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Abstract

We prove that path puzzles with complete row and column information—or equivalently, 2D
orthogonal discrete tomography with Hamiltonicity constraint—are strongly NP-complete, ASP-
complete, and #P-complete. Along the way, we newly establish ASP-completeness and #P-
completeness for 3-Dimensional Matching and Numerical 3-Dimensional Matching.

1 Introduction

Path puzzles are a type of pencil-and-paper logic puzzle introduced in Roderick Kimball’s 2013
book [Kim13] and featured in The New York Times’s Wordplay blog [Ant14]. Figure 1 gives
a small example. A puzzle consists of a (rectangular) grid of cells with two exits (or “doors”)
on the boundary and numerical constraints on some subset of the rows and columns. A solu-
tion consists of a single non-intersecting path which starts and ends at two boundary doors and
which passes through a number of cells in each constrained row and column equal to the given
numerical clue. Many variations of path puzzles are given in [Kim13] and elsewhere, for example
using non-rectangular grids, grid-internal constraints, and additional candidate doors, but these
generalizations make the problem only harder.
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Figure 1: A Path Puzzle with complete row/column information (left) and its solution (right).
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Figure 2: The chain of reductions used in our proof.

Path puzzles are closely related to discrete tomography [HK12], in particular the 2D orthogonal
form: given the number of black pixels in each row and column, reconstruct a black-and-white
image. This problem arises naturally in reconstruction of shapes via x-ray images (which measure
density). Vanilla 2-dimensional discrete tomography is known to have efficient (polynomial-time)
algorithms [HK12], though it becomes hard under certain connectivity constraints on the output
image [DLN12].1 A path puzzle is essentially a 2-dimensional discrete tomography problem with
partial information (not all row and column counts) and an additional Hamiltonicity (single-path)
constraint on the output image.

Our results. Unlike 2-dimensional discrete tomography, we show that path puzzles are NP-
complete, even with perfect information (i.e., with all row and column counts specified). In other
words, 2-dimensional discrete tomography becomes NP-complete with an added Hamiltonicity con-
straint. In fact, we prove the stronger results that perfect-information path puzzles are Another
Solution Problem (ASP) hard and (to count solutions) #P-complete.

Figure 2 shows the chain of reductions we use to prove hardness of Path Puzzle. To preserve
hardness for the ASP and #P classes, our reductions are parsimonious; that is, they preserve
the number of solutions between the source and target problem instances, generally by showing a
one-to-one correspondence thereof. We start from the source problem of Positive 1-in-3-SAT
which is known to be ASP-hard [Set02,HMRS98] and (to count solutions) #P-complete [HMRS98].
Along the way, we newly establish strong ASP-hardness and #P-completeness for 3-Dimensional
Matching, Numerical 4-Dimensional Matching, Numerical 3-Dimensional Matching,
and a new problem Length Offsets, in addition to Path Puzzle.

Fonts. To further communicate the challenge of path puzzles to the general public, we designed
a mathematical puzzle typeface (as part of a series2). Figure 3 gives the puzzle font, which has one
path puzzle for each letter of the alphabet. Their solutions are designed to look like the 26 letters
of the alphabet, and are verified unique by exhaustive search. Look ahead to the solved font in
Figure 8 in Appendix A when you no longer want to solve the puzzles.

2 Numerical 3DM is ASP-Complete and #P-Complete

The goal of this section is to prove that Numerical 3-Dimensional Matching is strongly ASP-
and #P-complete, i.e., ASP- and #P-complete even when the n numbers are bounded by a poly-
nomial in n. We follow a similar chain of reductions by Garey and Johnson [GJ79], namely 3SAT

1Most sets of row and column constraints are ambiguous; constraining the output image makes the problem harder
by preventing an easy image from being found instead.

2See http://erikdemaine.org/fonts
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Figure 3: Puzzle font

→ 3-Dimensional Matching→ 4-Partition→ 3-Partition, but replacing k-Partition with
Numerical k-Dimensional Matching and starting from a different version of SAT:

Problem 2.1 (Positive 1-in-3-SAT). Given a 3CNF formula C with only positive literals, is
there an assignment of variables such that exactly one literal in each clause of C is true?

Lemma 2.1. Positive 1-in-3-SAT is ASP-hard and #P-hard.

Proof. 3SAT is shown to be #P-hard in [Val79]. Section 3.2.1 of [Set02] shows that 3SAT is
ASP-hard.3 Theorem 3.8 of [HMRS98] gives a parsimonious reduction from 3SAT to Positive
1-in-3-SAT.4 Combining these results gives the claim.

Problem 2.2 (3-Dimensional Matching). Given three sets X,Y, Z of equal cardinality and a
set T of triples (x, y, z) where x ∈ X, y ∈ Y, z ∈ Z, is there a set S ⊆ T such that each element of
X,Y, Z appears in exactly one triple in S?

Theorem 2.2. 3-Dimensional Matching is ASP-hard and #P-hard, even when T is constrained
not to contain any two triples agreeing on more than one coordinate.

