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ABSTRACT 

Two-dimensional (2D) nanofabrication processes such as 
lithography are the primary tools for building functional 
nanostructures. The third spatial dimension enables completely 
new devices to be realized, such as photonic crystals with 
arbitrary defect structures and materials with negative index of 
refraction [1]. Presently, available methods for three-
dimensional (3D) nanopatterning tend to be either cost 
inefficient or limited to periodic structures. The Nanostructured 
Origami method fabricates 3D devices by first patterning 
nanostructures (electronic, optical, mechanical, etc) onto a 2D 
substrate and subsequently folding segments along predefined 
creases until the final design is obtained [2]. This approach 
allows almost arbitrary 3D nanostructured systems to be 
fabricated using exclusively 2D nanopatterning tools. 

In this paper, we present two approaches to the kinematic 
and dynamic modeling of folding origami structures. The first 
approach deals with the kinematics of unfolding single-vertex 
origami. This work is based on research conducted in the 
origami mathematics community, which is making rapid 
progress  in understanding the geometry of origami and folding 
in general [3]. First, a unit positive “charge” is assigned to the 
creases of the structure in its folded state. Thus, each 
configuration of the structure as it unfolds can be assigned a 
value of electrostatic (Coulomb) energy. Because of repulsion 
between the positive charges, the structure will unfold if 
allowed to decrease its energy. If the energy minimization can 
be carried out all the way to the completely unfolded state, we 
are simultaneously guaranteed of the absence of collisions for 
the determined path. 

The second method deals with dynamic modeling of 
folding multi-segment (accordion style) origamis. The actuation 
method for folding the segments uses a thin, stressed metal 
layer that is deposited as a hinge on a relatively stress free 
structural layer. Through the use of robotics routines, the hinges 
are modeled as revolute joints, and the system dynamics are 
calculated. 

Keywords: nanomanufacturing, self-assembly, origami, 
dynamics, control 

INTRODUCTION 

Fabrication of 3D nanostructures is a challenging endeavor 
since most of the tools used in industry and research employ 2D 
processes. Conventional 2D patterning methods such as 
electron beam lithography can be used to write feature sizes on 
the order of 20 nm [4], but the utility of these structures is 
limited in part by their planar geometry. Manufacturing 
nanostructures in three spatial dimensions introduces added 
functionality since the volume enclosed by the device can be 
used as an additional design parameter. 

Nature is currently the most efficient 3D nanomanufacturer. 
Proteins, for example, are 1D structures that are folded via self-
assembly into 3D machines. The effectiveness of protein 
mechanics originates from its unique three-dimensional 
geometry. The Nanostructured Origami method (Fig. 1) exploits 
3D in nanomanufacturing by patterning devices and hinges in 
2D and folding them into a desired 3D structure. This 
manufacturing technique is inspired by the Japanese art of 
origami, in which creases are first patterned in paper and then 
folded into the final shape. Just as proteins fold to make useful 
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devices, man-made nanostructures would benefit from folding 
as well. Hybrid devices with electronic, optical, electrical, and 
fluidic components could potentially be integrated into a self-
assembled, compact design, and optical devices such as 
photonic crystals and optical interconnects could be fabricated 
efficiently. 

In order to realize complex structures, a solid theoretical 
understanding of origami design and actuation is necessary. 
This paper describes an initial theoretical investigation into the 
design and control of Nanostructured Origami from the 
perspective of both origami mathematics and system dynamics. 
This dual approach tackles difficult geometric questions about 
origami in general, and it tests the scalability of systems theory 
to the fabrication of nanostructured devices. The first section of 
this paper identifies design questions associated with the 
unfolding of single vertex origami and proposes a solution 
based on previous results from the burgeoning field of origami 
mathematics. The second theoretical topic presented in this 
report models the dynamics of accordion-style origami using 
techniques developed for the robotics community. 

