
Integer Point Sets Minimizing Average Pairwise

L1 Distance: What is the Optimal Shape of a Town?

Erik D. Demainea, Sándor P. Feketeb, Günter Rotec, Nils Schweerb,
Daria Schymurac, Mariano Zelked

aComputer Science and Artificial Intelligence Lab, MIT
bAlgorithms Group, Braunschweig University of Technology
cInstitut für Informatik, Freie Universität Berlin, Germany
dInstitut für Informatik, Goethe-Universität, Frankfurt/M.

Abstract

An n-town, n ∈ N, is a group of n buildings, each occupying a distinct
position on a 2-dimensional integer grid. If we measure the distance between
two buildings along the axis-parallel street grid, then an n-town has optimal
shape if the sum of all pairwise Manhattan distances is minimized. This
problem has been studied for cities, i.e., the limiting case of very large n. For
cities, it is known that the optimal shape can be described by a differential
equation, for which no closed-form solution is known. We show that optimal
n-towns can be computed in O(n7.5) time. This is also practically useful, as
it allows us to compute optimal solutions up to n = 80.

Keywords: Manhattan distance, average pairwise distance, integer points,
dynamic programming

1. Introduction

Selecting an optimal set of locations is a fundamental problem, not just
in real estate, but also in many areas of computer science. Typically, the
task is to choose n sites from a given set of candidate locations; the objective
is to pick a set that minimizes a cost function, e.g., the average distance
between sites. As described below, there is a large variety of related results,
motivated by different scenarios.

In general, problems of this type are hard, even to approximate, as the
problem of finding a clique of given size is a special case. Some of the nat-
ural settings have a strong geometric flavor, so it is conceivable that more

Preprint submitted to Computational Geometry: Theory and ApplicationsNovember 9, 2010

positive results can be achieved by exploiting additional structures and prop-
erties. However, even seemingly easy special cases are still surprisingly diffi-
cult. Until now, there was no complexity result (positive or negative) for the
scenario in which the candidate locations correspond to the full integer grid,
with distances measured by the Manhattan metric (an n-town). Indeed, for
the shape of area 1 with minimum average L1 distance (the “optimal shape of
a city”, arising for the limit case of n approaching infinity), no simple closed-
form solution is known, suggesting that finding sets of n distinct grid points
(the “optimal shapes of towns”) may not be an easy task. This makes the
problem mathematically challenging; in addition, the question of choosing n
grid positions with minimum average L1 distance comes up naturally in grid
computing, so the problem is of both practical and theoretical interest.

In this paper, we give the first positive result by describing an O(n7.5)
algorithm for computing sets of n distinct grid points with minimum average
L1 distance. Our method is based on dynamic programming, and (despite
of its relatively large exponent) for the first time allows computing optimal
towns up to n = 80.

1.1. Related Work

Grid Computing. In grid computing, allocating a task requires selecting n
processors from a given grid, and the average communication overhead cor-
responds to the average Manhattan distance between processors; Mache and
Lo (1996, 1997) and Leung et al. (2002) propose various metrics for mea-
suring the quality of a processor allocation, including the average number of
communication hops between processors. Leung et al. (2002) considered the
problem of allocating processors on Cplant, a Sandia National Labs super-
computer; they applied and evaluated a scheme based on space-filling curves,
and they concluded that the average pairwise Manhattan distance between
processors is an effective metric to optimize.

The Continuous Version. Motivated by the problem of storing records in
a 2-dimensional array, Karp et al. (1975) studied strategies that minimize
average access time between successive queries; among other results, they
described an optimal solution for the continuous version of our problem:
What shape of area 1 minimizes the average Manhattan distance between
two interior points? Independently, Bender et al. (2004) solved this problem
in the setting of a city, inspiring the subtitle of this paper. The optimal

2

n = 4

c(S) = 8
n = 3

c(S) = 4

n = 5

c(S) = 16
n = 6

c(S) = 25

n = 2

c(S) = 1

n = 13

c(S) = 188

n = 9

c(S) = 72
n = 8

c(S) = 54

n = 10

c(S) = 96
n = 11

c(S) = 124

n = 7

c(S) = 38

n = 14

c(S) = 227

n = 15

c(S) = 272

n = 16

c(S) = 318

n = 12

c(S) = 152

n = 18

c(S) = 433

n = 19

c(S) = 496
n = 20

c(S) = 563

n = 21

c(S) = 632

n = 17

c(S) = 374

Figure 1: Optimal towns for n = 2, . . . , 21. All optimal solutions are shown, up to
symmetries; c(S) denotes the total distance between all pairs of points. The picture
for n = 20 also contains the symmetry axes from Lemma 3.

solution is described by a differential equation, and no closed-form solution
is known.

Selecting k points out of n. Krumke et al. (1997) consider the discrete prob-
lem of selecting a subset of k nodes from a network with n nodes to minimize
their average pairwise distance. They prove a 2-approximation for metric dis-
tances and prove hardness of approximation for arbitrary distances. Bender
et al. (2008) solve the geometric version of this problem, giving an efficient
processor allocator for the Cplant setting described above, and a polynomial-
time approximation scheme (PTAS) for minimizing the average Manhattan
distance. For the reverse problem of maximizing the average Manhattan
distance, see Fekete and Meijer (2003).

The k-median Problem. Given two sets D and F , the k-median problem asks
to choose a set of k points from D to minimize the average distance to the

3

points in F . For k = 1 this is the classical Fermat-Weber problem. Fekete
et al. (2000, 2005) considered the city-center problem: for a given city, find
a point that minimizes the average Manhattan distance. They proved NP-
hardness for general k and gave efficient algorithms for some special cases.

The Quadratic Assignment Problem. Our problem is a special case of the
quadratic assignment problem (QAP): Given n facilities, n locations, a ma-
trix containing the amount of flow between any pair of facilities, and a matrix
containing the distances between any pair of locations. The task is to assign
every facility to a location such that the cost function which is proportional
to the flow between the facilities multiplied by the distances between the lo-
cations is minimized. For a survey see Loiola et al. (2007). The cost function
in our problem and in the QAP are the same if we define the distances as
the Manhattan distances between grid points and if we define all flows to be
one. The QAP can not be approximated within any polynomial factor unless
P = NP ; see Sahni and Gonzalez (1976). Hassin et al. (2009) considered
the metric version of this problem with the flow matrix being a 0/1 incidence
matrix of a graph. They state some inapproximability results as well as a
constant-factor approximation for the case in which the graph has vertex
degree two for all but one vertex.