Proof. We give a parsimonious reduction from Positive 1-in-3-SAT, using the variable gadget
from Garey and Johnson’s reduction from 3-SAT to 3-Dimensional Matching [GJ79, Thm. 3.2,
p. 50]. Given a Positive 1-in-3-SAT instance with a set V of variables and C of clauses, we
construct the corresponding 3-Dimensional Matching instance as follows. We will represent

3Section 3.2.4 of [Set02] proves that 1-in-3-SAT is ASP-hard. Unfortunately, their problem definition allows
negative clauses, while we need Positive 1-in-3-SAT.

4In [HMRS98], Positive 1-in-3-SAT is called “1-Ex3MonoSat”.
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the 3-Dimensional Matching instance as a hypergraph that is tripartite and 3-uniform, i.e.,
in which each edge connects exactly three vertices of different colors according to a 3-coloring of
the vertices. We will say that vertices colored 0 belong to X, vertices colored 1 belong to Y , and
vertices colored 2 belong to Z.

Clause triplication. First we triplicate each clause, producing the multiset C ′ = C tC tC (the
disjoint union of three copies of C). As a result, the number nx of occurrences of each variable
x ∈ V in clauses in C ′ (multiply counting if x occurs multiple times in the same clause) is divisible
by 3. A truth assignment for V satisfies C ′ if and only if it satisfies C, so this triplication does not
affect correctness, but it will help us obtain a 3-coloring.

Variable gadget. Next, for each variable x ∈ V , we create a variable gadget consisting of 4nx

vertices associated with x; refer to Figure 4. We call nx of the vertices positive x vertices, denoted
x0, x1, . . . , xnx−1 (one for each occurrence of x in C ′); we call nx of the vertices negative x vertices,
denoted x̄0, x̄1, . . . , x̄nx−1; and we call 2nx of them auxiliary vertices, denoted x′0, x

′
1, . . . , x

′
2nx−1.

The edges covering the auxiliary vertices are as follows: for each i ∈ {0, 1, . . . , nx − 1}, we add
the “positive” edge (xi, x

′
2i, x

′
2i+1) and the “negative” edge (x̄i, x

′
2i+1, x

′
(2i+2) mod 2nx

). No other
edges cover the auxiliary vertices, so there are only two ways to cover them: choose all the positive
edges, thereby covering all the positive vertices and none of the negative vertices, or choose all the
negative edges, thereby covering all the negative vertices and none of the positive vertices. The
former choice represents assigning x to be true, while the latter choice represents assigning x to
be false.

Because nx is divisible by 3, we can 3-color the vertices by assigning colors 0, 1, 2, 0, 1, 2, . . . to
the auxiliary vertices x′0, x

′
1, x
′
2, . . . , then coloring each positive and negative vertex with the one

color not used in its edge, as shown in Figure 4.
The final edges of the variable gadget serve to collect “garbage” negative vertices. For each i ∈

{0, 1, . . . , nx/3−1} (using that nx is divisible by 3), we add another positive edge (x̄3i, x̄3i+1, x̄3i+2).
These positive edges overlap the negative edges, so cannot be chosen in the false assignment, but
do not overlap the positive edges, and then they cover all the negative vertices. No other edges
cover the negative vertices, so again we must choose all the positive edges or all the negative edges.

Therefore, local to the variable gadget, we cover all the auxiliary and negative x vertices, and
either all or none of the positive x vertices. Only the positive x vertices will interact with other
gadgets, through clause gadgets.

Clause gadget. Finally, for each clause c = 〈x, y, z〉 ∈ C ′, we identify one positive x vertex, one
positive y vertex, and one positive z vertex all of the same color, resulting in a single vertex covered
by one positive edge from each of the three corresponding vertex gadgets; refer to Figure 5. The
three identified vertices are chosen to be unique to this clause gadget, so they will not be identified
again, and thus will be covered exactly once if and only if exactly one of the three variables is
assigned true.

For each of the three copies of a clause in C, we choose the identified vertices to be a different
color among {0, 1, 2}, so that each clause in C consumes exactly one positive vertex of each color
from each of the three variable gadgets. (When a variable appears twice in the same clause, two
of these variable gadgets will actually be the same, and we will end up consuming two positive
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Figure 4: 3DM variable gadget for variable x
occurring in nx = 6 clauses in C ′ (two clauses
in C). Hyperedges are drawn as shaded trian-
gles; any solution must include all the positive
(blue) or all the negative (red) hyperedges. Ver-
tex colors 0, 1, 2 are drawn as magenta, green,
and cyan. Only the positive vertices (drawn with
doubled outlines) are attached to other gadgets.

Figure 5: 3DM clause gadget, identifying cyan
positive vertices from three variable gadgets
(Figure 4). Although here we draw the three
variables as distinct, we may also identify posi-
tive vertices from the same variable gadget (when
the same variable appears twice in the same
clause).

vertices of each color, but the accounting remains the same.) Thus we will be able to use each
positive vertex in each variable gadget exactly once, without running out of any particular color.

