
Tight Bounds for the Partial-Sums Problem

Mihai Pǎtraşcu∗ Erik D. Demaine∗

Abstract

We close the gaps between known lower and upper bounds

for the online partial-sums problem in the RAM and group

models of computation. If elements are chosen from an ab-

stract group, we prove an Ω(lg n) lower bound on the num-

ber of algebraic operations that must be performed, match-

ing a well-known upper bound. In the RAM model with

b-bit memory registers, we consider the well-studied case

when the elements of the array can be changed additively

by δ-bit integers. We give a RAM algorithm that achieves

a running time of Θ(1 + lg n/ lg(b/δ)) and prove a matching

lower bound in the cell-probe model. Our lower bound is for

the amortized complexity, and makes minimal assumptions

about the relations between n, b, and δ. The best previous

lower bound was Ω(lg n/(lg lg n+lg b)), and the best previous

upper bound matched only in the special case b = Θ(lg n)

and δ = O(lg lg n).

1 Introduction

The partial-sums problem is to maintain an array A[1..n]
subject to the following operations:

update(k,∆): modify A[k]← A[k] + ∆.

sum(k): returns the partial sum
∑k

i=1 A[i].

Given an order on the elements, we may extend the
problem to include the following operation [23]:

select(σ): returns an index i satisfying sum(i−1) <
σ ≤ sum(i). To guarantee the uniqueness of the
answer, we require that A[i] > 0 for all i.

The minimal setting in which the partial-sums
problem can be considered is the semigroup model. Here
elements are chosen from an abstract semigroup, and
the running time of an algorithm is the number of
algebraic operations (i.e., additions) it performs. A
similar model is the group model of computation, in
which subtraction is also available. A quite different
setting for this problem is the transdichotomous RAM
model, where the elements of the array are integers
that each fit in a machine register. In this model,
we define two additional parameters: b, the number

∗MIT Laboratory for Computer Science, 200 Technology

Square, Cambridge, MA 02139, USA, {mip, edemaine}@mit.edu

of bits in a word; and δ, the number of bits needed
to represent an argument ∆ to update in the standard
two’s complement form. Naturally, δ ≤ b, and we use
the standard assumption that b ≥ lg n.1 Under the
usual transdichotomous assumption, we consider b and
δ arbitrary parameters which may grow with n.

Our treatment of the RAM model leads to a slightly
different version of the problem, that of computing
partial sums in Z/mZ on a b-bit RAM. This version
is not so natural, and has fewer applications than
the one described above, but is theoretically cleaner.
We use this modified problem (for m = 2δ) in our
lower-bound argument. Furthermore, our upper bound
extends easily to this case, giving a tight bound of
Θ(1 + lg n/ lg(b/ lg m)) for this problem.

Table 1 gives a brief summary of main results for
the partial-sums problem, both old and new. Details
follow below.

1.1 Our Results. In Section 2 we give an improved
data structure that achieves a running time of O(1 +
lg n/ lg(b/δ)) per operation. Our key contribution is
to recognize that the precomputed tables used by [10]
and [23] can be replaced by careful use of word-level
parallelism techniques. This makes it possible to obtain
an upper bound that applies naturally to various com-
binations of n, b, and δ, while keeping the space O(n).
Note, for instance, that our bound is identical to the
classic logarithmic bound for δ = Θ(b), and achieves a
running time of O(lg n/ lg lg n) for δ = O(b/ lgε n), for
any constant ε > 0. This is the same running time as
the data structure given by [10], but under lighter as-
sumptions. We also show that our data structure can
support the select operation in the same running time
as sum, improving the results of [23].

Subsequent sections concern our lower bound work.
We develop a technique for applying Kolmogorov com-
plexity to dynamic data structure problems, that we
believe will find applications beyond the partial-sums
problem. The general framework of our proofs is de-
scribed in more detail in Section 3. Using these ideas,
we give a simple proof of our logarithmic lower bound
for the group model in Section 4. Our bound is amor-

1We use the following notation: lg n = dlog2(2 + n)e.

Online partial-sums Upper bounds Lower bounds

Ω(lg n/ lg lg n) [24]
Semigroup model O(lgn) [classic]

Ω(lgn) [17]

Ω(lg n/ lg lg n) [15]
Group model O(lgn) [classic]

Ω(lgn) [NEW]

O(lg n/ lg lg n) for δ = O(lg lg n) [10] Ω(lg n/(lg lg n + lg b)) [15]
RAM model

O(lgn/ lg(b/δ)) [NEW] Ω(lgn/ lg(b/δ)) [NEW]

Table 1: Summary of old and new results on partial sums. Optimal results are bold.

tized and is derived by considering the average case of a
natural probability distribution. The proof also gives a
powerful characterization of the hardness of an instance
of the problem. Using this insight, we can construct a
fixed sequence of operations that takes Ω(lg n) amor-
tized time per operation for any algorithm. The algo-
rithm is allowed to know the indices touched by update

and sum beforehand, but does not know the parameters
∆ to update. In the semigroup model, we can eliminate
even this restriction, and make our bound hold for the
totally offline case, which gives an independent proof of
the results of [17].

In Section 5, we give lower bounds on the cell-probe
complexity of the partial-sums problem, which immedi-
ately apply to the RAM model as well. We first treat
the case when δ = Θ(b) (no essential restriction is im-
posed on δ), and give a tight Ω(lg n) lower bound on the
cell-probe complexity. We then show the data structure
proposed in Section 2 is asymptotically optimal for any
combination of n, b and δ. This proof requires addi-
tional insight, and depends crucially on the algorithm
not knowing the indices touched by update and sum

in the future. As before, our bound is amortized, and
is derived by considering the average case of a natu-
ral probability distribution. When δ = 1, our bound is
equivalent to the bound given by [15], under our original
assumption that b = Ω(lg n).