The Maximum Dispersion Problem. The reverse version of the discrete prob-
lem, where the goal is to maximize the average distance between points, has
also been studied: In the maximization version, called the maximum dis-

persion problem, the objective is to pick k points from a set of size n so
that the pairwise distance is maximized. When the edge weights need not
obey the triangle inequality, Kortsarz and Peleg (1993) give an O(n0.3885)-
approximation. Asahiro et al. (2000) improve this guarantee to a constant
factor in the special case when k = Ω(n) and Arora et al. (1999) give a PTAS
when |E| = Ω(n2) and k = Ω(n).

When the edge weights obey the triangle inequality, Ravi et al. (1994)
give a 4-approximation that runs in O(n2) time and Hassin et al. (1997)
give a 2-approximation that runs in O(n2 + k2 log k) time. For points in the
plane and Euclidean distances, Ravi et al. (1994) give an approximation with
performance bound arbitrarily close to π/2 ≈ 1.57. For Manhattan distances,
Fekete and Meijer (2003) give an optimal algorithm for fixed k and a PTAS
for general k. Moreover, they provide a (

√
2+ε)-Approximation for Euclidean

distances.

4

The Min-Sum k-Clustering Problem. Another related problem is called min-

sum k-clustering or minimum k-clustering sum. The goal is to separate a
graph into k clusters to minimize the sum of pairwise distances between nodes
in the same cluster. For general graphs, Sahni and Gonzalez (1976) show that
this problem is NP-hard to approximate within any constant factor for k ≥ 3.
In a metric space the problem is easier to approximate: Guttmann-Beck and
Hassin (1998) give a 2-approximation, Indyk (1999) gives a PTAS for k = 2,
and Bartal et al. (2001) give an O(1/ǫ log1+ǫ n)-approximation for general k.

1.2. Our Results

We solve the n-town problem with an O(n7.5)-time dynamic-programming
algorithm. Our algorithm is based on some properties of an optimal town: an
optimal n-town is convex in the sense that it contains all grid points within
its convex hull (Lemma 2). It lies symmetric with respect to a horizontal and
a vertical symmetry axis within a tolerance of ±1 that is due to parity issues
(Lemma 3). Furthermore, it fits in an O(

√
n) × O(

√
n) square (Lemma 5).

We also present computational results and discuss the relation between the
optimum continuous cities and their discretized counterparts (n-towns, and
n-block cities).

2. Properties of Optimal Towns

We want to find a set of n distinct points from the integer grid Z × Z

such that the sum of all pairwise Manhattan distances is minimized. A set
S ⊂ Z × Z of cardinality n is an n-town. An n-town S is optimal if its cost

c(S) :=
1

2
·
∑

s∈S

∑

t∈S

‖s− t‖1 (1)

is minimum. Figure 1 shows solutions for small n and their cost, and Table 1
in Section 5 shows optimal cost values ctown(n) for n ≤ 80. We define the
x-cost cx(S) as

∑

{s,t}∈S×S |sx − tx|, where sx is the x-coordinate of s; y-cost

cy(S) is the sum of all y-distances, and c(S) = cx(S) + cy(S). For two sets
S and S ′, we define c(S, S ′) =

∑

{s,s′}∈S×S′ ‖s− s′‖1. If S consists of a single

point t, we write c(t, S ′) instead of c({t}, S ′) for convenience. A town S is
convex if the set of grid points in the convex hull of S equals S.

In proving various properties of optimal towns, we will often make a local
modification by moving a point t of a town to a different place r. The next
lemma expresses the resulting cost change.

5

Lemma 1. Let S be a town, t ∈ S and r /∈ S. Then,

c((S \ t) ∪ r) = c(S) − c(t, S) + c(r, S) − ‖r − t‖1 .

Proof. Let p be a point in S. Then, its distance to t is ‖t − p‖1 and
the distance to r is ‖r − p‖1. Hence, the change in the cost function is
‖r−p‖1−‖t−p‖1. We need to subtract ‖r− t‖1 from the sum over all points
in S because t is removed from S. �

Lemma 2. An optimal n-town is convex.

The following proof holds in any dimension and with any norm for mea-
suring the distance between points.

Proof. We prove that a non-convex n-town S cannot be optimal. Take a
grid point x /∈ S in the convex hull of S. Then there are points x1, x2, . . . , xk ∈
S such that x = λ1x1 + λ2x2 + · · · + λkxk for some λ1, λ2, . . . , λk ≥ 0 with
∑

λi = 1. Because every norm is a convex function, and the sum of convex
functions is again convex, the function fS(x) = c(x, S) =

∑

s∈S ‖x − s‖1 is
convex. Therefore,

fS(x) ≤ λ1f(x1) + λ2f(x2) + · · · + λkf(xk),

which implies fS(x) ≤ fS(xi) for some i. Using Lemma 1 we get

c((S \ xi) ∪ x) = c(S) − fS(xi) + fS(x) − ‖x− xi‖1 < c(S).

This means that S is not optimal. �

Obviously, if we translate every point from an n-town by the same vector,
the cost of the town does not change. We want to distinguish towns because
of their shape and not because of their position inside the grid and, there-
fore, we will only consider optimal towns that are placed around the origin.
Lemma 3 makes this more precise: an optimal n-town is roughly symmetric
with respect to a vertical and a horizontal symmetry line, see Figure 2 for
an illustration. Perfect symmetry is not possible since some rows or columns
may have odd length and others even length.

We need some notation before: For an n-town S, the i-th column of
S is the set Ci = { (i, y) ∈ S : y ∈ Z } and the i-th row of S is the set
Ri = { (x, i) ∈ S : x ∈ Z }.

6

Lemma 3 (Symmetry). In every optimal n-town S, the centers of all rows

of odd length lie on a common vertical grid line Vo. The centers of all rows

of even length lie on a common line Ve that has distance 1
2

from Vo. A

corresponding statement holds for the centers of odd and even columns that

lie on horizontal lines Ho and He of distance 1
2
. Moreover, without changing

its cost, we can place S such that Ho and Vo are mapped onto the x-axis and

y-axis, respectively, and He and Ve lie in the negative halfplanes.

Proof. For a row Rj and r ∈ Z, let Rj + (r, 0) be the row Rj horizontally
translated by (r, 0). If two rows Ri and Rj are of the same parity, a straight-
forward calculation (using Lemma 1) shows that the cost c(Ri, Rj + (r, 0))
is minimal if and only if the centers of Ri and Rj + (r, 0) have the same x-
coordinate. If the parities differ, c(Ri, Rj + (r, 0)) is minimized with centers
having x-coordinates of distance 1/2. The total cost is

c(S) = cx(S) + cy(S) =
∑

i,j

∑

s∈Ri,t∈Rj

|sx − tx| + cy(S)

If we translate every row Ri of S horizontally by some (ri, 0), cy(S) does not
change. The solutions that minimize

∑

s∈Ri,t∈Rj
|sx + ri − tx + rj| for all i, j

simultaneously are exactly those that align the centers of all rows of even
length on a vertical line Ve and the centers of all rows of odd length on a
vertical line Vo at offset 1

2
from Ve. The existence of the lines Ho and He

follows analogously.
We can translate S such that Ho and Vo are mapped onto the x- and the

y-axis and rotate it by a multiple of 90◦ degrees such that He and Ve lie in
the negative halfplanes. These operations do not change c(S). �

From the convexity statement in Lemma 2 (together with Lemma 3) we
know that C0 is the largest column, and the column lengths decrease to both
sides, and similarly for the rows. Our algorithm will only be based on this
weaker property (orthogonal convexity); it will not make use of convexity per

se. We will, however, use convexity one more time to prove that the lengths
of the columns are O(

√
n), in order to reduce the running time.

