfect matching on the set of small
and large squares results in two edges crossing in the mid-
dle of the figure. In Figure 1(b), we show a simple case of
circular regions (small and large) for which the graph G is
a star (so only one pair of regions can be matched).

Our Results. We prove that determining whether a non-
crossing perfect matching exists is NP-complete for dis-
joint regions that are squares or disks, not all the same
size. In contrast, we prove that if the regions are (dis-
joint) unit disks/squares, a non-crossing perfect matching
always exists and can be computed efficiently. If the re-
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(a) While the graph G has a per-
fect matching, it has no realiza-
tion with non-crossing straight
segments.

(b) The graph G
is a star; at most
two regions can be
matched.

Figure 1: Examples.

gions are disks/squares with a bounded ratio of largest to
smallest, then one can always find a non-crossing match-
ing that matches a constant fraction of the input regions.
We also consider the bipartite case, in which the input is n
“red” regions and n “blue” regions; we prove that it is NP-
complete to decide whether there is a non-crossing perfect
bipartite matching for unit disks/squares.

2 Hardness

Theorem 1 Given a set S of 2n disjoint disks or axis-
aligned squares in the plane, deciding whether there exists
a non-crossing perfect matching on S is NP-complete.

Proof. [Sketch] Our reduction is from Planar Exactly-1-
in-3-SAT. We focus on the case of axis-aligned squares. In
Figures 3, 4, 2 we show some of the gadgets; not shown
are the (polynomially) numerous “blockers”, which fill the
space around the squares and red/blue edges shown, mak-
ing it so that the only edges possible to consider for the
matching are (essentially) those red/blue edges shown, as
there are no other combinatorially distinct free-space con-
necting segments between pairs of squares. Gadgets for
blockers are shown in Figure 2 (both for squares and cir-
cular disks). A blocker is designed in such a way that the
only way to pair up the objects in the blocker is to make
internal connections that leave the outer bounding objects
unavailable for matching.

In the variable gadget of Figure 3(a), using the red (ver-
tical) edges corresponds to setting the variable to True,
while using the blue (horizontal) edges corresponds to set-
ting the variable to False. Once we commit to the type
of edge (red or blue) matching to the square labelled vi,
we are commited to this choice along the “variable chain”.
Figure 3(b) shows a splitting gadget that allows the sig-
nal from a variable to be split, so that it can propagate to
multiple different clauses. Figure 4 shows three variable
chains connecting to a clause gadget (a single square). In
a solved configuration, one of the dashed blue edges and
one of the dashed red edges will be active, depending on
which unique variable is true. We claim that there is a
non-crossing perfect matching if and only if it is possi-
ble to satisfy all clauses using exactly one true literal per

(a) Blocker using squares.

(b) Blocker using circular disks.

Figure 2: Blocker gadgets.

(a) Variable gadget. (b) Split gadget.

Figure 3: Variable gadgets used in the proof of Theorem 1.

clause. Further, we claim that the entire construction uses
a polynomial number of squares. �

3 Matching Unit Disks and Squares

Theorem 2 Given a set S = {R1, . . . , R2n} of 2n dis-
joint unit-radius disks or axis-aligned unit squares in the
plane, there is always a non-crossing perfect matching on
S, and it can be computed in polynomial time.

Proof. For disksRi, we construct the Euclidean Delaunay
triangulation of the disk centers, pi, in time O(n log n).
We know, from Dillencourt [5], that there is a perfect
matching in the Delaunay triangulation. We match pairs
of disks according to this matching. We then realize the
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Figure 4: Clause gadget, bringing together three variables.

(a) Circular regions.
(b) Square regions.

Figure 5: Proof of Theorem 2.

connections as follows (see Figure 5(a)): for a Delau-
nay edge (pi, pj), with corresponding witness circle Ci,j
(which passes through pi and pj and has no other cen-
ter points interior to it), centered at ci,j , we connect point
p′i ∈ ∂Ri to the point p′j ∈ ∂Rj , where p′i (resp., p′j) is the
“shifted” point on the segment pici,j at distance 1 from pi
(resp., on the segment pjci,j at distance 1 from pj). Then,
the circle C ′i,j centered at ci,j of radius 1 less than the ra-
dius ofCi,j has an interior disjoint from all other unit disks
Rk of S (since Ci,j is empty of unit disk centers, and the
radius ofC ′i,j is 1 less than that ofCi,j). Thus, the segment
p′ip
′
j , which lies within C ′i,j , does not intersect any other

unit disk. Further, the segments p′ip
′
j obtained from De-

launay edges in this way are pairwise non-crossing, since
each such segment has a corresponding witness circleC ′i,j ,
whose interior contains no other shifted points p′k. Thus,
we have obtained a non-crossing perfect matching on the
set S of unit disks.

