
Palindrome Reognition Using a

Multidimensional Tape

Therese Biedl

�

, Jonathan F. Buss

�

, Erik D. Demaine

y

,

Martin L. Demaine

z

, Mohammadtaghi Hajiaghayi

y

, Tom�a�s Vina�r

�

Shool of Computer Siene

University of Waterloo

January 10, 2003

Abstrat: The problem of palindrome reognition using a Tur-

ing mahine with one multidimensional tape is proved to require

�(n

2

= log n) time.

Introdution

A palindrome is a word that reads the same forward and bakward. Hennie [1℄

showed that to test whether an input word is a palindrome requires �(n

2

)

time for a palindrome of length n on a standard one-tape Turing mahine.

A multitape Turing mahine an test for palindromes in real time [2℄.

�

Shool of Computer Siene, University of Waterloo, Waterloo, Ontario, Canada

N2L 3G1. Supported in part by grants from the Natural Sienes and Engineering Re-

searh Counil (NSERC) of Canada.

y

Work performed while at the Shool of Computer Siene, University of Waterloo,

and supported in part by grants from NSERC. Current address: Department of Eletrial

Engineering and Computer Siene, Massahusetts Institute of Tehnology, Cambridge,

MA 02139, USA.

z

Work performed while at the Shool of Computer Siene, University of Waterloo.

Current address: Laboratory for Computer Siene, Massahusetts Institute of Tehnology,

Cambridge, MA 02139, USA.

1

We onsider the ase of one two-dimensional tape. We extend Hennie's

rossing-sequene argument to this ase and prove that time
(n

2

= log n) is

neessary. We also present an algorithm ahieving O(n

2

= log n) time. Both

bounds assume that the input is presented linearly along the �rst row of the

tape.

The Lower Bound

The lower bound, like the bound for one-dimensional tapes, uses the on-

ept of a rossing sequene. Assume that a Turing mahine M to aept

palindromes is �xed, and onsider the movement of the tape head when the

input is a palindrome w. To extend rossing sequenes to two dimensions,

we onsider rossing a olumn boundary, and inlude in the spei�ation of

eah rossing the row at whih the head rossed the boundary.

Let w be an input word and let i � 1. The ith rossing sequene on word

w, whih we will denote C

i

(w), is a sequene f(q

1

; r

1

); (q

2

; r

2

); : : : ; (q

k

; r

k

)g of

states and row numbers suh that

� At some time t

1

, the tape head moves from ell (i; r

1

) to ell (i+1; r

1

),

and the next state is q

1

.

� At some time t

2

> t

1

, the tape head moves from ell (i+ 1; r

2

) to ell

(i; r

2

), and the next state is q

2

.

� For all odd `, 3 � ` � k, at some time t

`

> t

`�1

, the tape head moves

from ell (i; r

i

) to ell (i+ 1; r

i

), and the next state is q

`

.

� For all even `, 3 � ` � k, at some time t

`

> t

`�1

, the tape head moves

from ell (i+ 1; r

i

) to ell (i; r

i

), and the next state is q

`

.

� Only at times t

1

; t

2

; : : : ; t

k

does the tape head move from olumn i to

olumn i+ 1 or vie versa.

The state and row are the only information that the mahine arries

from one olumn to the next. This limitation leads to the following \spliing

lemma" exatly as in the one-dimensional ase [1℄.

Lemma 1 (Hennie) Suppose that M aepts both xy and uv, with jxj = i

and juj = j, and that C

i

(xy) = C

j

(uv). Then M aepts both xv and uy.

2

In the ase where M aepts the language of palindromes, the lemma

implies that two di�erent palindromes must have di�erent rossing sequenes

in most ases. (The exeptions arise when spliing two strings reates a

new palindrome.) To obtain a lower bound, we onentrate on a sublass of

palindromes and only some of the rossing sequenes. For a word x 2 f0; 1g

m

,

de�ne w(x) = x0

m

rev(x). Let

L

m

= fw(x) : x 2 f0; 1g

�

; jxj = mg:

Words in L

m

have the property that if we split and reombine any two suh

words at the middle part onsisting entirely of 0s, then the resulting word is

not a palindrome.

Lemma 2 For any two distint words w

1

; w

2

2 L

m

and any i; j 2 fm; : : : ; 2mg,

the ith rossing sequene of w

1

and the jth rossing sequene w

2

must be dif-

ferent.

Proof: Assume to the ontrary that there exist i; j 2 fm; : : : ; 2mg for

whih the ith rossing sequene of w

1

= x

1

0

m

rev(x

1

) and the jth rossing

sequene of w

2

= x

2

0

m

rev(x

2

) are the same, but w

1

6= w

2

. By the previous

lemma, M aepts the word x

1

0

m+i�j

rev(x

2

), whih is not a palindrome. 2

The number of possible rossing sequenes of length less than l in a om-

putation using at most n

2

time is less than (sn

2

)

l

, where s is the number

of states of M . Sine L

m

has 2

m

members with mutually disjoint sets of

rossing sequenes, we must have (sn

2

)

l

� 2

m

, whih yields l � log

(sn

2

)

2

m

=

m=(2 log n + log s). Therefore some word w 2 L

m

has m rossing sequenes

of length
(m= log n). The time used by M is at least the sum of the lengths

of its rossing sequenes, whih is
(n

2

= log n).

We have proved the following.

Theorem 1 A one-tape two-dimensional Turing mahine that aepts the

language of palindromes requires
(n

2

= log n) steps to aept some palindrome

of length n.

The proof extends immediately to k-dimensional tapes using rossing se-

quenes aross a (k � 1)-dimensional hyperplane.