In the following we assume the symmetry property of the last lemma.
For an n-town S, let the width of S be w(S) = maxi∈Z |Ri| and the height of
S be h(S) = maxi∈Z |Ci|. We will now show that the width and the height
cannot differ by more than a factor of 2. Together with convexity, this will
imply that they are bounded by O(

√
n) (Lemma 5).

7

Lemma 4. For every optimal n-town S,

w(S) > h(S)/2 − 3 and h(S) > w(S)/2 − 3.

Proof. Let S be an n-town, w = w(S), and h = h(S), and assume w ≤
h/2 − 3. Let t = (0, l) be the topmost and (k, 0) be the rightmost point
of S, with l = ⌊h−1

2
⌋ and k = ⌊w−1

2
⌋. Let r = (k + 1, 0). We show that

c((S \ t) ∪ r) < c(S), and thus, S is not optimal. By Lemma 1, the change
in cost is c(r, S) − c(t, S) − |k + l + 1|. We show that c(r, S) − c(t, S) ≤
0 by calculating this difference column by column. This proves then that
replacing t with r yields a gain of at least |l + k + 1| ≥ 1, and we are done.
Let us calculate the difference c(r, Cj) − c(t, Cj) for a column Cj of height
|Cj| = s ≤ h:

c(r, Cj) − c(t, Cj) =

⌊ s−1

2
⌋

∑

i=−⌈ s−1

2
⌉

(|i| − (l − i)) + s(k + 1 − j − |j|)

=

⌊ s−1

2
⌋

∑

i=0

(i− (l − i)) +

⌈ s−1

2
⌉

∑

i=1

(i− (l + i)) + s(k + 1 − j − |j|)

= 2

⌊ s−1

2
⌋

∑

i=0

i− sl + s(k + 1 − j − |j|)

≤ (s−1)(s+1)
4

− sh−2
2

+ s(k + 1) ≤ s2

4
− sh−2

2
+ s · w+1

2

= s
4
(s− 2h+ 2w + 6) ≤ s

2
(−h+ 2w + 6) ≤ 0

�

Lemma 5. For every optimal n-town we have

max{w(S), h(S)} ≤ 2
√
n+ 5.

Proof. Let w = w(S) and h = h(S). Assume without loss of generality
that h ≥ w. We know from Lemma 4 that w > h/2 − 3. By Lemma 3,
we choose a topmost, a rightmost, a bottommost, and a leftmost point of
S such that the convex hull of these four points is a quadrilateral with a
vertical and horizontal diagonal, approximately diamond-shaped. Let H be
the set of all grid points contained in this quadrilateral. The area of the

8

−5

−4 −3 −2 −1 0 1 2 3 4

5

−4

−3

−2

−1

0

1

2

3

4
Uw

Dw

cw

c
−

w

c
+

w

Rw

VoVe

Ho

He

Figure 2: The lines Vo, Ve, Ho, and He from Lemma 3. The rectangle Rw and the set of
points above and below it with cardinality Uw and Dw, respectively. The gray points are
the corner points of Rw. In this example, the height cw of column w is set to c = 4.

quadrilateral equals (w − 1)(h − 1)/2, and its boundary contains at least
4 grid points. Pick’s theorem says that the area of a simple grid polygon
equals the number of its interior grid points Hi plus half of the number of
the grid points H0 on its boundary minus 1. This implies |H| = |Hi|+ |H0| =
(|Hi|+ |H0|/2−1)+ |H0|/2+1 ≥ (w−1)(h−1)/2+3. Because of Lemma 2,
all points in H belong to S. Since H consists of at most n points, we have

n ≥ |H| ≥ (w − 1)(h− 1)/2 + 3 > (h/2 − 4)(h− 1)/2 + 3

Solving the equation h2 − 9h+ 20 − 4n = 0 shows that

h ≤ 2
√

n+ 1/16 + 9/2 ≤ 2
√
n+ 5. �

3. Computing Optimal Solutions

We will now describe a dynamic-programming algorithm for computing
optimal towns. A program for this algorithm is listed in Appendix A.

We denote by ci = |Ci| the number of selected points in column i and by
c+i and c−i the row index of the topmost and bottommost selected point in
Ci, respectively. We have ci = c+i − c−i + 1; see Figure 2.

9

Lemma 6. Let S be an optimal n-town (placed as described in Lemma 3)
containing the points (i, c+i) and (i, c−i), for i ≥ 0. Then all points inside the

rectangle [−i, i] × [c−i , c
+
i] belong to S.

Similarly, if S contains the points (−i, c+−i) and (−i, c−−i), for i ≥ 1, then

it contains all points in the rectangle [−i, i− 1] × [c−−i, c
+
−i].

Proof. If (i, c+i) and (i, c−i) are contained in S then, by Lemma 3, (−i, c+i)
and (−i, c−i) belong to S as well. By Lemma 2 all points inside the convex
hull of these four points are contained in S. The same arguments hold for
the second rectangle. �

Now we describe the dynamic program. It starts with the initial empty
grid and chooses new columns alternating from the set of columns with non-
negative and with negative column index, i.e., in the order 0,−1, 1,−2, 2,
Let w ≥ 0 be the index of the currently chosen column and fix cw to a
value c. We describe the dynamic program for columns with nonnegative
index; columns with negative index are handled similarly. (In the program
that is described in the appendix, we use a trick to avoid dealing with nega-
tive columns: they are mapped to columns with positive index by reflecting
everything at the y-axis, with a proper adjustment to take into account that
the placement of Lemma 3 is not invariant under this transformation.)