Our results also translate easily to the external-
memory and cache-oblivious models. If B is the number
of words in a memory-transfer block, our lower bound

is Ω
(

lg n
lg B+lg(b/δ)

)

. A matching upper bound can be

obtained cache-obliviously by combining our data struc-
ture with an optimal tree layout [1]. This transference is
made possible only by the elimination of precomputed
tables. An easier O(logB n) upper bound can be ob-
tained by combining the classic binary tree solution with
a van Emde Boas layout [7].

1.2 Previous Work. The partial-sums problem is a
classic problem and has been studied rather extensively.
Besides being a natural range-query and data-structure
problem, it has applications to list indexing and dy-
namic ranking [10], dynamic arrays [23], and arithmetic

coding [11]. The problem is also well-studied on the
lower-bound side; it is interesting to note (see [22]) that
many techniques for proving lower bounds were devel-
oped initially for the partial-sums problem, which is ri-
valed in this respect only by the predecessor problem.

It is easy to obtain an O(lg n) upper bound for all
three operations using a balanced binary tree with the
elements of A in the leaves, and storing partial sums for
each subtree. A simple variation of this scheme yields
an implicit data structure occupying only n memory
locations [11].

For the semigroup model, this logarithmic bound is
the best possible, even if the problem is offline, as shown
in [17]. Previously, a lower bound of Ω(lg n/ lg lg n) had
been derived in [24]. A tight logarithmic lower bound
for a slightly harder problem appears in [13]. Finally,
a trade-off between the running times of the operations
was given by [8]; this tradeoff is optimal for a certain
class of algorithms [8, 14].

For the group model, the best previous lower bound
of Ω(lg n/ lg lg n) is by Fredman and Saks [15]. A tight
logarithmic bound (including the lead constant), was
given by [14] for the class of “oblivious” algorithms,
whose behavior can be described by matrix multiplica-
tion. For the offline problem, Chazelle [9] gives the only
known lower bound of Ω(lg lg n) per operation. While
this offline bound is an important result, it is exponen-
tially weaker than the best known upper bound; closing
this gap remains an interesting open problem.

The investigation of the problem in less-restrictive
models began with the classic result of Fredman and
Saks [15], who developed the chronogram technique and
used it to prove a lower bound of Ω(lg n/(lg lg n + lg b))
on the cell-probe complexity for any δ ≥ 1. Their
bound is partially matched by a RAM data structure
of Dietz [10], which achieves O(lg n/ lg lg n) running
times provided that δ = O(lg lg n). Unfortunately, these
results offer only a piece of the puzzle, because neither
scales well with δ; in addition, the upper bound of [10]
does not depend of b, and is optimal only if b = poly lg n.

This incomplete story lead Hampapuram and Fred-
man [17] to highlight less-restrictive models of compu-
tation (namely the group and RAM model) as underde-

veloped. Miltersen [22] lists the problem as a challenge
for future research and suggests that it might be easier
to obtain just a strongly transdichotomous lower bound
of Ω(lg n), matching the simple upper bound mentioned
above. (Such a bound need only apply to one worst-case
combination of b and δ for every given n.) Our result ap-
plies to any combination of n, b, and δ, and immediately
gives a strongly transdichotomous bound for δ = Θ(b).
(Note that this gives a lower bound of Ω(lg n) regardless
of the relation between b and n.)

Though the bounds of [15] and [10] have not been
improved, some progress has been reported in other
directions. Ben-Amram and Galil [5] reproved the lower
bound of [15] in a more formalized framework, centered
around the concepts of problem and output variability.
Using these ideas, they were able to show in [6] that the
lower bound holds even if the machine registers have
infinite precision, but the set of operations is restricted.
Husfeldt and Rauhe [19] show that the lower bound
of [15] holds even for the promise version of the problem,
in which the algorithm is told the requested sum to a
±1 precision. Several lower bounds for various problems
are shown in [20] and [19] by reductions to this result
or the original result of [15]. Finally, [2] generalizes the
predecessor and partial-sums problems to trees. In this
case, values are stored in nodes and along edges, and
the sum operation reports the sum of the values along
a path between two nodes. Their upper bound uses
Dietz’s data structure and inherits its limitations.

On the upper bound side, Raman et al. [23] improve
on the work of Dietz, by showing how to support select
in O(lg n/ lg lg n) if δ = O(lg lg n), and offering some
tradeoffs between the running times of the operations.
They are also concerned with memory consumption, and
show how to reduce the space to kn + o(kn) bits, if
the elements of the array are k-bit integers (for some
k ≤ lg n). Recently, Hon et al. [18] gave an additional
tradeoff between the running times of sum and update,
while keeping the data structure succinct. They also
noted that the lower bounds for the predecessor problem
established by Beame and Fich [4] hold for select,
and showed that these bounds can be matched if one
is willing to pay a cost of Θ(nε) per update.

A new direction for research was opened by [12].
They consider a version of the problem in which the
elements of the array are chosen from a fixed monoid
(independent of n) known to the algorithm. The
dynamic-prefix problem asks to support partial-sum
queries; a dynamic-word problem asks only for the sum
of all elements in the array. Depending on the algebraic
properties of the monoid, several bounds are derived
for the cell- and bit-probe complexity. We note that
the bit-probe complexity for the natural Z/2Z case had

already been considered by Fredman [14], who proved a
lower bound of Ω(lg n/ lg lg n). Closing the gap between
this and the known logarithmic upper bound remains an
open problem.