Equivalence. Because the identified (x, y, z) vertex in a clause gadget must be covered by exactly
one edge in the 3-Dimensional Matching problem, exactly one of x, y, z must have an assignment
of true, which is the Positive 1-in-3-SAT constraint. Thus, given a solved instance of 3-Dimen-
sional Matching, we can extract exactly one solution to the original Positive 1-in-3-SAT
instance. Furthermore, given a solution to the Positive 1-in-3-SAT instance, we can produce
exactly one solution to the 3-Dimensional Matching instance by choosing all the positive x
edges if x is set to true and all the negative edges if x is set to false. Thus the reduction is
parsimonious.

Examining Figures 4 and 5, we also see that no hyperedge shares more than one vertex, as
claimed.

Problem 2.3 (Numerical k-Dimensional Matching). Given k multisets of positive integers
X1, . . . , Xk and a positive integer target sum t, does there exist a set S ⊆ X1× · · · ×Xk of k-tuples
such that, for each (x1, . . . , xk) ∈ S, x1 + · · · + xk = t, and each element of each Xi appears as
the ith coordinate in exactly one element of S? (Thus |X1| = · · · = |Xk| = |S|, and we denote this
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common size by n.)

We will consider specially the cases k = 3 and k = 4 for which we label the sets X,Y, Z and
W,X, Y, Z respectively.

Theorem 2.3. Numerical 4-Dimensional Matching is strongly ASP-hard and #P-hard, even
if Y ∪ (Y + Z) (where Y + Z = {y + z : y ∈ Y, z ∈ Z}) is guaranteed to be a set (not a multiset).

Proof. We give a parsimonious reduction from 3-Dimensional Matching where no two triples
in T agree on more than one coordinate, as guaranteed by Theorem 2.2. Our reduction loosely
follows Garey and Johnson’s original reduction [GJ79, Thm. 4.3, p. 97] with extra care to ensure
parsimony.

We are given a 3-Dimensional Matching instance with elements partitioned into sets

X = {x1, . . . , xn}, Y = {y1, . . . , yn}, Z = {z1, . . . , zn}

and a set of triples T ⊆ X × Y ×Z. Let mT (xi) be the multiplicity of xi in T , that is, the number
of triples of T where xi is the first coordinate, and similarly define mT (yj) and mT (zk).

First we pick a large base B = 100n. We use the notation (d5, d4, d3, d2, d1, d0)B to represent
the base-B number equal to

∑5
i=0 diB

i = d5B
5 +d4B

4 +d3B
3 +d2B

2 +d1B+d0. In the discussion
that follows, we use that B is large enough that addition with a digit of the base-B representa-
tion of the numbers in question will never carry over to another digit, so (d5, d4, d3, d2, d1, d0)B +
(d′5, d

′
4, d
′
3, d
′
2, d
′
1, d
′
0)B = (d5 + d′5, d4 + d′4, d3 + d′3, d2 + d′2, d1 + d′1, d0 + d′0)B.

We construct a Numerical 4-Dimensional Matching instance with target t = (40, 0, 0, 0, 0, 0)B
and multisets W ′, X ′, Y ′, Z ′ having the following elements (also refer to Table 1):

(a) For each xi ∈ X, place (10, i, 0, 0, 0, 0)B in W ′, (11, 0,−i, 0, 0, 0)B in Z ′, and mT (xi)− 1 copies
of (10, i,−i, 0, 0, 0)B in W ′.

(b) For each yj ∈ Y , place (10, 0, 0, j, 0, 0)B in X ′, (12, 0, 0, 0,−j, 0)B in W ′, and mT (yj)− 1 copies
of (10, 0, 0, j,−j, 0)B in X ′.

(c) For each zk ∈ Z, place (10, 0, 0, 0, 0, k)B in Y ′ and (7, 0, 0, 0, 0,−k)B in X ′.

(d) For each (xi, yj , zk) ∈ T , place (10,−i, 0,−j, 0,−k)B in Z ′ and (10, 0, i, 0, j, k)B in Y ′.

Importantly, the xi, yj , zk above are indexed starting at 1, not 0. One can verify that the only
quadruples summing to t are the following (given in W ′, X ′, Y ′, Z ′ order):

Type 1. For (xi, yj , zk) ∈ T :

(10, i, 0, 0, 0, 0)B
+(10, 0, 0, j, 0, 0)B
+(10, 0, 0, 0, 0, k)B
+(10,−i, 0,−j, 0,−k)B
=(40, 0, 0, 0, 0, 0)B

Type 2. For (xi, yj , zk) ∈ T :

(12, 0, 0, 0,−j, 0)B
+( 7, 0, 0, 0, 0,−k)B
+(10, 0, i, 0, j, k)B
+(11, 0,−i, 0, 0, 0)B
=(40, 0, 0, 0, 0, 0)B

Type 3. For (xi, yj , zk) ∈ T :