We know from Lemma 6 that in every optimal solution, every point inside
the rectangle Rw = [−w,w] × [c−w , c

+
w] is selected. We define

cost(w, c,∆UR
w ,∆DR

w ,∆UL
w ,∆DL

w , Uw, Dw)

as the minimum cost of a town with columns −w, . . . , w of height ci ≥ c for
−w ≤ i ≤ w and cw = c where Uw points lie above the rectangle Rw, having
a total distance ∆UL

w and ∆UR
w to the upper-left and upper-right corner of

Rw, respectively, and Dw points lie below Rw, having a total distance ∆DL
w

and ∆DR
w to the lower-left and lower-right corner of Rw. For a given n, we are

looking for the n-town with minimum cost where (2w + 1)c+ Uw +Dw = n.
Next we show that cost(w, c,∆UR

w ,∆DR
w ,∆UL

w ,∆DL
w , Uw, Dw) can be computed

recursively.
Consider the current column w with cw = c. The cost from all points in

this column to all points above Rw, in Rw, and below Rw can be expressed

10

as

c+
∑

k=c−

(∆UR
w + (c+ − k) · Uw) +

w
∑

i=−w

c+
∑

j=c−

c+
∑

k=c−

[(w − i) + |k − j|]

+
c+
∑

k=c−

(∆DR
w + (k − c−) · |Dw|).

We can transform this into

c · (∆UR
w + ∆DR

w + Uw · c+ −Dw · c−) + c− · (Dw − Uw) · ((c+ 1) mod 2)

+

(

c2w +
c3 − c

3

)

· (2w + 1) − c3 − c

6
, (2)

which, obviously, depends only on the parameters w, c, ∆UR
w , ∆DR

w , Uw, and
Dw (the two parameters ∆UL

w , ∆DL
w are needed if we consider a column with

negative index). We denote the expression (2) by dist(w, c,∆UR
w ,∆DR

w ,∆UL
w ,

∆DL
w , Uw, Dw) and state the recursion for the cost function:

cost(w, c,∆UR
w , . . . ,∆DL

w , Uw, Dw)

= min
c−w≥c

{cost(−w, c−w,∆
UR
−w, . . . ,∆

DL
−w, U−w, D−w)}

+ dist(w, c,∆UR
w , . . . ,∆DL

w , Uw, Dw) (3)

By Lemma 6 it suffices to consider only previous solutions with c−w ≥ c. In
the step before, we considered the rectangle R−w = [−w,w− 1]× [c+−w, c

−
−w].

Hence, the parameters with index −w can be computed from the parameters
with index w as follows:

U−w = Uw − 2w · (c+−w − c+),

D−w = Dw − 2w · (c− − c−−w),

∆UR
−w = ∆UR

w −
w

∑

i=−w

c+
−w

∑

j=c++1

[

(w − i) + (j − c+)
]

− [Uw − U−w] · (c+−w − c+ + 1),

11

∆DR
−w = ∆DR

w −
w

∑

i=−w

c−
−w

∑

j=c−−1

[

(w − i) + (c− − j)
]

− [Dw −D−w] · (c− − c−−w + 1).

The parameters ∆UL
−w and ∆DL

−w can be computed analogously and the cost
function is initialized as follows:

cost(0, c, 0, 0, 0, 0, 0, 0) =

{

c3−c
6
, if 0 ≤ c ≤ 2

√
n+ 5,

∞, otherwise.

The bound on c has been shown in Lemma 5.

Theorem 7. An optimal n-town can be computed by dynamic programming

in O(n15/2) time.

Proof. We have to fill an eight-dimensional array cost(w, c,∆UR,∆DR,∆UL,
∆DL, U,D). Let Cmax denote the maximum number of occupied rows and
columns in an optimum solution. By Lemma 5, we know that Cmax = O(

√
n).

The indices w and c range over an interval of size Cmax = O(
√
n). Let us

consider a solution for some fixed w and c. The parameters U and D range
between 0 and n. However, we can restrict the difference between U and D
that we have to consider: If we reflect the rectangle R = [−w,w] × [c−, c+]
about its horizontal symmetry axis, the U points above R and the D points
below R will not match exactly, but in each column, they differ by at most
one point, according to Lemma 3. It follows that |U −D| ≤ Cmax = O(

√
n).

(If the difference is larger, such a solution can never lead to an optimal n-
town, and hence we need not explore those choices.) In total, we have to
consider only O(n · √n) = O(n3/2) pairs (U,D).

The same argument helps to reduce the number of quadruples (∆UL,∆UR,
∆DL,∆DR). Each ∆-variable can range between 0 and n · 2Cmax = O(n3/2).
However, when reflecting around the horizontal symmetry axis of R, each
of the at most Dmax differing points contributes at most 2Cmax = O(

√
n)

to the difference between the distance sums ∆UL and ∆DL. Thus we have
|∆UL − ∆DL| ≤ Cmax · 2Cmax = O(n), and similarly, |∆UR − ∆DR| = O(n).

By a similar argument, reflecting about the vertical symmetry axis of
R, we conclude that |∆UL − ∆UR| = O(n) and |∆DL − ∆DR| = O(n). In

12

summary, the total number of quadruples (∆UL,∆UR,∆DL,∆DR) that the
algorithm has to consider is O(n3/2) ·O(n) ·O(n) ·O(n) = O(n9/2). In total,
the algorithm processes O(

√
n) ·O(

√
n) ·O(n3/2) ·O(n9/2) = O(n7) 8-tuples.

For each 8-tuple, the recursion (3) has to consider at most Cmax = O(
√
n)

values c−w, for a total running time of O(n15/2). �

4. n-Towns, Cities, and n-Block Cities

For large values of n, n-towns converge towards the continuous weight
distributions of cities. However, the arrangement of buildings in many cities
are discretized in a different sense: An n-block city is the union of n axis-
aligned unit squares (“city blocks”), see Figure 3 below. In the following,
we discuss n-block cities, and we discuss the relation between n-towns and
n-block cities.

For a planar region R, let c′(R) be the integral of Manhattan distances
between all point pairs in R:

c′(R) :=

∫

p∈R

∫

q∈R

‖p− q‖ dp dq

When R has area 1, this is the expected distance between two random points
in R. Scaling a shape R by a factor of d increases the total cost by a factor
of d5, i.e., by a factor of A2.5 for an area of A. This motivated Bender et al.
(2004) to use the expression D(R) := c′(R)

A(R)2.5 as a scale-independent measure
for the quality of the shape of a city. For example, a square Q of any side
length a gets the same value

D(Q) =
1

a5

(

a2 ·
∫ a

0

∫ a

0

|x1 − x2| dx2dx1 + a2 ·
∫ a

0

∫ a

0

|y1 − y2| dy2dy1

)

=
2

3
.

A circle C yields D(C) = 512
45π2.5 ≈ 0.6504 and the optimal shape achieves a

value of ψ = 0.650 245 952 951 . . .
We will consider n-block cities Q(S) consisting of unit squares (“blocks”)

centered at a set of n grid points S ⊂ Z × Z. We denote a unit square
centered at point s = (sx, sy) by Q(s) = [sx − 1

2
, sx + 1

2
]× [sy − 1

2
, sy + 1

2
], and

then we have
Q(S) :=

⋃

s∈S

Q(s).