NOMENCLATURE 

A - area of origami segment 

B - drag matrix 

C - Coriolis matrix 

CD - drag coefficient 

Ei - Young’s modulus of film layer i 

J - Jacobian matrix 

K - torsional stiffness matrix 

L - length of origami flap 

M -equivalent mass matrix 

M - mass matrix 

U  - energy function 

d - geodesic distance along the unit sphere 

g - rigid body transformation matrix 

l - length of hinge 

q - point on twist axis 

ti - thickness of film layer i 

w - width of hinge 

� - etch rate 

� - arc length 

� - residual strain 

� - twist 

� - generalized coordinate for joint; turn angle 

� - Lagrange multipliers 

� - radius of curvature 

� - applied torque 

	 - density 


 - zenith coordinate for sphere 

� - azimuthal coordinate for sphere 

� - twist axis 

UNFOLDING OF SINGLE-VERTEX ORIGAMI 

For the purposes of Nanostructured Origami, the folded 
configuration of a structure is typically known since the 
device’s geometry is dictated by a design’s functional 
requirements. One question that arises addresses the 
manufacturability of the final shape. Because the patterning step 
is constrained by 2D writing methods, the origami must be 
foldable from a plane. Further manufacturing requirements 
restrict the folding motion to be continuous throughout its 
configuration space while disallowing self-intersection of the 
origami flaps. Thus, the objective is to determine if it is possible 
to smoothly fold an origami from 2D to 3D without collisions. 
An energy-based algorithm that has answered this kinematic 
design question for the case of all single-vertex origami 
(origami with creases that intersect at a single point) will be 
presented. Instead of modeling the folding, however, the 
algorithm tests whether a desired 3D origami is flat unfoldable 
by taking advantage of already knowing its final state. The 
unfolding is therefore a unique path that is consistent with the 
direction of rotation about the creases. 

Energy Methods for Unfolding 

Much of the work on the unfolding of single vertex origami 
is based on methods for unfolding linkages. Connelly, Demaine, 
and Rote proved that there are no locked chains in 2D [5]. The 
physical meaning of this proof is that no two configurations of a 
chain in two dimensions can be prevented from reaching one 
another via continuous motions.  The obvious question that 
arises is whether there is an algorithm that can convexify or 
straighten an arbitrary 2-D linkage. Prior work by Connelly, et 
al [6], and Streinu [7] have answered this question in the 
affirmative, but the fastest method found to date algorithmically 

 

 

Fig. 1 Nanostructured Origami Concept 
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was described in 2004 by Cantarella, Demaine, Iben, and 
O’Brien [8]. The proposed algorithm assigns a repulsive energy 
function to a graph of n vertices that are parameterized to 
maintain constant edge lengths.  The algorithm then follows the 
steepest descent of energy until the chain has been convexified 
or straightened.  

The inspiration for using an energy method to model the 
kinematics of single-vertex origami came from both [8] and 
research recently reported by Streinu and Whiteley [9].  The 
proof in [9] shows that every simple, single-vertex origami fold 
with the fold-vertex interior to the paper, interior to a boundary 
edge, or situated at a convex vertex can be unfolded with 
expansive motions.  The proof was based on motion of circular 
arcs along a spherical surface.  This result implies that, since 
expansive motions exist, there should be an algorithm for 
unfolding along the sphere. 

The model implemented in this report uses the 
mathematical convenience of origami motions along the unit 
sphere.  The idea is to use spherical arcs in the plane of the 
origami flaps whose nodes lie on the crease lines at unit length 
from the center vertex of the origami.  Since the arc lengths are 
always kept at unit length from the center, every motion of an 
arc is exactly along the unit sphere.  Fig. 2 illustrates the model 
in both the flat and folded states for the corner cube, and it 
shows the spherical coordinate frame used in the calculations. 

Both the nodes of the bars (shown in red in Fig. 2) and the 
midpoints of each spherical arc are represented mathematically 
as unit, positive, electrostatic charges.  The electrostatic 
potential induces a global energy field that tends to repel nodes 
from the arcs until the energy is minimized by following the 
steepest descent of energy. 

  

[8] proposed a set of four criteria that an admissible energy 
function should meet to smoothly unfold a chain.  The 
properties include charge, repulsive, separable, and continuous 
first and second derivatives.  The charge property indicates that 
the energy function tends to infinity if any two bars cross.  
Repulsive means that the vertices should repel each other as the 
energy is minimized, and separable specifies that the 
components of the energy function should be independent.   

The simulations reported in this paper tested both 
admissible energy functions described above and energy 
functions that met only the repulsive and continuity 
requirements. Equations 1 and 2 illustrate the form for both the 
separable and non-separable cases, respectively. The energy is 
thus inversely proportional to the geodesic distance, d, along 
the unit sphere between each node and the center of every non-
adjacent spherical arc, where p is a positive, real number. It is 
interesting to note that both types of energy functions led the 
origami to unfold, but each encountered a few local minima, 
especially in the case of the corner cube. 

 

The geodesic distance along the sphere was calculated 
using the cosine rule of spherical trigonometry. Spherical 
coordinates are depicted in Fig. 2 above, where the unit 
directions are r, �, and 
. The arc lengths, �, are of fixed length 
as defined in Eq. 3 for an arc beginning at node vi and 
terminating at node vi+1. 