(10, i,−i, 0, 0, 0)B
+(10, 0, 0, j,−j, 0)B
+(10, 0, i, 0, j, k)B
+(10,−i, 0,−j, 0,−k)B
=(40, 0, 0, 0, 0, 0)B

Furthermore, there is a one-to-one correspondence between solutions to the source instance and
solutions to the constructed instance by choosing a triple to be in the solution S ⊆ T of the 3-
Dimensional Matching instance if and only if both the corresponding triples of the types 1 and 2
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xi ∈ X yj ∈ Y zk ∈ Z (xi, yj , zk) ∈ T

W ′
(10, i, 0, 0, 0, 0)B (12, 0, 0, 0,−j, 0)B(10, i,−i, 0, 0, 0)B

X ′
(10, 0, 0, j, 0, 0)B (7, 0, 0, 0, 0,−k)B(10, 0, 0, j,−j, 0)B

Y ′ (10, 0, 0, 0, 0, k)B (10, 0, i, 0, j, k)B
Z ′ (11, 0,−i, 0, 0, 0)B (10,−i, 0,−j, 0,−k)B

Table 1: The constructions of W ′, X ′, Y ′, Z ′. Each column represents the source of the constructed
elements from the original 3-Dimensional Matching instance. Most elements have multiplicity 1;
bold elements have multiplicity one fewer than the corresponding 3-Dimensional Matching
source item.

above are included in the solution S′ of the constructed Numerical 4-Dimensional Matching
instance. If a type-1 quadruple is included in the solution for some (xi, yj , zk) ∈ T , then the
corresponding type-2 quadruple must also be included because there is no other way to cover
the element (10, 0, i, 0, j, k)B ∈ Y ′, and similarly for the reverse. To confirm that the rest of the
elements can be covered by the type-3 quadruples, notice that there are exactly the correct number
of (10, i,−i, 0, 0, 0)B ∈ W ′ and (10, 0, 0, j,−j, 0) ∈ X ′ elements. In particular, for every i, there
are mT (xi) triples of the form (10,−i, 0, ∗, 0, ∗)B ∈ Z ′ and exactly one of these is covered by a
type-1 quadruple, so the remaining ones can be matched with the mT (xi)− 1 elements of the form
(10, i,−i, 0, 0, 0)B ∈ W ′, and similarly for the yj . Thus we have a parsimonious reduction from
3-Dimensional Matching to Numerical 4-Dimensional Matching.

We can verify the claim that Y ′∪ (Y ′+Z ′) is a set (not a multiset) using the initial assumption
that no two triples in T agree on more than one coordinate. First, Y ′ is a set because, for each
zk, there is exactly one element (10, 0, 0, 0, 0, k)B ∈ Y ′, and for each triple (xi, yj , zk) ∈ T , there
is exactly one element (10, 0, i, 0, j, k)B ∈ Y ′; these two types of elements are disjoint because the
third and fifth digits are always zero in the former but nonzero in the latter. Similarly, Z ′ is a set
(a fact we will need later). Also, Y ′ and Y ′ + Z ′ are disjoint because the first digit of any element
of Y ′ is 10 while the first digit of any element of Y ′ + Z ′ is at least 20.

To see that Y ′+Z ′ is a set, consider two equal sums s1 = y′1 +z′1 and s2 = y′2 +z′2 for y′1, y
′
2 ∈ Y ′

and z′1, z
′
2 ∈ Z ′. From s1 = s2, it follows that y′2 − y′1 = z′2 − z′1. We claim that, if s1 = s2, then

z′1 = z′2 and thus y′1 = y′2, which suffices because we argued that Y ′ and Z ′ are sets. To prove the
claim, we have two cases, one for each type of element of Z ′:

Case 1: If z′1 = (11, 0,−i1, 0, 0, 0)B, then z′2 = (11, 0,−i2, 0, 0, 0) or else s1 and s2 would differ in
the first digit. Thus y′2 − y′1 = z′2 − z′1 = (0, 0, i1 − i2, 0, 0, 0)B, but by the assumption that there
are no two distinct triples of T sharing both yj and zk, there are no two distinct elements of Y ′

whose last two digits are equal but whose third digits are not, so this difference is impossible unless
y′1 = y′2 and z′1 = z′2.

Case 2: If z′1 = (10,−i1, 0,−j1, 0,−k1)B, then z′2 = (10,−i2, 0,−j2, 0,−k2)B or else s1 and s2

would differ in the first digit. Thus y′2 − y′1 = z′2 − z′1 = (0, i1 − i2, 0, j1 − j2, 0, k1 − k2)B, but no
elements of Y ′ have nonzero second or fourth digits, so it must be that i1 = i2 and j1 = j2. By the
assumption that no distinct triples of T share both xi and yj , it must be that k1 = k2 as well, so
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z′1 = z′2 as claimed.

Theorem 2.4. Numerical 3-Dimensional Matching is strongly ASP-hard and #P-hard, even
if X is required to be a set (not a multiset).

