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Path Puzzles are a type of logic puzzle intro-
duced in Roderick Kimball’s 2013 book [5]. A
puzzle consists of a (rectangular) grid of cells
with two exits (or “doors”) on the boundary and
numerical constraints on some subset of the rows
and columns. A solution consists of a single
non-intersecting path which starts and ends at
two boundary doors and which passes through
a number of cells in each constrained row and
column equal to the given numerical clue. Fig-
ure 1 shows some example path puzzles and Fig-
ure 4 shows their (unique) solutions. Many vari-
ations of path puzzles are given in [5] and else-
where, for example using non-rectangular grids,
grid-internal constraints, and additional candi-
date doors, but these generalizations make the
problem only harder.

A path puzzle can be seen as 2-dimensional
discrete tomography [3] problem with partial in-
formation (not all row and column sums) and an
additional Hamiltonicity constraint on the out-
put image. Vanilla 2-dimensional discrete to-
mography is known to have efficient (polynomial-
time) algorithms [3], though it becomes hard un-
der certain connectivity constraints on the out-
put image [2].

Our results. Unlike 2-dimensional dis-
crete tomography, we show that path puzzles
(with partial information and the added Hamil-
tonicity constraint) are in fact NP-complete.
In fact, we prove the stronger results that
path puzzles are Another Solution Prob-
lem (ASP) hard and (to count solutions) #P-
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Figure 1: Four path puzzles. Solutions in Fig-
ure 4 on the next page.

complete. Figure 2 shows the chain of reduc-
tions we prove. To preserve hardness for the
ASP and #P classes, our reductions are parsi-
monious, that is, they preserve the number of
solutions between the source and target prob-
lem instances, generally by showing a one-to-
one correspondence thereof. We start from the
source problem of Positive Exactly-1-In-3-
SAT which is known to be ASP-hard [6] and
(to count solutions) #P-complete [4]. We newly
establish ASP-hardness and #P-completeness
for 3-Dimensional Matching, Numerical
4-Dimensional Matching, Numerical 3-
Dimensional Matching, and a new problem
Length Offsets, in addition to Path Puz-
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Figure 2: The chain of reductions used in our proof.
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Figure 3: The reduction Numerical 3-
Dimensional Matching → Length Offsets
→ Path Puzzles (with intended solution) rep-
resenting Numerical 3-Dimensional Match-
ing instance X = {5, 6, 7}, Y = {4, 5, 5}, Z =
{4, 4, 5}, and target sum t = 15. Ellipses elide
sections of 6n = 18 columns each labeled 1.

zles. Figure 3 gives a flavor of our reductions.

We also present a path puzzles font—a set of
26 path puzzles whose (unique) solutions depict
the alphabet. Figures 1 and 4 show the J, C, D,
and G puzzles.
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Figure 4: Solutions to the path puzzles in Fig-
ure 1. What can you spell?
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