13

The average distance D(Q(S)) of an n-block city can be decomposed into
average distances between blocks:

c′(Q(S)) =

∫

p∈Q(S)

∫

q∈Q(S)

‖p− q‖1 dp dq =
∑

s∈S

∑

t∈S

∫

p∈Q(s)

∫

q∈Q(t)

‖p− q‖1 dp dq

Using the notation

d′(s) :=

∫

p∈Q(s)

∫

q∈Q(0)

‖p− q‖1 dp dq,

we can express this as

c′(Q(S)) =
∑

s∈S

∑

t∈S

d′(s− t). (4)

The average distance d′(s) between two square blocks at an offset s can
be expressed as follows: If the two blocks do not lie in the same row or
column (sx 6= 0 and sy 6= 0), the average distance is simply the distance ‖s‖1

between the centers, since positive and negative deviations from the block
centers average out. When two blocks lie in the same column, then the y-
distances average out to the y-distance between the centers, but the average
x-distance is not the x-distance between the centers (which would be 0), but
∫ +1/2

−1/2

∫ +1/2

−1/2
|x1 − x2| dx2 dx1 = 1

3
. Similarly, for two blocks in the same row,

we must add 1
3

to the distance ‖s‖1 between the centers. Finally, for two
identical blocks, we have already seen that the average distance is 2

3
. We can

express this compactly as

d′(s) = d′((sx, sy)) = |sx| + 1
3
[sx 6= 0] + |sy| + 1

3
[sy 6= 0]

= ‖s‖1 + 1
3
[sx 6= 0] + 1

3
[sy 6= 0],

where the notation [sx 6= 0] is 1 if the predicate sx 6= 0 holds and 0 otherwise.
With these conventions, the expression (4) for the cost c′(Q(S)) of an n-block
city Q(S) looks very similar to (1) for the cost c(S) of a town S, except for
the correction terms 1

3
in the summands and for the factor 1

2
. The factor 1

2

accounts for the fact that in the sum c(S) of a town, each pair of (distinct)
points is counted once, whereas in the integral c′(R), each pair of points is
considered twice, as two ordered pairs. To make these expressions better
comparable, we introduce the factor 1

2
and define

ccity(S) :=
1

2
· c′(Q(S)) =

1

2
·
∑

s∈S

∑

t∈S

d′(s− t).

14

The new “distance” d′ is not a norm (for example, d′(0) 6= 0), but the
properties from Section 2 remain true for this new objective function. Thus,
the dynamic programming formulation of Section 3 can be adapted to com-
pute optimal n-block cities. As we shall now demonstrate, all lemmas of
Section 2 hold verbatim for n-block cities, except that the formula for the
change incurred by moving a single block to a different place (Lemma 1)
must be adapted:

Lemma 1′. Let S ⊂ Z
2 be the set of centers of an n-block city, t ∈ S and

r /∈ S. Then,

ccity((S \ t) ∪ r) = ccity(S) − ccity(t, S) + ccity(r, S) − d′(r − t),

where ccity(p, S) :=
∑

q∈S d
′(p− q).

The proof is the same as for Lemma 1. One can easily check that the
distance d′ from t to itself and the distance from r to itself are correctly
accounted for. �

Convexity of the optimum solution (Lemma 2) holds true for n-block
cities. The proof goes through almost verbatim. The expression d′(p) is
not a norm, but it is a convex function of p, and this is all that is needed.
Approximate symmetry of the optimal solution (Lemma 3) remains true. The
calculations (which have not been shown in detail anyway), are modified, but
the conclusion is the same.

When comparing an n-town S and a corresponding n-block city Q(S),
we have to add 1/6 for each pair of blocks that are in the same column, and
for each pair of blocks that are in the same row. Using the notation rj and
ci of Section 3 for row and column lengths, and writing ctown(S) instead of
c(S) for improved clarity, we get thus:

ccity(S) − ctown(S) = Λ(S) := 1
6
(
∑

i c
2
i +

∑

j r
2
j) (5)

This adjustment term accounts for the discretization effect. E. g., a 1-town
has an average distance of 0, as all the weight is concentrated in a single
point, while a 1-block city has an average distance of 2/3, just like any other
square, (and a ccity value of 1/3).

Using this expression, it is easy to show that the bound of 2 on the aspect
ratio holds for n-block cities in the same form as in Lemma 4. The proof of
Lemma 4 establishes that ctown(S) decreases when a top-most point t from

15

the longest column of height h is added to the right of the longest row of
length w. For an n-block city, the adjustment term Λ(S) decreases by at
least h2 − (h− 1)2 when t is removed, and it increases by (w+ 1)2 −w2 + 12

when r is added. Under the assumption of the proof (w ≤ h/2−3), the total
change of Λ is negative, and the modified solution is an improvement also
when S is regarded as an n-block city.

From Lemma 4 we conclude that the bound of 2
√
n+5 on the height and

width of optimal n-block cities (Lemma 5) holds as well. (The argument of
the proof of Lemma 5 is purely geometric: it is based on convexity and does
not use the objective function.)

Thus, we conclude that the adjustment term (5) is asymptotically bounded
by Λ(S) = Θ(n1.5).

When considering the continuous weight distributions of n-block cities, we
have to account twice for each pair of discrete block centers; hence, the appro-
priate measure for the quality of an n-town is Φ(S) = 2c(S)/n2.5. The mea-
sure for the corresponding n-block city is Ψ(S) = 2(ctown(S) + Λ(S))/n2.5.
Thus, the relative difference is Θ(1

n
).

In Figure 3, we show the corresponding values for the small examples from
Figure 1. Figure 5 shows results for some larger values n. One can observe
how Φ(S) and Ψ(S) converge from below and above towards the optimal city
value ψ of about 0.650 245 952 951. Note that convergence is not monotone,
neither for Φ nor for Ψ.

5. Computational Results

Optimal n-towns and optimal n-block cities do not necessarily have the
same shape. For n ≤ 21, a comparison of Figures 1 and 3 shows that, while
not all optimal n-towns are optimal n-block cities, every optimal n-block city
is simultaneously an optimal n-town. However, this is not always true. In
fact, for n = 72, there are two shapes for optimal n-block cities, none of
which is optimal for an n-town, see Figure 4. This is the only instance of this
phenomenon up to n = 80, but we surmise it will be more and more frequent
for larger n. We have more comments on this phenomenon at the end of this
section.

We have calculated the optimal costs ctown and ccity up to n = 80 points.
The results are shown in Table 1. When there are several optimal solutions
(except symmetries), this is indicated by a star, together with the multiplic-
ity.