Proof. We give a parsimonious reduction from Numerical 4-Dimensional Matching where
W ∪ (W + X) is a set, as guaranteed by Theorem 2.3 (relabelling Y,Z to W,X). Our reduction
is essentially Garey and Johnson’s reduction from 4-Partition to 3-Partition [GJ79, Thm. 4.4,
p. 99], with some extra care regarding identical elements and splitting elements into separate sets
X ′, Y ′, Z ′.

Following the reduction in [GJ79], given a Numerical 4-Dimensional Matching instance
W = {w1, . . . , wn}, X = {x1, . . . , xn}, Y = {y1, . . . , yn}, Z = {z1, . . . , zn} with target t, we
will construct a Numerical 3-Dimensional Matching instance X ′, Y ′, Z ′ with target sum t′ =
(64, 4)B in base B = t. We assume without loss of generality that every element of W,X, Y, Z is
strictly between t/5 and t/3.5 First we define the elements that will appear in X ′ ∪ Y ′ ∪ Z ′:

w′i = (21, 4wi + 1)B,

x′j = (19, 4xj + 1)B,

y′k = (19, 4yk + 1)B,

z′` = (21, 4z` + 1)B,

u[wi, xj ] = (24,−4(wi + xj) + 2)B,

ū[wi, xj ] = (20, 4(wi + xj) + 2)B,

C = (20, 0)B.

Now we can construct the desired Numerical 3-Dimensional Matching instance, splitting these
elements into three multisets X ′, Y ′, Z ′:

X ′ = {w′i : 1 ≤ i ≤ n} ∪ {ū[wi, xj ] : 1 ≤ i, j ≤ n},
Y ′ = {x′j : 1 ≤ j ≤ n} ∪ {z′` : 1 ≤ ` ≤ n} ∪ {n2 − n copies of C},
Z ′ = {u[wi, xj ] : 1 ≤ i, j ≤ n} ∪ {y′k : 1 ≤ k ≤ n}.

There are 2 × 3 × 2 = 12 possible forms of triples, shown below grouped by the equivalence
classes modulo 4 of the second coordinate of their sum (with shaded boxes to indicate the only
triples that will turn out to be valid):

0 (mod 4) 1 (mod 4) 2 (mod 4) 3 (mod 4)

(w′i′ , x′j′ , u[wi, xj ]) (ū[wı̄, x̄], x′j′ , u[wi, xj ]) (w′i′ , C, y′k′) (w′i′ , x′j′ , y′k′)

(w′i′ , z′`′ , u[wi, xj ]) (ū[wı̄, x̄], z′`′ , u[wi, xj ]) (w′i′ , z′`′ , y′k′)
(ū[wı̄, x̄], x′j′ , y′k′) (w′i′ , C, u[wi, xj ])

(ū[wı̄, x̄], z′`′ , y′k′) (ū[wı̄, x̄], C, y′k′)

(ū[wı̄, x̄], C, u[wi, xj ])

5If a Numerical 4-Dimensional Matching instance has any elements ≥ t, it trivially has no solutions (as all
elements are positive). Otherwise, we can convert it to an instance with this property by adding 2t to each element
in W,X, Y, Z and changing the target sum from t to t̂ = 9t. Then every element is strictly between 2t and 3t, and
thus strictly between t̂/5 = 9t/5 and t̂/3 = 9t/3.
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The second coordinate of t′ is congruent to 0 (mod 4), so triples in the second, third, and fourth
columns never sum to t′.

Of the triples in the first column, two of them cannot actually sum to t′. Triples of the form
(w′i′ , z

′
`′ , u[wi, xj ]) sum to (66, 4(wi′+z`′−wi−xj)+4)B. For this to equal t′, the second coordinate

must equal −2t+4, so wi′+z`′−wi−xj must equal −t/2. But by the assumption that every element
of W,X, Y, Z is strictly between t/5 and t/3, the smallest possible value for wi′+z`′−wi−xj is greater
than −4t/15, so triples of this form never sum to t′. Similarly, triples of the form (ū[wı̄, x̄], x

′
j′ , y

′
k′)

sum to (58, 4(wı̄ + x̄ + xj′ + yk′) + 4)B. For this to equal t′, the second coordinate must equal
6t+ 4, so wı̄ + x̄ + xj′ + yk′ must sum to 3t/2, but the largest possible value for that expression is
less than 4t/3, so triples of this form never sum to t′.

This leaves three forms of triples that can sum to t′ = (64, 4)B:

(w′i′ , x
′
j′ , u[wi, xj ]), (ū[wı̄, x̄], z

′
`′ , y

′
k′), and (ū[wı̄, x̄], C, u[wi, xj ]).