2 Upper Bounds

2.1 Partial sums in small arrays. We begin by
supporting sum and update in constant time if n is
“sufficiently small”. We will conceptually maintain
an array of partial sums S[1..n] defined by S[k] =
∑k

i=1 A[i]. To make it possible to support update in
constant time, we maintain the array as two separate
components, B[1..n] and C[1..n], such that S[i] =
B[i] + C[i]. The array B will hold values of S that
were valid at some point in the past, while more
recent updates are reflected only in C. We can use
Dietz’s incremental rebuilding scheme to maintain every
element of B relatively up-to-date: on the t-th update,
we set B[t mod n] ← B[t mod n] + C[t mod n] and
C[t mod n] ← 0. This scheme guarantees that every
element in C is affected by at most n updates, and thus
is bounded in absolute value by n · 2δ.

The key optimization is to recognize that C can
be packed in a machine word. We pack the array in
a word by representing each element in the array by
a certain range of the bits from the word, with one
zero bit of padding between elements. Elements in C
can also be negative; in this case, each value will be
represented in the standard two’s complement form on
its corresponding range of bits. Because each element in
C can be represented by O(δ+lg n) bits, we can pack the
whole array C in one word if n = O(min{b/ lg b, b/δ}),
for an appropriate choice of constants. We can read
and write elements of the array in packed form using a
constant number of standard RAM operations (bitwise
boolean operations and shift operations).

One consequence of packing C is that our data
structure requires only n + O(1) memory locations. A
more important consequence is that we can add a given
value to all elements C[i], i ≥ k, in constant time; this
operation is the crux of update. Refer to Figure 1.
First, we create a word with the value to be added ap-
pearing in all positions corresponding to the elements of
C that need to be changed. We can compute this word
using a multiplication by an appropriate binary pattern.
The result is then added to the packed representation of
C; all the needed additions are performed in one step,
using word-level parallelism. Because we are represent-
ing negative quantities in two’s complement, additions
may carry over, and set the padding bits between ele-
ments; we therefore force these buffer bits to zero using
a bitwise and with an appropriate constant mask. We
obtain the following result:

C[4] 0 C[3] 0 C[2] 0 C[1] 0 C[0] old packed representation of C
00001 0 00001 0 00001 0 00001 0 00001 constant pattern
00001 0 00001 0 00001 0 00000 0 00000 shift right and back left by the same amount

∆ argument given to update

∆ 0 ∆ 0 ∆ 0 00000 0 00000 multiply the last two values
C ′[4] ? C ′[3] ? C ′[2] ? C[1] ? C[0] add to the packed representation of C
11111 0 11111 0 11111 0 11111 0 11111 constant cleaning pattern
C ′[4] 0 C ′[3] 0 C ′[2] 0 C ′[1] 0 C ′[0] final value of C, obtained through bitwise and

Figure 1: Performing update(2,∆) at the word level. Here C has 5 elements, each 5 bits long.

Lemma 2.1. If n = O(min{b/ lg b, b/δ}), we can sup-
port update and sum on an array of size n in O(1)
worst-case running time. The data structure occupies
n + O(1) memory locations.

2.2 Selecting in small arrays. To support select,
we use a classic result of Fredman and Willard [16] that
forms the basis of their fusion-tree data structure. Their
result gives us the following black-box functionality: for
n = O(b1/5),2 we can construct a data structure that
can answer successor queries on a static array of n
integers in constant time. The data structure can be
constructed in O(n4) time. As demonstrated in [3], the
lookup tables used by the original data structure can be
eliminated, if we perform a second query in the sketch
representation of the array. The memory consumption
of the data structure then becomes n + O(1) words.

As in the previous section, we will maintain the two
arrays B and C. We will also store a fusion structure
that can answer successor queries in B. Because the
fusion structure is static,3 we abandon the incremental
rebuilding of B, in favor of periodic global rebuilding.
By a standard de-amortization of global rebuilding, we
can then obtain worst-case bounds; a careful implemen-
tation also requires only O(1) additional words of space.
Our strategy is to rebuild the data structure completely
every n4 operations: we set B[i] ← B[i] + C[i] and
C[i] ← 0, for all i, and rebuild the fusion structure
over B. While servicing a select that doesn’t occur
immediately after a rebuild, the successor in B found
by the fusion structure might not be the appropriate
answer to the select query, because of recent updates.
We will describe shortly how the correct answer can be
computed by also examining the array C; the key real-
ization is that the real successor must be close to the

2The original paper restricted n to O(b1/6); however, a careful

analysis reveals that O(b1/5) is enough. The exact power is

usually irrelevant, because it only translates into a constant factor
in the running time.

3Q-heaps offer a dynamic alternative to fusion trees. However,
they require large precomputed tables, which make it impossible

to simultaneously obtain time bounds in b and space bounds in n.

successor in B in terms of their partial sums.
Central to our solution is the way we rebuild the

data structure every n4 operations. We begin by
splitting S into runs of elements satisfying S[i + 1] −
S[i] < n4 · 2δ; recall that we assumed S[i] < S[i + 1]
for the select problem. We denote by rep(i) the first
element of the run containing i (the representative of the
run); also let len(i) be the length of the run containing
i. Each of these arrays can be packed in a word, because
we already limited ourselves to n = O(b1/5). Finally, we
let every B[i] ← B[rep(i)] and C[i] ← S[i] − B[rep(i)].
Conveniently, C can still be packed in a word. Indeed,
the value stored in an element after a rebuild is at most
n ·
(

n4 · 2δ
)

, and it can subsequently change by less than
n4 ·2δ. Therefore, it takes O(lg n+δ) bits to represent an
element of C, so we only need to impose the condition
that n = O(min{b/δ, b1/5}).