16

n ctown E1 ccity 3E2 E3 n ctown E1 ccity 3E2 E3

1 0 0 0 1/3 0 1 41 3446 1 3530 1/3 2 1

2 1 0 2 0 1 42 3662 1 3749 3 0

3 4∗(2) 0 5 2/3 1 1 43 3886 2 3976 5 0

4 8 0 10 2/3 −1 1 44 4112 −3 4205 1/3 −10 0

5 16∗(2) 1 19 2/3
∗(2) 1 1 45 4360∗(2) 6 4456 2/3 17 1

6 25 0 30 −1 1 46 4612∗(2) 10 4712∗(2) 31 1

7 38 0 44 0 1 47 4868∗(2) 11 4970 1/3
∗(2) 29 −2

8 54∗(2) 0 61 1/3
∗(2) 0 1 48 5128 7 5234 18 −1

9 72 −1 81 −3 2 49 5398 4 5507 1/3 11 −1

10 96 0 106 1/3 0 1 50 5675 1 5788 0 0

11 124∗(4) 2 135 2/3
∗(2) 3 0 51 5960 −4 6076 1/3 −13 0

12 152 −1 165 1/3 −4 1 52 6248 −14 6368 −43 1

13 188 0 203 −1 1 53 6568 −1 6691 2/3 −4 1

14 227 0 244 −1 1 54 6890 5 7017 1/3 15 2

15 272∗(2) 1 290 2/3 3 1 55 7222∗(2) 12 7352 1/3 35 0

16 318 −1 338 2/3 −4 1 56 7556∗(2) 13 7690 36 0

17 374∗(2) 1 396 1/3 3 0 57 7896 10 8033 2/3 28 0

18 433∗(2) 2 457 1/3 5 0 58 8243 5 8384 2/3 14 1

19 496∗(2) 2 522 1/3 4 0 59 8604 4 8749 1/3 13 1

20 563 0 591 2/3 0 1 60 8968 −2 9117 1/3 −6 2

21 632 −5 663 −15 1 61 9354 3 9506 1/3 9 0

22 716 0 749 1/3 −1 1 62 9749∗(2) 9 9904 2/3
∗(2) 24 −1

23 804∗(2) 2 839 1/3 6 1 63 10146 7 10305 1/3 17 −2

24 895 2 933 7 2 64 10556 8 10719 1/3 21 −1

25 992 2 1032 1/3 6 1 65 10972 5 11139 2/3 15 0

26 1091 −2 1134 −5 2 66 11400 5 11571 2/3 14 1

27 1204 2 1249 4 1 67 11836∗(2) 3 12011 2/3 7 1

28 1318 0 1365 1/3 −1 0 68 12280 −2 12460 −4 2

29 1442 2 1492 5 1 69 12728 −12 12912 1/3 −34 3

30 1570 1 1622 2/3 4 1 70 13209 1 13396 2/3 2 1

31 1704 0 1759 2/3 1 2 71 13700∗(3) 13 13891 37 −1

32 1840 −6 1898 2/3 −16 3 72 14193 17 14388∗(2) 49 −1

33 1996 1 2057 4 2 73 14690 15 14888 40 −4

34 2153 3 2216 2/3 8 1 74 15195 11 15397 1/3 27 −4

35 2318 5 2384 12 0 75 15712 8 15918 1/3 17 −4

36 2486 3 2554 2/3 6 −1 76 16232 −3 16442 2/3 −14 −4

37 2656 −5 2727 2/3 −16 −1 77 16780 4 16995 7 −3

38 2847 1 2921 2/3 3 0 78 17335 7 17554 2/3 18 −2

39 3040 2 3117 2/3 5 0 79 17904∗(2) 13 18128 37 −2

40 3241 3 3322 9 1 80 18478 14 18706 2/3 40 0

Table 1: Optimal towns ctown and n-block cities ccity.
∗ indicates multiple solutions.

17

Φ = 0.5724

Ψ = 0.7036

Φ = 0.5

Ψ = 0.6667

Φ = 0.5862

Ψ = 0.6788

Φ = 0.5132

Ψ = 0.727

Φ = 0.6255

Ψ = 0.6561

Φ = 0.3536

Ψ = 0.7071

Φ = 0.6072

Ψ = 0.6725

Φ = 0.567

Ψ = 0.6804

Φ = 0.5966

Ψ = 0.6776

Φ = 0.5925

Ψ = 0.6667

Φ = 0.6191

Ψ = 0.6654

Φ = 0.6094

Ψ = 0.6629

Φ = 0.6171

Ψ = 0.6663

Φ = 0.6211

Ψ = 0.6616

Φ = 0.618

Ψ = 0.6761

Φ = 0.6243

Ψ = 0.6671

Φ = 0.6295

Ψ = 0.6615

Φ = 0.6304

Ψ = 0.6639

Φ = 0.63

Ψ = 0.6654

Φ = 0.6277

Ψ = 0.6652

Figure 3: Values of Φ and Ψ for optimal n-block cities for n = 2, . . . , 21. All optimal
solutions are shown, up to symmetries. These are simultaneously shapes of optimal n-
towns, but for n = 3, 11, 15, 17, 18, 19, there are additional n-towns that are tied for the
optimum (with the same value Ψ), cf. Figure 1.

It is clear that an optimal n-block city is never better than an optimal
continuous city of area n that has a value ψn5/2/2. Empirically we found
the approximation ccity ≈ ψn5/2/2 + 0.115 · n3/2 with ψ = 0.650245952951.
The order of magnitude of the “discretization penalty” 0.115 ·n3/2 = Θ(n3/2)
is explained as follows: changing the continuous city of area n into blocks
affects Θ(

√
n) squares along the boundary. For each adjustment in one of

these squares, distances to n other squares are affected.
Since ccity is a multiple of 1/3, we rounded our estimate to the nearest

multiple of 1/3 and used the approximation formula

c̄city := ⌊3ψn5/2/2 + 0.345 · n3/2⌉/3

The notation ⌊·⌉ denotes rounding to the nearest integer. Table 1 shows the
error E2 := ccity− c̄city of this approximation. (Actually, the table shows 3E2,
which is an integer.)

18

Figure 4: The optimal n-town and the two optimal n-block cities for n = 72.

For n-towns, on the other hand, we found the approximation ctown ≈
ψn5/2/2− 0.205 · n3/2. So this seems to approximate the optimal continuous
city from below, but we do not have a proof of this fact.

The deviation E1 between ctown and its approximation formula

c̄town := ⌊ψn5/2/2 − 0.205 · n3/2⌉

is shown in Table 1.
Finally, we look at the difference between ccity and ctown. For a given

point set S, it is the quantity Λ defined in (5). It is estimated as 0.32 · n3/2.
The table shows the error E3 := 3 · (ccity − ctown) − ⌊0.96 · n3/2⌉. Apart from
the rounding, E3 would equal 3(E2 − E1).