For squares, we construct the L∞ Delaunay triangula-
tion of the centers of the regions S. We know that the
Delaunay triangulation has a perfect matching (in fact, it
also has a Hamiltonian path; one simple proof is given in
[2]). We match pairs of squares according to such a match-
ing/path. We then realize the connections as shown in Fig-
ure 5(b). �

Theorem 3 Computing a non-crossing perfect matching

on 2n unit disks or axis-aligned unit squares has an
Ω(n log n) lower bound in the algebraic decision tree
model.

Proof. Our reduction is from sorting. Given n distinct in-
tegers {x1, x2, . . . , xn} that are to be sorted, we create an
instance of region matching on a set of 2n − 2 disjoint
small squares, each of side length 1/4, centered on the
points ximin

, ximax
, and xi ± 1/4, for i 6= imin, imax,

along the x-axis. Here, ximin
= mini xi = xπ1

and
ximax = maxi xi = xπn are the smallest and largest of
the input integers, whose sorted sequence (unknown to us)
is given by the permutation π: (xπ1

, xπ2
, . . . , xπn

). (The
values ximin

and ximax
are easily computed in timeO(n).)

For this set of disjoint squares, the only non-crossing per-
fect matching is that which joins the square centered at
ximin with the square centered at xπ2 − 1/4, the square
centered at xπ2

+1/4 with the square centered at xπ3
−1/4,

etc. Thus, the result of the matching (which square is
matched to which square) determines the sorted order of
the input xi. �

Note that if the radii of the regions (disks) can be ar-
bitrary, then it may not be possible to match more than a
single pair of regions; see Figure 1(b). It is interesting to
consider for what ratio of large to small radius can we say
that a perfect matching always exists. For any arrangement
of disks, let rmax (resp., rmin) denote the radius of the
largest (resp., smallest) disk/square. Let ρ = rmax/rmin
be the ratio of the size of the largest to smallest object.
One natural question is whether there is a critical ratio ρ∗S
for squares or ρ∗D for disks, respectively, so that a non-
crossing matching exists for any ratio ρ ≤ ρ∗D or ρ ≤ ρ∗S ,
but not for ρ > ρ∗D, ρ > ρ∗S . As it follows from Theorem 2
that there is a non-crossing matching whenever ρ = 1, the
existence of ρ∗D and ρ∗S would follow from a monotonicity
property. The examples in Figure 6 show that (assuming
existence) ρ∗D ≤ 3 for disjoint disks, and ρ∗S ≤ 1/φ for
disjoint squares, where φ = 0.618 . . . is the Golden Ratio.

1−x

x

x

1

Figure 6: Lower bounds for the critical ratio: Examples
for which no non-crossing perfect matchings exist.

We now consider the question of achieving a matching
(with non-crossing edges) of at least a certain fraction of
the input regions.

Theorem 4 If rmax/rmin ≤ C, then there always exists
a non-crossing matching of Ω(n/C) pairs.
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Proof. [Sketch] We shrink disks to rmin and do a non-
crossing matching on the equal-radius disks. Then, we
argue that no original (larger) disk can block more than
O(C) of the matched edges. �

4 Bipartite Matchings

Theorem 5 Given a set S of 2n disjoint axis-aligned unit
squares in the plane, n of them “red” and n of them
“blue”, deciding whether there exists a non-crossing per-
fect bipartite matching between red and blue squares is
NP-complete.

Proof. [Sketch] We reduce from planar Constraint Graph
Satisfaction [6]: given a planar graph with edge weights
of 1 (denoted red) or 2 (denoted blue), where each ver-
tex is red-red-blue (called AND) or blue-blue-blue (called
OR), decide whether there is an orientation such that ev-
ery vertex has a total incoming weight of at least 2. Given
such a graph, we embed it orthogonally in a grid, and re-
place each AND vertex, each OR vertex, and each turn with
Figures 7a, 8a, and 9a, respectively. Dashed lines denote
candidate matching connections; all other connections are
suitably blocked by a bipartite unit-square blocker (details
appear in the full paper). Figures 7, 8, and 9 show all
valid solutions of these gadgets. Each 6-cycle forces the
contained two points to either both match into this gadget
(representing an outgoing edge in the orientation) or into
the adjacent gadget (representing an incoming edge in the
orientation). In the AND and OR gadgets we view the hori-
zontal edges to the widget as inputs and the vertical edges
from it as an output; we call an input active if it is incom-
ing, and call an output active if it is outgoing. The central
points force the appropriate behavior by blocking certain
connections. �

(a) Gadget
(b) 2 inputs inactive
⇒ output inactive.

(c) 1 input active
⇒ output inactive.

(d) 2 inputs active,
output inactive.

(e) 2 inputs active,
output active.

Figure 7: Constraint-graph AND vertex.
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(a) Gadget
(b) No inputs active, forc-
ing output inactive.

(c) One input active,
output inactive.

(d) One input active,
output active.

(e) Two inputs active,
output inactive.

(f) 2 inputs active,
output active.

Figure 8: Constraint-graph OR vertex.

(a) Gadget (b) Left to top. (c) Top to left.

Figure 9: Constraint-graph 90◦ turn.
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