( ) ( ) ( ) ( ) ( ) ( )iiiiiii ψψϕϕϕϕγ −+= ++ 11 cossinsincoscoscos   

The energy functions defined in Eq. 1 and 2 were 
minimized by numerically solving the Kuhn-Tucker equations 
(Eq. 4-6) using optimization routines in MATLAB. The rigid 
arc length constraint is represented by the vector G, and 
Lagrange multipliers are introduced to ensure that the system of 
equations remains in equilibrium. In the implementation, p=2 
and p=4 produced the smoothest results for the separable and 
non-separable, respectively. 
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Fig. 2 Charge model for corner cube and spherical 
coordinates 
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Simulation Results 

For an origami design to be manufacturable in a geometric 
sense, it must be foldable from 2D while ensuring that the flaps 
of the origami remain rigid. The constraint definition in the 
Kuhn-Tucker equations maintains the flap rigidity, and the 
energy function drives the charges to unfold to a plane in the 
shape of a circle. If the final state of the charges is not in the 
plane, then the initial folded state is either knotted or not flat 
unfoldable. The repulsive property of the energy function also 
prevents the flaps from intersecting, meaning that there exists at 
least one collision-free folding path. Although the topology of a 
single-vertex origami is relatively simple, it is possible that 
similar energy-based methods could aid in the design of 
multiple vertex origami or in the dynamical analysis of origami. 

Simulation results rendered in OpenGL are illustrated in the 
unfolding trajectories of Fig. 3a and 3b. The corner cube in Fig. 
3a is an especially useful single-vertex origami because it could 
be manufactured with applications as a reflective optical device. 

DYNAMICS OF ACCORDION ORIGAMI 

The previous discussion considered geometrical aspects of 
origami design. Actuating a nanostructured device, on the other 
hand, requires a detailed physical model of the geometry and 
materials used in fabrication. The dynamic equations of motion 
for the system can then be derived, and a control scheme can be 
implemented. The results from the equations of motion then 
represent the physical path traversed, and the resulting 
generalized forces can be calculated. The actuation method 
used in the laboratory represents an external input to the system, 
which must also be modeled according to the fabrication 
techniques. Once a model of the origami and the input is 
formulated, design iterations can be performed prior to and 
during fabrication. 

Stress Actuation Method 

One method of folding nanopatterned membranes is to 
deposit stressed chromium as a hinge on a structural layer of 
silicon nitride. Upon release from the silicon substrate in a 
potassium hydroxide (KOH) etch bath, the stressed bilayer 
bends the device to a radius of curvature described by the 
relationship in Eq. 7 [10]. The radius of curvature of the 
bending bilayer is a fundamental property for a set of given 
material properties, residual strain, and film thicknesses. The 
remaining hinge property yet to be defined is the initial length, 
l, of the hinge, which is found by the simple relationship l=��, 
where � is the turn angle of the film. 

 

Results from [11] are shown below in Fig. 4, which 
demonstrates the ability to fold thin films to an arbitrary angle. 
The trenches shown in the SEM images are results of the slow 
KOH etch procedure. The anisotropy of the etch allows the Cr 
hinge to fold largely about only one revolute axis. This allows 
for an easy parameterization of more complex devices in terms 
of twists and the product of exponentials formula [12]. 

Accordion Origami Model and Kinematics 

An accordion origami is a simple example of the 
applicability of the Nanostructured Origami technique. Photonic 
crystals (Fig. 5a) and other layered devices could be fabricated 
by patterning in 2D and folding into 3D. A working 6 level 
electrochemical supercapacitor, shown in Fig. 5b, demonstrates 
the utility of the accordion origami design [13]. 

(7) 

 

Fig. 3 a.) Corner cube charge method unfolding; b.)Water-
bomb base unfolding 

 

 

Fig. 4 200 nm thick silicon nitride membranes with 100 
nm thick Cr hinges are folded to arbitrary angles 
between 0 and 90 deg using stress actuation method 
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Consider the model of a 3-flap accordion origami in Fig. 6. 
The inertial coordinate frame is located at A, and the body 
frames of each flap are shown in the figure. In order to calculate 
the origami’s dynamics, the center of gravity (CG) of each link 
must be parameterized with respect to the inertial frame A. 

In order to define a linkage in terms of twists, the axes of 
rotation and a point on that axis must be defined with respect to 
A. The unit vector, �i, for the rotation axes and the points, qi, on 
those axes are defined below. In this model, the axes of rotation 
lie in the plane of the origami flaps, but in reality, the radius of 
curvature introduces a certain clearance between the layers, 
which should be addressed in the future. 

The forward kinematics map (Eq. 8) representing the 
configuration of a linkage with respect to A is given by the 
product of exponentials formula. The rigid body transformation, 
g, is a 4x4 homogeneous coordinate transformation in the 
special Euclidean group, SE(3). This expression is used as the 
parameterization for the generalized coordinates used in the 

equations of motion. Equation 9 illustrates the initial rigid body 
configuration of the CGs of each origami segment in A’s 
coordinate system [12]. 

 

The geometric interpretation of the kinematics is that the 
current rigid body configuration is equivalent to moving the 
initial configuration of the rigid body through a screw motion 
by an amount �. The twist, �, is an infinitesimal screw motion 
that is defined in Eq. 10. 