One can see that the error E3 is much smaller than one might expect from
the random-looking fluctuations of E1 and E2. This can explained by the
fact that the expression (5) for Λ(S) is apparently not so sensitive to small
deviations of the shape S.

Accordingly, Table 1 exhibits the tendency that the deviations of ctown

and ccity “above” and “below average” occur for the same values of n: n-towns
and n-block cities with the same number n suffer equally from the effects of
discretization. A glance at the optimal solutions (Figures 1 and 3) shows
that the costs are below average when the shapes are highly symmetric, for
example n = 9, 12, 21, but also n = 60 (Figure 5). On the other hand, when
there is no unique “very good” shape, one can expect a greater variation of
different solutions that try to come close to the optimal continuous shape.
Indeed, larger values of E1 and E2 in Table 1 tend to go hand in hand with
a greater multiplicity of optimal solutions. The worst values of E1 and E2

occur for n = 72; this is the first value of n where optimal n-block cities and
optimal n-towns differ (Figure 4). This is probably no coincidence: when

19

n = 58, c(S) = 8243

Φ = 0.6434

Ψ = 0.6546

n = 59, c(S) = 8604

Φ = 0.6436

Ψ = 0.6545

n = 60, c(S) = 8968

Φ = 0.6432

Ψ = 0.6539

Figure 5: Optimal n-towns for n = 58, 59, 60; these are simultaneously the shapes of the
optimal n-block cities.

there is a greater variety of solutions that can compete for being best, the
distinction of the objective function between n-block cities and n-towns is
more likely to make a difference.

6. Outlook

We have shown that optimal n-towns can be computed in time O(n7.5).
This is of both theoretical and practical interest, as it yields a method poly-
nomial in n that also allows extending the limits of the best known solutions;
however, there are still some ways how the result could be improved.

Strictly speaking, the method is only pseudo-polynomial, as the input size
is O(log n). It is not clear how the corresponding output could be described
in polylogarithmic space; any compact encoding would lead to a good and
compact approximation of the optimal (continuous) city curve, for which
there is only a description by a differential equation with no known closed-
form solution. For this reason we are sceptical that a polynomial solution is
possible.

We are more optimistic about lowering the number of parameters in our
dynamic program, and thus the exponent, by exploiting convexity or stronger
symmetry properties. This may also make it possible to compute optimal
solutions for larger n. One possible avenue could arise if partial solutions
would satisfy some monotonicity property; however, the unique optimal 9-
town is not contained in the unique optimal 12-town. Thus, there is no way

20

for a town to organically grow and remain optimal at all times. Generally, an
optimal n-town does not necessarily contain an optimal (n− 1)-town. (The
smallest example occurs for n = 35, no optimal 35-town contains an optimal
34-town.)

As discussed in the last section, there is still a variety of questions re-
garding the convergence of optimal solutions for growing n, approaching the
continuous solution in the limit. As indicated, we have a pretty good idea
how this continuous value is approximated from below and above by n-towns
and n-block cities; however, we do not have a formal proof of the lower bound
property of n-block cities.

It is easy to come up with good and fast approximation methods: In the
continuous case, even a square is within 2.5% of the optimal shape; a circle
reaches 0.02%; consequently, simple greedy heuristics will do very well. Two
possible choices are iteratively adding points to minimize the total cost, or
(even faster) as close as possible to a chosen center.

As mentioned in the introduction, a closely related, but harder problem
arises when n locations are to be chosen from a given set of k > n points,
instead of the full integer grid. This was studied by Bender et al. (2008), who
gave a PTAS, but were unable to decide the complexity. It is conceivable that
a refined dynamic-programming approach may yield a polynomial solution;
however, details can expected to be more involved, so we leave this for future
work. The same holds for other metrics.

Finally, one can consider the problem in higher dimensions. A crucial
property of our dynamic-programming solution is that the interface between
the points in the columns that have already been constructed and the points
to be added in the future can be characterized by a few parameters. A
similar property does not hold in three dimensions, and therefore one cannot
extend our dynamic-programming approach to higher dimensions. For the
same reason, the Euclidean distance version cannot be solved by our method,
since, unlike in the Manhattan case, the effect of the Uw points on the upper
side of the current rectangle on the distance to points that are inserted in the
future cannot be summarized in the parameters ∆UR and ∆UL. Moreover,
in higher dimensions, there is no known solution for the continuous case; the
corresponding calculus-of-variations problem will be harder to solve than in
two dimensions.

Acknowledgements. We thank the reviewers for their careful reading and
their helpful comments.

21

References

Arora, S., Karger, D. R., Karpinski, M., 1999. Polynomial time approxima-
tion schemes for dense instances of NP-hard problems. J. Comput. Syst.
Sci. 58 (1), 193–210.

Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T., 2000. Greedily finding
a dense subgraph. J. Algorithms 34 (2), 203–221.

Bartal, Y., Charikar, M., Raz, D., 2001. Approximating min-sum k-clustering
in metric spaces. In: Proc. 33rd Symp. on Theory of Computation. pp. 11–
20.

Bender, C. M., Bender, M. A., Demaine, E. D., Fekete, S. P., 2004. What
is the optimal shape of a city? Journal of Physics A: Mathematical and
General 37, 147–159.

Bender, M. A., Bunde, D. P., Demaine, E. D., Fekete, S. P., Leung, V. J.,
Meijer, H., Phillips, C. A., 2008. Communication-aware processor allo-
cation for supercomputers: Finding point sets of small average distance.
Algorithmica 50 (2), 279–298.

Fekete, S. P., Meijer, H., 2003. Maximum dispersion and geometric maximum
weight cliques. Algorithmica 38, 501–511.

Fekete, S. P., Mitchell, J. S. B., Beurer, K., 2005. On the continuous Fermat-
Weber problems. Operations Research 53, 61–76.

Fekete, S. P., Mitchell, J. S. B., Weinbrecht, K., 2000. On the continuous
Weber and k-median problems. In: Proceedings of the 16th Annual Sym-
posium on Computational Geometry (SoCG). pp. 70–79.

Guttmann-Beck, N., Hassin, R., 1998. Approximation algorithms for mini-
mum sum p-clustering. Disc. Appl. Math. 89, 125–142.

Hassin, R., Levin, A., Sviridenko, M., 2009. Approximating the minimum
quadratic assignment problems. ACM Transactions on Algorithms 6 (1),
18:1–18:10.

Hassin, R., Rubinstein, S., Tamir, A., 1997. Approximation algorithms for
maximum dispersion. Oper. Res. Lett. 21 (3), 133–137.