It remains to show how a select(σ) query can be
answered. Let k denote the successor in B identified
by the fusion-tree data structure; k satisfies B[k − 1] <
σ ≤ B[k]. We know that k is the representative of a
run, because all elements of a run have equal values
in B. By construction, runs are separated by gaps of at
least n4 · 2δ; because such gaps cannot be closed by n4

updates, we obtain a restriction on the correct answer
to the select query. More precisely, the answer must be
either an index in the run starting at k, or an index in
the run ending at k − 1, or exactly equal to k + len(k).
We can distinguish between these cases in constant time,
using two calls to sum followed by comparisons. If we
have identified the correct answer as exactly k + len(k),
we are done.

Otherwise, let us assume that the answer must be
an index in the run starting at k. Because elements of
a run have equal values of B, our task is to identify
the unique index i in the run satisfying C[i − 1] <
σ−B[k] ≤ C[i]. We claim that we can employ word-level
parallelism to compare all elements in C with σ−B[k].
This is similar to a problem discussed in [16], but we
must also handle negative quantities. The solution is
to subtract σ −B[k] in parallel from all elements in C;
if elements of C are oversized by 1 bit, we can avoid

overflow. The sign bits of every element then give the
results of the comparisons. The answer to the query can
be found by summing up the sign bits corresponding to
elements in our run, which indicates how many elements
in the run were smaller than σ − B[k]. Because these
bits are sufficiently sparse, we can sum them up using
a multiplication with a constant pattern, as described
in [16]. We have thus achieved the following result:

Lemma 2.2. If n = O(min{b/δ, b1/5}), we can support
update, sum, and select on an array of size n in
constant time. The data structure occupies n + O(1)
memory locations.

2.3 The data structure. We use the approach de-
scribed in [10] to construct a solution for arbitrary n
based on our improved solutions for small arrays. Con-
sider a static balanced tree with branching factor B with
the elements of the array A[1..n] in the leaves. Let the
weight of a node be defined as the sum of the elements
of A stored in the leaves of its subtree. Each node will
hold a partial-sums data structure of size B with the
weights of its children. All three operations in the large
data structure translate into a sequence of operations on
the small data structures of the nodes along a particular
root-to-leaf path.

If B = Θ(min{b/ lg b, b/δ}), we can support update
and sum in the small data structure of each node in con-
stant time. The running time of these operations in the
large data structure is then O(logB n) = O(lg n/ lg B) =

O
(

max
{

lg n
lg(b/ lg b) ,

lg n
lg(b/δ)

})

= O(lg n/ lg(b/δ)). In this

solution we assumed 2 ≤ B ≤ n. If B = Θ(1), we do
not obtain an asymptotic advantage by packing multi-
ple values in a word; in this case we can instead apply
the solution of [11] for a running time of O(lg n). In the
second extreme case, B = ω(n), we obtain O(1) run-
ning times by directly applying Lemma 2.1. These cases
cover all possible asymptotic relations between (n, b, δ),
and O(1 + lg n/ lg(b/δ)) is an accurate characterization
of our upper bound in all cases. Our data structure also
occupies only n + o(n) memory locations in all three
cases.

Similar considerations apply if we want to support
select as well. In particular, B may decrease polyno-
mially, but this only affects constant factors in the time
bounds. Thus we obtain the following result:

Theorem 2.1. We can support update, sum, and
select over an array of size n in O(1 + lg n/ lg(b/δ))
worst-case running time. The data structure requires
n + o(n) memory locations.

3 Framework for Lower Bounds

3.1 Overview. For our lower bounds discussion, we
concentrate on sequences of exactly n pairs of opera-
tions. Each pair contains an update and a sum op-
eration on the same element of the array. Further-
more, the elements probed by the n pairs form a per-
mutation of the elements of the array. It follows that
we can characterize the sequence of operations by a
permutation π(i), i = 1..n, and an array of update
values ∆[1..n]. We associate each pair of operations
with the interval of time that the algorithm spends
serving it. Using this terminology, we say that at
time i the algorithm is serving the pair of operations:
update(π(i),∆[i]); sum(π(i)). Let S[i] denote the an-
swer returned by the sum query executing at time i.
Thus, S[k] =

∑

{∆[i] : (i ≤ k) and (π(i) ≤ π(k))}.
Before we continue, we make one technical point.

It is often desirable for an amortized lower bound to
apply to an arbitrarily long sequence of operations. In
what follows we concentrate on sequences of n opera-
tions for the sake of clarity. However, our arguments
extend easily to sequences of arbitrary length, formed
by concatenating different sequences of length n as de-
fined above.

As explained above, we divide the time axis into n
intervals such that the algorithm is servicing the ith pair
of operations for the duration of interval i. We prove our
lower bounds in the cell-probe model, so we ignore all
computation and concentrate only on memory accesses.
Furthermore, we choose to ignore write instructions
completely. Finally, we ignore read instructions from
memory locations written during the same time interval.
The rest of the read instructions can be characterized by
a pair (tw, tr) denoting the time tw when the memory
location was written, and the time tr when the read
occurs; in particular, tw < tr. We sometimes refer to
such a read instruction as a communication between
time tw and time tr.