3

\0"

\1"

\2"

\3"

\4"

\5"

\7"

\6"

1 0 1 0 10 11 0 1 0 1

Figure 1: Mathing by rows. In this example, the outermost bloks math,

but the next two do not.

The Upper Bound

Now we show that the lower bound is tight, by giving an algorithm for a

Turing mahine that aepts palindromes in O(n

2

= log n) time.

The outline of the algorithm is as follows. Let the input alphabet be

f0; 1; : : : ; a � 1g. Break the input string into bloks of some length y. In-

terpret eah blok as an a-ary number N with value between 0 and a

y

� 1.

Now move down to row N , thus using the row to enode the value of this

blok. Similarly, we study the mathing blok, interpret its reverse as the

binary enoding of a number and go to the orresponding row. By omparing

whether we marked the same row both times, we an disover whether the

two bloks were the reverse of eah other.

In this way, by rossing from one end of the string to the other just twie,

we an ompare two bloks of length y. Hene, only n=y passes will be needed

to ompare the whole string. By hoosing y suitably, we obtain the desired

running time.

The preise algorithm is as follows. We assume a left endmarker; the

blank at the end of the input serves as a right endmarker.

1. Initialization:

(a) Assume that a string of length n is initially in the �rst row of the

tape.

(b) Compute log n, and write it in unary, using 0s, into the seond row.

(To ompute log n, make repeated sans of the input, marking

4

every seond unmarked symbol in the input, until all symbols are

marked. The number of sans is blog n + 1.)

() Compute log log n from log n, and write it in unary into the third

row.

(d) Subtrat the third row from the seond row, so that the seond

row now ontains log n � log log n in unary (using 0s). Erase the

third row.

As we will see, log n � log log n is the value that we will use for

the length y of the bloks. Hene we have now omputed y.

2. Repeatedly ompare bloks as follows:

(a) Deal with the leftmost blok:

i. Fill the spae underneath the leftmost blok:

A. Start in the seond row (whih ontains 0

y

).

B. Repeatedly opy the ontents of the urrent row to the

next row, adding 1 (as an a-ary number) eah time.

C. Stop when all as are written.

The spae underneath the leftmost blok now ontains all

possible strings with y haraters, sorted by their numerial

value.

ii. Mark the spae underneath the leftmost blok as mathing/non-

mathing:

A. Go to the �rst olumn of the leftmost blok.

B. Memorize the harater in the input in a state.

C. Go down that olumn (as long as it is �lled). For every

entry that mathes , replae the entry by ". For every

entry that doesn't math , replae the entry by #.

D. Repeat this for all other olumns of the blok. (The blok

ends when there is a blank in the seond row.)

iii. Mark the appropriate row:

A. San all rows underneath the blok down to the �rst blank

row.

B. If a row ontains a # somewhere, replae all entries in the

row by #.

5

0 1 0 0 1 0 0 1 0

0 0 0 " # " # # #

0 0 1 " # # # # #

0 1 0 " " " " " "

0 1 1 =) " " # =) # # #

1 0 0 # # " # # #

1 0 1 # # # # # #

1 1 0 # " " # # #

1 1 1 # " # # # #

Figure 2: Filling the spae beneath a blok.

C. Only one row will not ontain a # (namely, the row that

exatly mathed the ontent of the blok initially).

(b) Deal with the rightmost blok:

i. Copy the unary enoding of y from the beginning of the seond

row to the end of the seond row (loated by searhing for the

blank in the �rst row).

ii. Fill the spae underneath the rightmost blok as before, ex-

ept write the strings in reverse (least signi�ant bit at the

left).

iii. Mark the spae underneath the rightmost blok as mathing

or non-mathing as before.

iv. Mark the orret row underneath the rightmost blok as be-

fore.

() Go to the orret row underneath the rightmost blok and san

left. If the �rst non-blank seen is not ", then there was a mismath

and the word is not a palindrome, so rash.

(d) Cleanup:

i. Copy the unary enoding of y to underneath the seond blok.

ii. Overwrite the marked rows with # as well.

iii. Overwrite the heked bloks of the input with #.

(e) Repeat the mathing proedure until the leftmost and the right-

most blok overlap. When this happens, use a brute-fore ap-

proah to test whether the remaining word (whih has length less

than 2y 2 O(log n)) is a palindrome.

6

Analysis

Now we analyze the time omplexity. The initialization (omputing y) uses

O(n log n) time. The �nal round (testing the last 2y haraters to be a

palindrome) takes O(y

2

) � O(log

2

n) time. Thus the dominant fator of the

omputation time is the produt of the number of rounds and the time it

takes to proess any one blok.

In eah round, the mahine heks 2y input symbols, hene the total

number of rounds is O(n=y). During eah round, �lling the spae underneath

the blok involves an y � z retangle, for z = a

y

. Eah ell in the retangle

is only visited a onstant number of times; hene �lling the retangle takes

O(yz) time. Finally, to test whether the two marked rows are the same takes

O(n) time. Thus eah round takes O(yz + n) time.

The time for all rounds is therefore proportional to nz + n

2

=y = nz +

n

2

= log z. Taking z = n= log n and thus y = log n � log log n gives a time

bound of O(n

2

= log n).

The above yields

Theorem 2 A one-tape two-dimensional Turing mahine an test whether

a word of length n is a palindrome in time O(n

2

= log n).

Referenes

[1℄ F. C. Hennie, One-Tape O�-Line Turing Mahine Complexity, Informa-

tion and Control 8 (1965) 553{578.

[2℄ Z. Galil, Palindrome Reognition in Real Time by a Multitape Turing

Mahine, J. Computer and System Sienes 16 (1978) 140{157.

7