A triple of the second form encodes a quadruple in the input Numerical 4-Dimensional Match-
ing instance; the triple sums to t′ (after a carry (60, 4t + 4)B = (64, 4)B) exactly when wı̄ + x̄ +
z`′ + yk′ = t. The map wı̄ + x̄ 7→ ū[wı̄, x̄] is one-to-one, so from our assumption that W + X is
a set, {ū[wi, xj ]} is also a set, and so this encoding is unique. A triple of the first form sums to t′

exactly when wi′ + xj′ − wi − xj = 0. Because W + X is a set and the map wi + xj 7→ u[wi, xj ] is
one-to-one, we must have i′ = i and j′ = j in valid triples of the first form, uniquely collecting the
u[wi, xj ] elements corresponding to ū[wı̄, x̄] elements used in triples of the second form. Similarly,
ı̄ = i and ̄ = j in valid triples of the third form, uniquely collecting the unused u[wi, xj ] and
ū[wi, xj ] elements using all n2 − n copies of C. Thus there is a one-to-one correspondence between
solutions to the input Numerical 4-Dimensional Matching instance and the constructed Nu-
merical 3-Dimensional Matching instance, so the reduction is parsimonious and Numerical
3-Dimensional Matching is ASP- and #P-hard.

It remains to verify that X ′ = {w′i} ∪ {ū[wi, xj ]} is a set (not a multiset). We argued above
that {ū[wi, xj ]} is a set (using that W + X is a set), and {w′i} is a set because we assumed W is a
set and the map wi 7→ w′i = (20, 4wi + 1)B is one-to-one. It remains to show that {w′i} is disjoint
from {ū[wi, xj ]}, which follows because w′i ≡ 1 (mod 4) and ū[wi, xj ] ≡ 2 (mod 4). Therefore X ′

is a set.

3 Parsimonious Reductions from Numerical 3DM to Path Puzzles

The goal of this section is to parsimoniously reduce Numerical 3-Dimensional Matching (as
analyzed in Section 2) to Path Puzzle, thereby proving the latter strongly NP-, ASP-, and #P-
hard. We first introduce a more geometric view of Numerical 3-Dimensional Matching, called
Length Offsets, and prove its equivalence. It will then be relatively easy to represent Length
Offsets as a Path Puzzle.

Problem 3.1 (Length Offsets). Given a set (not a multiset) of positive integer lengths a1, a2,
. . . , an, and given m nonnegative integer target densities t0, t1, . . . , tm−1, can we place n intervals
with integer endpoints within [0,m] and lengths a1, a2, . . . , an, respectively, such that the number
of intervals overlapping (i, i + 1) is exactly the target density ti? In other words, can we choose
nonnegative integer offsets b1, b2, . . . , bn such that aj + bj ≤ m for each j (1 ≤ j ≤ n); and, for each
i (0 ≤ i < m), there are exactly ti indices j such that bj ≤ i < aj + bj?

9



target density ti
Figure 6: Length Offsets instance obtained by reducing from Numerical 3-Dimensional
Matching where X = {5, 6, 7}, Y = {4, 5, 5}, Z = {4, 4, 5}, t = 15; and its solution corresponding
to the Numerical 3-Dimensional Matching solution of (5, 5, 5), (5, 6, 4), (4, 7, 4).

Theorem 3.1. Length Offsets is parsimoniously reducible from Numerical 3-Dimensional
Matching in which at least one of the three multisets is actually a set.

Proof. We give a parsimonious reduction from Numerical 3-Dimensional Matching where
X is a set, as guaranteed by Theorem 2.4. Specifically, consider a Numerical 3-Dimensional
Matching instance with set X = {x1, . . . , xn}, multisets Y and Z, and a target sum t. Assume
without loss of generality that every element of X,Y, Z is strictly between t/4 and t/2.6 We
construct a Length Offsets instance that we claim has the same number of solutions: the n
lengths are given simply by ai = xi, and the target densities are given by ti = n − |{y ∈ Y : y >
i}| − |{z ∈ Z : t− z ≤ i}|, where 0 ≤ i < m and m = t. See Figure 6 for an example. The intuition
is that we place intervals for X,Y, Z, left-align the intervals for Y , right-align the intervals for Z,
and count the remaining density for X intervals.

It remains to show that every solution to the original Numerical 3-Dimensional Matching
instance corresponds to a solution to the constructed Length Offsets instance, and different
Numerical 3-Dimensional Matching solutions correspond to different Length Offsets solu-
tions. Equivalently, we will provide an injective map from Numerical 3-Dimensional Matching
solutions to Length Offsets solutions, and an injective map from Length Offsets solutions
to Numerical 3-Dimensional Matching solutions.

N3DM to Length Offsets. To convert a Numerical 3-Dimensional Matching solution
into a Length Offsets solution, we assign bj = yk for each solution triple (xj , yk, z`). Figure 6
shows this solution for the example.

For each i and each triple (xj , yk, z`), bj ≤ i < aj+bj if and only if yk ≤ i and i < xj+yk = t−z`,
so either

1. yk > i; or

2. t− z` ≤ i; or

6If a Numerical 3-Dimensional Matching instance has any elements ≥ t, it trivially has no solutions (as all
elements are positive). Otherwise, we can convert it to an instance with this property by adding t to each element
in X,Y, Z and changing the target sum from t to t̂ = 4t. Then every element is strictly between t and 2t, and thus
strictly between t̂/4 = 4t/4 and t̂/2 = 4t/2.