Our technique involves conceptually constructing a
balanced tree of a certain degree B over the time axis,
so that each leaf is an interval of time associated with an
update-sum pair. For each node in the tree, we establish
a lower bound on the amount of communication that
must occur strictly between the subtrees of its children.
It should be clear that this approach does not double-
count any read instruction. Indeed, we associate such a
read instruction with a unique node, determined by the
longest common prefix of (tw, tr) considered in base B.
In the following sections, we show lower bounds on the
communication associated with some arbitrary node.
The reason we can simply sum these lower bounds for all
nodes in the tree is that out bounds are for the average
case, and we can invoke linearity of expectation.

3.2 An encoding scheme. We arrive at the commu-
nication lower bounds for each node by analyzing an en-
coding scheme. Let us fix an arbitrary node, and num-
ber its children from left to right, i.e., in the increasing
direction of the time axis. Let sk denote the earliest mo-
ment in time contained in the subtree of child k, and let
fk denote the latest such moment; thus, sk = fk−1 + 1.
In the following sections, we establish lower bounds on
the communication between the subtree of a child k and
the subtrees of children before k. To do so, we imagine
a situation in which we know

1. the entire permutation π(i);
2. part of the sequence of updates, namely, ∆[i] for

any i /∈ {s1..fk−1}, i.e., all the values of ∆ outside
the subtrees of the left siblings of k;

3. for each read instruction (tw, tr) with s1 ≤ tw ≤
fk−1 and sk ≤ tr ≤ fk, the address and the
contents of the read memory location. Note that
these are exactly the read instructions we are trying
to bound.

A crucial point is that we can determine S[sk..fk]
given this information. To do that, we begin by running
the algorithm for the time period 1..(s1 − 1); this is
possible because we know π(i) and ∆[i] for i < s1. We
then skip the time period s1..fk−1 and run the algorithm
for the time period sk..fk to generate the partial sums
S[sk..fk]. To see why this is possible, notice that a read
instruction issued during time period sk..fk falls into
one of three categories:

tw ≥ sk: We can recognize this case by maintaining
a list of memory locations written during the
simulation; the data is immediately available.

s1 ≤ tw < sk: The contents of the memory location is
available in our knowledge base; we can recognize
this case by looking at the list of memory addresses
mentioned in item 3 above.

tw < s1: The contents of the cell is determined from
the state of the memory upon finishing the first
simulation up to time s1.

It remains to characterize the information that we
can extract about ∆[s1..fk−1] given S[sk..fk] and the
rest of the values of ∆. Let P = {π(i) : s1 ≤ i ≤ fk−1}
denote the set of elements updated during the time
s1..fk−1 and, similarly, let Q = {π(i) : sk ≤ i ≤ fk}.
Roughly, the amount of information we can extract
about ∆[s1..fk−1] is given by the number of runs of
elements from P in the ordered listing of P ∪Q. More
formally, we can express P as the union of disjoint sets
P1, . . . , Pl, and similarly Q as the union of Q1, . . . , Ql,
such that max(Q1) < min(P1) ≤ max(P1) < min(Q2) ≤

max(Q2) < min(P3) ≤ · · · , where we allow Q1 and Pl

to be empty. We call l the interleaving factor between
P and Q. The following result justifies the importance
of l, and summarizes the discussion so far:

Lemma 3.1. Given the information in items 1–3 above,
we can extract l − 1 linearly independent sums of the
update values ∆[s1..fk−1], where l is the interleaving
factor defined above.

From the definition of the partial sums, it is easy
to see that we can determine

∑

{∆[i] : π(i) ∈ Pk} for
all k = 1..(l − 1). Because the Pk’s are disjoint, the
sums are linearly independent. It remains to quantify
the interleaving factor l:

Lemma 3.2. Let π be a permutation of order n chosen
uniformly at random. Let P = {π(i) : a1 ≤ i ≤ b1} and
Q = {π(i) : a2 ≤ i ≤ b2} with b1 < a2 (i.e., disjoint
segments of the permutation). Then the expected value
of the interleaving factor of P and Q is asymptotically
Θ(min{|P |, |Q|}).

The proof is elementary by linearity of expectation.

4 Lower Bounds for the Group Model

We are now ready to establish an amortized lower bound
of Ω(lg N) in the group model. We choose the permuta-
tion π uniformly at random. The values of the array ∆
are irrelevant, because in this model the algorithm may
not examine the value stored in a memory location, but
can only perform algebraic operations with it. We begin
the analysis by constructing a balanced binary tree over
the time axis, as described in the framework discussion.

Let us now fix a node in the tree, and let L
denote the number of leaves in its left subtree, i.e., the
number of data structure operations performed during
the time covered by the subtree. We are trying to
bound the number R of read instructions executed
in the right subtree of the node that read memory
locations last written in the left subtree. Condition on
a fixed permutation π, such that the interleaving factor
between the left and right subtrees is l. Assume we
know the n − L values of ∆ outside the left subtree,
and the data given by the R reads that constitute
the communication between the left and right subtrees.
Lemma 3.1 guarantees that we can reconstruct l − 1
independent sums of the L unknown values from ∆.
We can therefore construct a linear operator that takes
the known values to the l − 1 independent sums from
the left subtree and the n − L values of ∆ outside the
left subtree. The image of the operator has dimension
n − L + l − 1. It follows that its domain must have
dimension at least n − L + l − 1. But the dimension

of the domain is at most n − L + R, the number of
values known initially. It follows that R ≥ l−1. Taking
the expected value for a random permutation π, and
applying Lemma 3.2, we get E[R] = Ω(L).

