Path Puzzles: Discrete Tomography with a Path Constraint is Hard

Jeffrey Bosboom*

Erik D. Demaine*
Roderick Kimball ${ }^{\dagger}$

Path Puzzles are a type of logic puzzle introduced in Roderick Kimball's 2013 book [5]. A puzzle consists of a (rectangular) grid of cells with two exits (or "doors") on the boundary and numerical constraints on some subset of the rows and columns. A solution consists of a single non-intersecting path which starts and ends at two boundary doors and which passes through a number of cells in each constrained row and column equal to the given numerical clue. Figure 1 shows some example path puzzles and Figure 4 shows their (unique) solutions. Many variations of path puzzles are given in [5] and elsewhere, for example using non-rectangular grids, grid-internal constraints, and additional candidate doors, but these generalizations make the problem only harder.

A path puzzle can be seen as 2-dimensional discrete tomography [3] problem with partial information (not all row and column sums) and an additional Hamiltonicity constraint on the output image. Vanilla 2-dimensional discrete tomography is known to have efficient (polynomialtime) algorithms [3], though it becomes hard under certain connectivity constraints on the output image [2.

Our results. Unlike 2-dimensional discrete tomography, we show that path puzzles (with partial information and the added Hamiltonicity constraint) are in fact NP-complete. In fact, we prove the stronger results that path puzzles are Another Solution ProbLEM (ASP) hard and (to count solutions) \#P-

[^0]Martin L. Demaine* Adam Hesterberg*
Justin Kopinsky*

Figure 1: Four path puzzles. Solutions in Figure 4 on the next page.
complete. Figure 2 shows the chain of reductions we prove. To preserve hardness for the ASP and \#P classes, our reductions are parsimonious, that is, they preserve the number of solutions between the source and target problem instances, generally by showing a one-toone correspondence thereof. We start from the source problem of Positive Exactly-1-In-3SAT which is known to be ASP-hard [6] and (to count solutions) \#P-complete [4. We newly establish ASP-hardness and \#P-completeness for 3-Dimensional Matching, Numerical 4-Dimensional Matching, Numerical 3Dimensional Matching, and a new problem Length Offsets, in addition to Path Puz-

Figure 2: The chain of reductions used in our proof.

Figure 3: The reduction Numerical 3Dimensional Matching \rightarrow Length Offsets \rightarrow Path Puzzles (with intended solution) representing Numerical 3-Dimensional MatchING instance $X=\{5,6,7\}, Y=\{4,5,5\}, Z=$ $\{4,4,5\}$, and target sum $t=15$. Ellipses elide sections of $6 n=18$ columns each labeled 1 .

ZLES. Figure 3 gives a flavor of our reductions.
We also present a path puzzles font-a set of 26 path puzzles whose (unique) solutions depict the alphabet. Figures 1 and 4 show the J, C, D, and G puzzles.

References

[1] Gary Antonick. Roderick Kimball's path puzzles. The New York Times: Numberplay, 28 July 2014. https://wordplay.blogs. nytimes.com/2014/07/28/path-2/.
[2] Alberto Del Lungo and Maurice Navat. Reconstruction of connected sets from two projections. In Herman and Kuba [3, chapter 7.

Figure 4: Solutions to the path puzzles in Figure 1. What can you spell?
[3] Gabor T. Herman and Attila Kuba, editors. Discrete Tomography: Foundations, algorithms, and applications. Birkhäuser, 2012.
[4] Harry B. Hunt, III, Madhav V. Marathe, Venkatesh Radhakrishnan, and Richard E. Stearns. The complexity of planar counting problems. SIAM Journal on Computing, 27(4):1142-1167, 1998.
[5] Roderick Kimball. Path Puzzles. Roderick Kimball, 2nd edition, 102013.
[6] Takahiro Seta. The complexities of puzzles, Cross Sum, and their Another Solution Problems (ASP), 2002.

[^0]: *Massachusetts Institute of Technology, \{jbosboom, edemaine,mdemaine,achester,jkopin\}@mit.edu
 'Enigami Puzzles \& Games