10



3. bj ≤ i < aj + bj .

The first case applies |{y ∈ Y : y > i}| times, and the second case applies |{z ∈ Z : t − z ≤ i}|
times, so the third case applies n − |{y ∈ Y : y > i}| − |{z ∈ Z : t − z ≤ i}| = ti times. Thus our
choice of the offsets is a valid solution to the Length Offsets instance.

If two Numerical 3-Dimensional Matching solutions differ, then (using that X is a set)
some x is matched with a different y in each solution, so when converting those solutions to Length
Offsets solutions, we assign the corresponding length different offsets.

Length Offsets to N3DM. To convert a Length Offsets solution into a Numerical 3-
Dimensional Matching solution, for each length–offset pair (ai, bi), we match the triple (ai, bi, t−
ai − bi). These triples obviously sum to t and are therefore legal, but we need to show that their
elements exist and cover X, Y , and Z, respectively.

1. Every ai is an xi and vice versa, so X is covered by {ai}.

2. For each i, we have

ti − ti−1 = (n− |{y ∈ Y : y > i}| − |{z ∈ Z : t− z ≤ i}|)
− (n− |{y ∈ Y : y > i− 1}| − |{z ∈ Z : t− z ≤ i− 1}|)

= |{y ∈ Y : y = i}| − |{z ∈ Z : t− z = i}|

For i < t/2, the second term is 0 (because z < t/2 by assumption), so ti− ti−1 is precisely the
number of elements of Y that equal i. On the other hand, in a Length Offsets instance,
when i < t/2, ti− ti−1 is the number of segments which pass through i but not i− 1, i.e., the
number of segments which begin at i and therefore have offset bj = i. Therefore, Y is covered
by {bj}.

3. Following the same argument as above, but for i > t/2, we have that ti − ti−1 = −|{z ∈ Z :
t− z = i}|. On the other hand, in the Length Offsets problem, for i > t/2, ti− ti−1 is the
negative of the number of segments which end at i− 1; i.e., it is the negative of the number
of indices j such that aj + bj = i, or equivalently, t− (t− (aj + bj)) = i. Thus, Z is covered
by {t− (aj + bj)} as claimed.

Different solutions to the Length Offsets instance correspond to different solutions to the
Numerical 3-Dimensional Matching instance because, if two Length Offsets solutions dif-
fer, then some length aj gets different offsets, so the corresponding xj is matched to different
elements of Y in the two Numerical 3-Dimensional Matching solutions.

We have shown two injective maps between solutions of the Length Offsets instance and
solutions of the Numerical 3-Dimensional Matching instance, so our reduction is parsimonious.

We now make a brief observation that we make use of later.

Lemma 3.2. In every solution to Length Offsets instances produced by the reduction in the
proof of Theorem 3.1, no line segment shares its left endpoint with the right endpoint of another.

11



14

12

12

12

12

14

15

15

15

15

15

13

12

12

12

12

22 22 1 1 11 1 1 22 22 1 22 22 1 1 13 1 1 22 22 1 22 22 1 1 15 1 1 22 22

Figure 7: Solution to a Path Puzzle instance, reduced from Length Offsets from Figure 6
where n = 3,m = 15, ai = (5, 6, 7), ti = (0, 0, 0, 0, 1, 3, 3, 3, 3, 3, 2, 0, 0, 0, 0). Ellipses elide sections of
6n = 18 columns each labeled 1.

Proof. By assumption, all elements of the Numerical 3-Dimensional Matching instance lie
in the exclusive interval (t/4, t/2). Our reduction sets ai = xi, so t/4 < ai < t/2. Our mapping
between solutions assigns bi = yk, so t/4 < bi < t/2. Adding these inequalities yields t/2 <
ai + bi < t for all i. Then bi < t/2 < aj + bj for all i and j, so the sets of left and right endpoints
are disjoint.

We are now ready to prove our main theorem.

Theorem 3.3. Path Puzzle is NP-, #P- and ASP-hard.

Proof. We give a parsimonious reduction from Length Offsets, as produced by Theorem 3.1 so
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that Lemma 3.2 applies. Given a Length Offsets problem with lengths a1, . . . , an and target
densities t0, . . . , tm−1, we construct an equivalent Path Puzzle instance as follows. Figure 7 shows
our construction instantiated for the same Length Offsets instance from Figure 6.

Dimensions: The grid has 2m + 3 rows and (12n + 6)n− 1 columns.

We group the columns into n blocks B1, . . . , Bn of 12n + 5 columns each, interspersed with
n − 1 lone columns. Thus block Bi (1 ≤ i ≤ n) consists of columns (12n + 6)i − (12n +
5), . . . , (12n + 6)i− 1 and the ith lone column (1 ≤ i < n) is column (12n + 6)i.

Doors: We place doors at the left and right ends of the top row.

Row labels: Counting up from the bottom, the (2i + 2)nd row has a label of 4n + ti, for each
i (0 ≤ i ≤ m); the (2m + 2)nd and (2m + 3)rd (topmost) rows have labels 4n and 5n − 1,
respectively; and all other row labels are blank.