Solving an elementary recurrence relation, we ob-
tain that the total number of read instructions per-
formed during the entire execution is bounded by
Ω(n lg n) in the average case. But the number of read in-
structions is equal to the number of algebraic operations
up to constant factors, which establishes our result.

Our proof technique also gives a deterministic lower
bound on the hardness of a particular sequence of
operations: the sum of the interleaving factors for all
nodes in the tree. Using this insight we can construct
fixed sequences of operations which take Ω(n lg n) for
any algorithm. We describe one such permutation,
the perfect shuffle. We construct the permutation
of order 2n recursively, by shuffling two copies of
the permutation of order n. Formally, if π is the
permutation of order n, we construct a permutation of
order 2n as π′(i) = 2 · π(i) − 1; π′(i + n) = 2 · π(i),
for i = 1..n. The proof that this sequence of operations
takes Ω(n lg n) time for any algorithm is very similar to
the argument above.

This fixed hard instance is still an online problem:
S[i] must be computed before ∆[i + 1] is available.
Our argument also works for the totally offline problem
in the semigroup model, which gives a new proof of
the results of [17]. The reason we can analyze the
offline problem in the semigroup model is that the lack
of a subtraction operation makes the information flow
“unidirectional”, similar to the online problem. In
this case, the leaves of our tree are the elements of
the array ∆, in order. We associate any computation
with the highest index i such that ∆[i] appears in the
expression of the result, which is a linear combination of
the elements of ∆. Because subtraction is not available,
a value cannot be cancelled out from an expression, so
computation moves only from left to right in our tree.

Theorem 4.1. Any algorithm for the online partial-
sums problem in the group model has an amortized
running time per operation of Ω(lg n), in the average
case of a certain probability distribution. Furthermore,
there exists a fixed sequence of operations that requires
Ω(lg n) amortized time per operation for any algorithm.

5 Cell-Probe Lower Bounds

5.1 A first bound. In this subsection, we establish
a weaker version of our lower bound in the cell-probe
model, by proving a bound of Ω

(

lg n · δ
b

)

. This bound
is tight only if δ = Θ(b), that is, if no essential restriction
is imposed on the update values. However, this simpler

case will help make clear the framework for our work
in the cell-probe model, and suffices to give a strongly
transdichotomous lower bound of Ω(lg n).

For technical reasons, we impose a standard restric-
tion that the number of memory locations is at most 2b.
This restriction is satisfied naturally if a pointer fits in
a word, as in the RAM model. All proofs work with
a weaker 2O(b) restriction after an adjustment of con-
stants. As mentioned in the introduction, we concen-
trate on the partial-sums problem modulo 2δ; thus we
can think of the updates ∆[i] as unsigned δ-bit integers,
by using the two’s complement transformation. A so-
lution to the original problem also gives a solution to
this (easier) problem, as long as we can avoid overflow;
for this reason, we impose another technical condition,
that δ + lg n < b. Because we already have lg n ≤ b and
δ ≤ b, this restriction is easily seen to be irrelevant, save
for constant factors. Finally, as discussed in Section 3,
if we want arbitrarily long sequences of operations, we
can concatenate sequences of order n, interspersed by
sequences of n updates that bring the array back to
zero.

The sequence of operations that we analyze is
constructed by choosing the permutation π uniformly at
random, and choosing ∆[i] independently and uniformly
from 0..(2δ − 1). As before, we construct a balanced
binary tree over the time axis and, for every node in
the tree, we bound from below the number of read
instruction performed in the right subtree that access
data written in the left subtree. In this section we
obtain an average-case lower bound of Ω

(

L · δ
b

)

, where
L is the number of leaves in the left subtree of the node.
In aggregate, we obtain a bound of Ω

(

n lg n · δ
b

)

on the
average number of read instructions performed while
servicing the entire sequence of operations.

Our analysis for a fixed node in the tree makes use
of a simple result from Kolmogorov complexity. Let
A[1..n] be an array of integers, chosen independently
and uniformly at random from 0..(2δ − 1). Then
any encoding scheme requires n · δ − O(1) bits in the
average case to encode this array. For further details on
Kolmogorov complexity, the reader is referred to [21].

Now we are ready to analyze the communication
complexity between the subtrees of an arbitrary node
with L leaves in the left subtree. Similar to the group
model, we begin by conditioning on a permutation π,
such that the interleaving factor associated with our
node is l. We then condition on some arbitrary values
of ∆ outside the left subtree of our node. Let us now
assume that we know the communication between the
left and right subtrees (R read instructions), which can
be represented by R·2b bits, the address and the content
of each memory location that is probed. From the

framework discussion, we know that we can extract l−1
linearly independent sums of values from the unknown
segment of ∆. Because the permutation is fixed, so is
the structure of these sums (which ∆[i] contributes to
which sum). It is trivial to prove that these sums, taken
modulo 2δ, are independent random variables uniformly
distributed in 0..(2δ − 1). By Kolmogorov complexity,
any encoding for this array requires (l− 1)δ−O(1) bits
on average. But we were able to encode this information
using E[R] · 2b bits on average. (The expectation of R
is needed because the algorithm may behave differently
depending on the values it reads.) It follows that E[R] =
Ω
(

l · δ
b

)

. We conclude by taking the expectation over
the values of ∆ outside the left subtree and over the
permutation π, because we began by conditioning on
arbitrary choices for these values. Applying Lemma 3.2
to bound l, we obtain E[R] = Ω

(

L · δ
b

)

, which concludes
our proof.