 

Accordion Origami Dynamics 

 The Newton-Euler equations of motion in body 
coordinates are given in Eq. 11. The bending stiffness of the 
bilayer manifests itself in the system of equations as a 3x3 
equivalent torsional stiffness matrix, K. The equivalent moment 
at the joint due to the drag forces of the moving origami is 
represented in the 3x3 diagonal matrix B. The mass, Coriolis, 
stiffness, and drag matrices are defined below. In the Appendix, 
the specific terms are described in detail for the accordion 
model presented above. 
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Fig. 5 a.) Origami fabrication schematic for photonic 
crystals; b.) Electrochemical supercapacitor as an 
example of an actual device 
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Fig. 6 Model of accordion origami 
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Open Loop Control Law 

The obvious first step in the control of origami is to 
simulate the forward dynamics of the structure to an input 
torque defined by the manufacturing processes. For closed-loop 
topologies, such as the corner cube, this is a critical step since 
the hinge design parameters are not immediately evident due to 
the parallel constraints. The open loop control law for the 3-
segment accordion origami is described here with a realistic 
model of the input forces. 

Step Input 

The KOH etch procedure is an event that incrementally 
releases the stressed bilayer  hinge. If the KOH were to etch the 
silicon immediately, then the turn angle would instantly fold to 
its final value. This represents a step input, where the open loop 
control law is given in (12). 

 

The angular response to the step input can be seen in Fig. 
7. Note that joint 1 overshoots by about 39%, and the rise times 
for joints 1-3 are 37s, 101s, and 38s, respectively. This fast 
response is due to the low mass of the thin films. Figure 8 
illustrates screen shots from an animation of the step response 
of the 3-segment accordion.  

The step response represents the system’s dynamics when 
subject to any actuation method governed by Eq. 12. This is not 
a very realistic model of the experimental behavior, however, 
since the etch rate is finite. 

Ramp Input 

A more accurate input model defines the input joint torques 
as a function of the etch rate. Since the KOH etch is highly 
directional along the <1 0 0> crystal plane of Si, the devices can 
be situated such that the KOH etches along the length of the 
hinge linearly over time. Figure 9 illustrates the orientation of 
the device with respect to the etch direction. 

Recalling that the turn angle, �, at each joint is related to 
the length, l, of the hinge by l=��, it follows that the constant 
etch rate, �, is equivalent to the time derivative of l. Therefore, 
Eq. 13 dictates the open loop control law for a constant etch  
rate. Not surprisingly, the control law is a ramp input over time 
period T=l/ �, which is approximately 2-3 hours for 
�=1.5m/min. 
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Angular Response Curves for a Step Input of 180 deg.
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Fig. 7 Step response for accordion model 

 

Fig. 8 Trajectory of origami after step input 



 7 Copyright © 2005 by ASME 

However, it is not necessary to solve the equations of 
motion over such a long time period if the response at faster 
times is still acceptable. The plots in Fig. 10 are the responses 
of each joint to a ramp input over 0.1 s, which is much faster 
than the KOH etch. There is minimal overshoot, and the 
trajectory is very well-behaved, as expected. Longer time 
periods exhibit improved dynamics, meaning that these 
simulations are a conservative calculation. Figure 11 displays an 
animation of the ramp input response. 

CONCLUSIONS 

The Nanostructured Origami method is poised to enable 
new functionality in nanotechnology by patterning membranes 
in 2D and folding them into 3D. Before complex devices can be 
fabricated, questions concerning the design and control of 
origami should be considered. The unfolding of single vertex 
origami through energy methods introduces a novel way to 
characterize the geometry of an arbitrary origami. The results in 
this paper show that it is possible to determine, for at least one 
class of origami, whether a design is a feasible one from a 
geometric standpoint. For multiple vertex origami, a similar 
method could be used to optimize actuation orders such that 
neighboring segments do not collide or to determine foldability 

like in the case of single vertex origami [14]. Understanding the 
dynamics of the actuation is also important. The results from the 
accordion model indicate that the stress actuation technique is 
ideal due to the finite etch rate. By employing methods that are 
typically used in the robotics community, it is also possible to 
design an actuation scheme for more complex structures such as 
the corner cube and other structures with a closed-loop 
topology. 
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APPENDIX 

The body Jacobian is defined below in terms of 
instantaneous twists. The adjoint matrix, Ad, transforms twists 
in one coordinate frame to twists in another. A full explanation 
of its usage is given in [12]. 
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For the accordion model, the body Jacobians of each link 
with respect to the inertial frame are: 
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The mass matrix, M, is given by: 
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where I is the 3x3 identity matrix, and I is the 3x3 inertia 
matrix. 