Column labels: Each lone column has a column label of 1. Each block Bj (1 ≤ j ≤ n) has labels
of 2m + 3 on its first two and last two columns; a label of 2aj + 1 on its middle column
(6n + 3th column); and labels of 1 on all other columns (which split into two sections of 6n
consecutive columns).

Any solution to this path puzzle has the following properties:

1. Every square in the first two and last two columns of each block is visited, by the column
labels of 2m + 3.

2. Every section of 6n consecutive columns labeled 1 (within a block) corresponds to a single
horizontal path, which must be in one of the blank rows because all row labels are less than 6n.

3. Every column labeled 2ai + 1 is a single vertical line segment, because both neighboring
columns are labeled 1, just enough to enter and exit the column once.

4. No top square of a column labeled 2ai + 1 is visited, because if one were, the second square
from the top of such a column would also be visited (by Property 3 and because 2ai + 1 > 1),
but then that row would have more than 4n visited squares (by Property 1).

5. In each line column, the top square (and only that square) is visited, because those are the
remaining squares on the top row that can be visited, and are just enough (with Property 1)
to account for a total of 5n.

6. The vertical line segment in the (unique) column labeled 2ai + 1 (from Property 3) visits ai
rows with labels of 4n+tj for various j. Of that 4n+tj , 4n visits are accounted for by the full
columns of Property 1, so the positions of those line segments are a solution to the Length
Offsets problem.

7. Given placements of the vertical line segments corresponding to a valid solution to the Length
Offsets problem, we claim that the rest of the path is uniquely determined. The set of
visited squares in each gadget is uniquely determined by the previous properties. In each pair
of columns labeled 2m + 3:
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(a) The bottom two squares each have only two visited neighbors, each other and the square
above them, so each of them connects by the path to those two squares.

(b) For squares in the pair of columns below the entry point of the length 6n horizontal
path, the long U-shaped path shown in Figure 7 is forced. For each horizontal pair of
squares except the bottom pair, the squares below connect to them. If the pair squares
connect to each other, they form a closed loop, so they must connect to the squares
above them instead.

(c) For squares above the entry point of the length 6n horizontal path, the zig-zag path is
forced. The pair of columns divides evenly into 2× 2 chunks because the entry point of
the length 6n path is in a row with no label, and the only such rows are at even height.
Let inside and outside be relative to the center of the block. In each chunk, the bottom
inside square can’t connect to the square below (because that square is already known
to connect down and to the inside), so it connects to the outside and up. Similarly, the
top outside square can’t connect to the square below (because that square is already
known to connect down and to the bottom inside square), so it connects to the inside
and up (except that in the very top 2 × 2 chunk, the top outside square can’t connect
down and can and must connect to the outside to satisfy the top row).

Thus, each solution to the path puzzle determines a solution to the Length Offsets problem, and
that solution is uniquely determined, so the number of solutions to the Length Offsets problem
is the same as the number of solutions of the path puzzle, and the reduction is parsimonious as
desired. Note that we are relying on the uniqueness of the lengths ai from the Length Offsets
problem definition; otherwise, permuting which copy of a duplicated length gets which offset in
the path puzzle would generate multiple solutions to Path Puzzle from each solution of Length
Offsets.

In fact, our reduction can be converted into one giving complete information (i.e., all row
and column labels), demonstrating that partial information is not the source of Path Puzzle’s
hardness.

Theorem 3.4. Perfect-information Path Puzzle (with all row and column labels given as labels)
is NP-, #P- and ASP-hard.

Proof. Recall that the reduction from the proof of Theorem 3.3 (referring to Figure 7) already
provides all column sums and about half of the row sums. We show how to provide the remaining
row sums without giving away information about the solution to the original Length Offsets
instance.

The rows with missing labels are the (2i − 1)st rows for i = 1, 2, . . . ,m. In each such row,
the solution path must visit (6n + 2)ri cells, where ri is the number of segments in the Length
Offsets solution which have an endpoint at i. Recall from Lemma 3.2 that no line segment shares
its left endpoint with the right endpoint of another. Thus there is only one type of endpoint at each
coordinate i, and we can compute ri = |ti+1 − ti|. The value of ri depends only on the Length
Offsets instance, not its solutions, so we can modify our reduction to specify a label of (6n+ 2)ri
for row 2i− 1, producing a perfect-information instance of Path Puzzle.
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4 Open Problems

One interesting open problem is whether Planar 3DM, where the bipartite graph of elements and
triples is planar, is also ASP-hard and #P-hard. This problem is known to be NP-hard [DF86], and
the variable–clause gadget structure in the proof of Theorem 2.2 is close to preserving planarity.
Unfortunately, the initial clause tripling destroys any planarity in the input, and seems difficult to
avoid.

Another intriguing open problem is whether discrete tomography with partial information, but
no Hamiltonian path constraint, is NP-hard. If true, this would be another aspect of path puzzles
which make them hard.
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