5.2 A tight bound for all cases. We first note
that the analysis from the previous section gives a tight
bound on the number of bits that must be communi-
cated: Ω(n lg n · δ). Given that we can pack b bits in a
word, it is straightforward to conclude that Ω

(

n lg n · δ
b

)

read instructions must be performed. Our strategy for
improving this bound is to argue that an algorithm can-
not make efficient use of all b bits of a word, if future
queries are sufficiently unpredictable.

We begin by constructing a tree over the time axis
with a branching factor of B = b/δ. The case B = Θ(1)
is covered by our analysis in the previous section; here
we concentrate on the case when B is super-constant.
Our tree must be balanced in the sense that the number
of leaves in a subtree must be at most twice the number
of leaves in a sibling subtree. We then choose the
permutation π and the array ∆ randomly as before.

For a fixed node in the tree, we split the children
of the node into three approximately equal parts. We
ignore the leftmost third of the children, because there
is too little information they need to learn from their
left siblings. (Recall that “left” means backwards on
the time axis.) We also ignore the rightmost third,
because queries can become too predictable. For a
child in the middle third, we prove that the number of
read instructions executed in the subtree of that child,
accessing data written in a subtree of some left sibling,
must be Ω(L) on average, where L is the number of
leaves in the subtree of the child. Simple computations
then show that the total number of read instructions
must be Ω(n logB n), which is the desired result.

For a fixed child in the middle third, let t1 denote
the first moment in time in the subtree of its leftmost
sibling, let t2 denote the first moment in time from the

subtree of our fixed child, and let t3 denote the last
moment in time in the subtree of the rightmost sibling.
We begin by conditioning on some arbitrary values of ∆
outside t1..(t2− 1); we also condition on some arbitrary
values of π(i) for i /∈ [t2..t3]. Note that this determines
the values of π(t2..t3), but does not determine their
order. Let l be the interleaving factor of π(t1..t2 − 1)
and π(t2..t3). By Lemma 3.2, E[l] = Θ(B · L); also
l ≤ Θ(B · L). From these facts, it follows quite easily
that there exists a constant c such that l ≥ c ·BL with
Θ(1) probability. The analysis below is for the case
l ≥ c · BL; because this event happens with constant
probability, this restriction only affects constant factors
in our lower bounds.

Between t2 and t3, the algorithm will have to
determine l linearly independent sums of the values
∆[t1..(t2− 1)] through accesses to memory cells written
between t1 and t2 − 1. The structure of these sums
is fixed given our conditions on π. Our lower bound
will stem from an encoding scheme for these sums and
for the values π(t2..t2 + L − 1). (Note that the sums
and values of π are independent random quantities.)
Applying Kolmogorov complexity, it follows easily that
any such encoding requires l · δ + L lg(BL)−O(L) bits
on average, which is Θ(L). Informally, we argue that if
the algorithm has read too little (less than a constant
fraction) of this information before a query, then in
order to answer the query, it will have to perform,
with constant probability, at least one read instruction
accessing data written between t1 and t2 − 1.

Formally, let Rt, t ∈ [t2..(t2 + L− 1)], be defined as
follows. If the algorithm performs at least (c/4) ·L read
instructions between t2 and t2 + L − 1, accessing data
written between t1 and t2 − 1, we distribute (c/4) · L
balls in L bins at random, and let Rt be the number of
balls in bin t− t2. Otherwise, we let Rt be the number
of read instructions performed at time t accessing data
written between t1 and t2 − 1. Note that

∑

Rt never
exceeds the number of read instructions we are trying to
bound. We will show that E[Rt] ≥ c/8, which implies
that E[

∑

Rt] = Ω(L).
Let us assume E[Rt0] ≤ c/8 for some t0. We now

form an encoding for the quantities described above. We
first encode the elements π(t2..(t2+L−1)); this is trivial
to do in L lg(BL) + O(L) bits, because the elements of
π(t2..t3) are known, except for their order. It remains to
encode the l linearly independent sums. We choose from
two schemes, based on circumstances determined by the
values of the random variables; an extra bit encodes
which scheme we are using. If

∑

Rt > (c/4) · L, our
encoding is simply the array of sums, occupying l · δ
bits. Conditioned on being in this case, E[Rt0] = c/4,
so the probability that we are in this case is at most

1/2. Furthermore, conditioned on not being in this case,
E[Rt0] must still be less than c/8. In this second case,
we use the following encoding scheme. First we encode
the read instructions executed before time t0, accessing
data written between t1 and t2 − 1; it takes at most
(c/4)·L·2b bits to encode the content and address of each
probed location. Then, for each partial sum that cannot
be determined exclusively based on this information, we
encode the actual sum. By encoding these in order, we
do not have to actually specify which these sums are.
It is not hard to show that we can actually reconstruct
the partial sums by simulating the algorithm, but note
that we really need π(t2..t0) as part of the encoding.
Because E[Rt0] ≤ c/8, the number of partial sums that
we cannot determine based on previous reads is small on
average, namely, at most (c/4)BL, because there are at
most t3 − t2 ≤ 2BL possible queries in total. It follows
that the expected encoding size in the second case is at
most 3

4 · lδ +L lg(BL)+O(L), so the expected encoding
size in general is at most 7

8 · lδ+L lg(BL)+O(L), which
is the desired contradiction. (Recall that l = Θ(BL)
and B = ω(1).) We have thus established the following
main result:

Theorem 5.1. Any algorithm for the online partial-
sums problem has an amortized cell-probe complexity of
Ω(1 + lg n/ lg(b/δ)) per operation.