22

Indyk, P., 1999. A sublinear time approximation scheme for clustering in
metric spaces. In: Proc. 40th Annual IEEE Symp. Found. Comp. Science
(FOCS). pp. 154–159.

Karp, R. M., McKellar, A. C., Wong, C. K., 1975. Near-optimal solutions to
a 2-dimensional placement problem. SIAM J. Comput. 4 (3), 271–286.

Kortsarz, G., Peleg, D., 1993. On choosing a dense subgraph. In: IEEE (Ed.),
Proceedings of the 34th Annual Symposium on Foundations of Comptuer
Science. IEEE Computer Society Press, Palo Alto, CA, pp. 692–703.

Krumke, S., Marathe, M., Noltemeier, H., Radhakrishnan, V., Ravi, S.,
Rosenkrantz, D., 1997. Compact location problems. Theoret. Comp. Sci.
181 (2), 379–404.

Leung, V., Arkin, E., Bender, M., Bunde, D., Johnston, J., Lal, A., Mitchell,
J., Phillips, C., Seiden, S., 2002. Processor allocation on Cplant: Achieving
general processor locality using one-dimensional allocation strategies. In:
Proc. 4th IEEE International Conference on Cluster Computing. pp. 296–
304.

Loiola, E. M., de Abreu, N. M. M., Boaventura-Netto, P. O., Hahn, P.,
Querido, T. M., 2007. A survey for the quadratic assignment problem.
European Journal of Operational Research 176 (2), 657–690.

Mache, J., Lo, V., 1996. Dispersal metrics for non-contiguous processor allo-
cation. Technical Report CIS-TR-96-13, University of Oregon.

Mache, J., Lo, V., 1997. The effects of dispersal on message-passing con-
tention in processor allocation strategies. In: Proc. Third Joint Conference
on Information Sciences, Sessions on Parallel and Distributed Processing.
Vol. 3. pp. 223–226.

Ravi, S. S., Rosenkrantz, D. J., Tayi, G. K., 1994. Heuristic and special case
algorithms for dispersion problems. Operations Research 42 (2), 299–310.

Sahni, S., Gonzalez, T., 1976. P -complete approximation problems. Journal
of the ACM 23 (3), 555–565.

23

n_target = 40 # run up to this value of n

cost_array = {} # initialize data for "array"

from math import sqrt

width_limit = int(2*sqrt(n_target)+5)

for w in range(0,width_limit+2):

for cc in range(width_limit,0,-1):

cost_array[w,cc]={}

MAX = n_target**3 # "infinity", trivial upper bound on cost

opt = (n_target+1)*[MAX] # initialize array for optimal values

cost_array[0,width_limit][0,0,0,0,0,0]=0 # starting "town" with no columns

for w in range(0,width_limit+1):

for cc in range(width_limit,0,-1):

for (D_up_right, D_down_right, D_up_left, D_down_left,

n_up, n_down), cost in cost_array[w,cc].items():

D_up_left += n_up # add 1 horizontal unit to all left-distances

D_down_left += n_down

for c in range(cc,-1,-1): # decrease size c of new column one by one

n = n_up+n_down + (w+1)*c # (w = previous value of w)

if n <= n_target: # total number of occupied points so far

new_cost = cost + ((D_up_left + D_down_left) * c +

(n_up + n_down) * c*(c-1)/2 +

(c+1)*c*(c-1)/6 * (2*w+1) +

c*c * w*(w+1)/2)

if c==0: # a completed town

opt[n] = min(new_cost, opt[n])

else: # store cost of newly constructed partial town

ind = (D_up_left, D_down_left, D_up_right, D_down_right,

n_up, n_down) # exchange left and right when storing

cost_array[w+1, c][ind] = min (new_cost,

cost_array[w+1, c].get(ind, MAX))

decrease c by 1:

if (c%2)==1: # remove an element from the top of the leftmost column

n_up += w

D_up_left += n_up + w*(w+1)/2

D_up_right += n_up + w*(w-1)/2

else: # remove from the bottom

n_down += w

D_down_left += n_down + w*(w+1)/2

D_down_right += n_down + w*(w-1)/2

for n in range(1,n_target+1): print n, opt[n]

Figure .6: Python program for computing optimal n-towns

24

Appendix A. Program for Computing Optimal Towns

Figure .6 shows a short program in the programming language Python

that implements our algorithm. The program calculates and prints the costs
of optimal n-towns for all values of n up to the specified limit n = n_target.
Instead of an 8-dimensional array, the costs are stored as a dictionary in
the variable cost_array[w,cc][D_up_right, D_down_right, D_up_left,

D_down_left, n_up, n_down]. This makes the program a lot simpler, since
we do not have to worry about allocating arrays with explicit limits, and
incurs little overhead, since internally, Python dictionaries are implemented
as hash tables, providing constant expected access time.

Instead of adding rows alternately on the left and on the right, the pro-
gram always adds a new row on the left side, but (implicitly) reflects the
town about the y-axis when storing a cost value, achieving the same effect.

The main loop of the program does not use the recursion in the form (3),
which calculates the optimum cost of a configuration from all partial solution
that lead to it when a column is added. Instead, it makes a “forward” trans-
fer, generating all successor configurations of a given configuration. This has
the advantage that certain “impossible” parameter sets are automatically ex-
cluded. For example, in the running time analysis for Theorem 7, we argued
that parameter pairs U,D with |U−D| > Cmax need not be considered. (The
parameters U and D correspond to the variables n_up and n_down.) Since
the program only adds columns which are (approximately) balanced about
the x-axis, it will never generate solutions with such parameters.

The program can be adapted for computing optimal n-block cities. Then
the additional cost Λ from (5) between blocks in the same row or column
must be taken into account. One simply has to extend the last line in the
computation of new_cost:

c*c * w*(w+1)/2)

to

c*c * w*(w+1)/2) * 6 + c*c + (cc-c)*w*w

The resulting cost is scaled by a factor of 6, but the end result is then always
even, so we could divide it by 2 (cf. Table 1: all values ccity(n) are multiples
of 1/3).

For n = 40, the program takes a few seconds, but for n = 80 it takes hours.
For larger n the space becomes a more severe bottleneck than the running

25

time; thus it is important to release storage when it is no longer needed, for
example by resetting cost_array[w,cc]={} after each outer loop. There are
several possibilities to speed up the program. The cost of some approximately
circular solution can be taken as an initial upper bound. With this upper
bound, one can then derive a stronger bound width_limit on the maximum
height and width by ad-hoc methods. During the calculation, one can also
prune cost values that are so large that they cannot possibly lead to a better
solution. The given program computes only the optimum cost. We have
extended it to also remember the optimal solutions. This program has 133
lines and was used to produce the data of Table 1.

26