6 Conclusion

An interesting direction for future research would be
to better understand the offline problem in the group
model. It would also make sense to pose this problem
in the RAM model, and we conjecture that the data
structure presented in this paper is also optimal in the
offline case. Unfortunately, however, our ability to prove
lower bounds for offline problems on a RAM seems quite
limited at present.

Most lower bound results, including the ones in
this paper, are based on sum queries. However, it
would also be interesting to prove a tight bound on the
complexity of the select operation. The problem is
especially interesting because it is a combination of two
famous problems: the partial-sums and the predecessor
problem. We found that a lower bound of Ω(lg n/ lg b) is
not hard to derive in our framework. In retrospect, this
bound also stems from the work of [19]. The difficulty
of improving this bound is that there seems to be no
easy way to extract more than one bit of information
from an answer to select.

Finally, we hope that the lower bound techniques
developed in this paper will find further applications to
interesting data-structure problems.

References

[1] S. Alstrup, M. A. Bender, E. D. Demaine, M. Farach-
Colton, J. I. Munro, T. Rauhe, and M. Tho-
rup, Efficient tree layout in a multilevel mem-

ory hierarchy, arXiv:cs.DS/0211010, November 2003,
http://www.arXiv.org/abs/cs.DS/0211010.

[2] S. Alstrup, T. Husfeldt, and T. Rauhe, Marked an-

cestor problems, in Proc. 39th Annual Symposium on
Foundations of Computer Science (FOCS’98), 534–543.

[3] A. Andersson, P. B. Miltersen, and M. Thorup, Fusion

trees can be implemented with AC0 instructions only,
Theoretical Computer Science 215(1–2):337–344, 1999.

[4] P. Beame and F. E. Fich, Optimal bounds for the

predecessor problem and related problems, Journal of
Computer and System Sciences 65(1):38–72, 2002.

[5] A. M. Ben-Amram and Z. Galil, A generalization of

a lower bound technique due to Fredman and Saks,
Algorithmica 30(1):34–66, 2001.

[6] A. M. Ben-Amram and Z. Galil, Lower bounds for dy-

namic data structures on algebraic RAMs, Algorith-
mica 32(3):364–395, 2002.

[7] M. A. Bender, G. S. Brodal, R. Fagerberg, D. Ge,
S. He, H. Hu, J. Iacono, and A. López-Ortiz, The

cost of cache-oblivious searching, in Proc. 44th An-
nual Symposium on Foundations of Computer Science
(FOCS’03), to appear.

[8] W. A. Burkhard, M. L. Fredman, and D. J. Kleitman,
Inherent complexity trade-offs for range query prob-

lems, Theoretical Computer Science 16:279–290, 1981.
[9] B. Chazelle, Lower bounds for off-line range search-

ing, Discrete & Computational Geometry 17(1):53–65,
1997.

[10] P. F. Dietz, Optimal algorithms for list indexing and

subset rank, in Proc. Workshop on Algorithms and
Data Structures (WADS’89), 39–46.

[11] P. M. Fenwick, A new data structure for cumulative

frequency tables, Software: Practice and Experience
24(3):327–336, 1994.

[12] G. S. Frandsen, P. B. Miltersen, and S. Skyum, Dy-

namic word problems, Journal of the ACM 44(2):257–
271, 1997.

[13] M. L. Fredman, A lower bound on the complexity of

orthogonal range queries, Journal of the ACM 28:696–
705, 1981.

[14] M. L. Fredman, The complexity of maintaining an

array and computing its partial sums, Journal of the
ACM 29:250–260, 1982.

[15] M. L. Fredman and M. E. Saks, The cell probe com-

plexity of dynamic data structures, in Proc. 21st ACM
Symposium on Theory of Computing (STOC’89), 345–
354.

[16] M. L. Fredman and D. E. Willard, Surpassing the

information theoretic bound with fusion trees, Journal
of Computer and System Sciences 47:424–436, 1993.

[17] H. Hampapuram and M. L. Fredman, Optimal bi-

weighted binary trees and the complexity of maintaining

partial sums, SIAM Journal on Computing 28(1):1–9,
1998.

[18] W. K. Hon, K. Sadakane and W. K. Sung, Succinct

data structures for searchable partial sums, in Proc.
14th Annual International Symposium on Algorithms
and Computation (ISAAC 2003), to appear.

[19] T. Husfeldt and T. Rauhe, New lower bound techniques

for dynamic partial sums and related problems, SIAM
Journal on Computing 32(3):736–753, 2003.

[20] T. Husfeldt, T. Rauhe, and S. Skyum, Lower bounds for

dynamic transitive closure, planar point location, and

parentheses matching, Nordic Journal of Computing
3(4):323–336, 1996.

[21] M. Li and P. Vitányi, An Introduction to Kolmogorov

Complexity and its Applications, Springer-Verlag, New
York, second edition, 1997.

[22] P. B. Miltersen, Cell probe complexity — a survey, Ad-
vances in Data Structures Workshop, Conference on
the Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS’99).

[23] R. Raman, V. Raman, and S. S. Rao, Succinct dynamic

data structures, in Proc. Workshop on Algorithms and
Data Structures (WADS’01), 426–437.

[24] A. C. Yao, On the complexity of maintaining partial

sums, SIAM Journal on Computing 14:277–288, 1985.

