
Reconfiguring Undirected Paths

Erik D. Demaine?, David Eppstein??, Adam Hesterberg? ? ?, Kshitij Jain†,
Anna Lubiw‡, Ryuhei Uehara§, and Yushi Uno¶

Abstract. We consider problems in which a simple path of fixed length,
in an undirected graph, is to be shifted from a start position to a goal
position by moves that add an edge to either end of the path and remove
an edge from the other end. We show that this problem may be solved in
linear time in trees, and is fixed-parameter tractable when parameterized
either by the cyclomatic number of the input graph or by the length of
the path. However, it is PSPACE-complete for paths of unbounded length
in graphs of bounded bandwidth.

1 Introduction

In this paper, we consider the problem of sliding a fixed-length simple path within
an undirected graph from a given starting position to a given goal position. The
path may move in steps where we add an edge to either end of the path and
simultaneously remove the edge from the opposite end, maintaining its length.
Effectively, this can be thought of as sliding the path one step along its length in
either direction. The allowed movements of the path are similar to those of trains
in a switchyard, or of the model trains in any of several train shunting puzzles;
the edges of the path can be thought of as the cars of a train. However, unlike
train tracks, we do not constrain connections at junctions of track segments to
be smooth: a path that enters a vertex along an incident edge can exit the vertex
along any other incident edge. Additionally, we do not distinguish the two ends
of the path from each other.

Our aim is to understand the computational complexity of two natural
reconfiguration problems for such paths: the decision problem, of testing whether it
is possible to reach the goal position from the start position, and the optimization

? MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cam-
bridge, MA 02139, USA, edemaine@mit.edu

?? Computer Science Department, University of California, Irvine, Irvine, CA 92697,
USA, eppstein@uci.edu. Supported in part by NSF grants CCF-1618301 and CCF-
1616248.

? ? ? MIT Mathematics Department, 77 Massachusetts Ave., Cambridge, MA 02139, USA,
achesterberg@gmail.com

† University of Waterloo, Canada, k22jain@uwaterloo.ca
‡ University of Waterloo, Canada, alubiw@uwaterloo.ca
§ Japan Advanced Institute of Science and Technology, Nomi, Japan, uehara@jaist.
ac.jp

¶ Graduate School of Engineering, Osaka Prefecture University, Japan, uno@cs.

osakafu-u.ac.jp

edemaine@mit.edu
eppstein@uci.edu
achesterberg@gmail.com
k22jain@uwaterloo.ca
alubiw@uwaterloo.ca
uehara@jaist.ac.jp
uehara@jaist.ac.jp
uno@cs.osakafu-u.ac.jp
uno@cs.osakafu-u.ac.jp

Fig. 1. State space of three-edge paths on a six-vertex graph

problem, of reaching the goal from the start in as few moves as possible. One
natural upper bound for the complexity of these problems is the size of the state
space for the problem, a graph whose vertices are paths of equal length on the
given graph and whose edges represent moves from one path to another (Figure 1).
If a given graph has N paths of the given length, and M moves from one path
to another, we can solve either the decision problem or the optimization problem
in time O(M +N) (after constructing the state space) by a simple breadth-first
search. As we will see, it is often possible to achieve significantly faster running
times than this naive bound. On the other hand, the general problem is hard,
even on some highly restricted classes of graphs.

Specifically, we prove the following results:

1. The decision problem for path reconfiguration is fixed-parameter tractable
when parameterized by the length of the path. This stands in contrast to
the size of the state space for the problem which (for paths of length k in
n-vertex graphs) can have as many as Ω(nk+1) states.

2. For paths of unbounded length in graphs parameterized by the circuit rank,
both the decision and the optimization problems can be solved in fixed-
parameter tractable time by state space search. The same problem can

be solved in polynomial (but not fixed-parameter tractable) time when
parameterized by feedback vertex set number.

3. The optimization problem for path reconfiguration in trees can be solved in
linear time, even though the state space for the problem has quadratic size.

4. The decision problem for path reconfiguration is PSPACE-complete for paths
of unbounded length, even when restricted to graphs of bounded bandwidth.
Therefore (unless P = PSPACE) path reconfiguration is not fixed-parameter
tractable when parameterized by bandwidth, treewidth, or related graph
parameters.

Because of limited space, the detailed versions of several of our results are
deferred to the full version of this paper (arXiv:1905.00518).

1.1 Related work

There has been much past research on reconfiguring structures in graphs, with
motivations that include motion planning, understanding the mixing of Markov
chains and bounding the computational complexity of popular games and puzzles.
See, for instance, Ito et al. [1] for many early references, and Mouawad et al. [2]
for more recent work on the parameterized complexity of these problems. Often,
in these problems, one considers moves in which the structure changes by the
removal of one element and the addition of an unrelated replacement element
(token moving) or in which an element of the structure changes only locally, by
moving along an edge of the graph (token sliding).

Several authors have considered problems of reconfiguring paths or shortest
paths under token jumping or token sliding models of reconfiguration [3–5].
However, the path sliding moves that we consider are different. Token sliding
moves only a single vertex or edge of a path along a graph edge, while we move
the whole path. And although our path sliding moves can be seen as a special
case of token jumping, because they remove one edge and add a different edge,
token jumping in general would allow the replacement of edges or vertices in the
middle of a path, while we allow changes only at the ends of the path.

The path reconfiguration problem that we study here is also closely related
to a popular video game, Snake, which has a very similar motion to the path
sliding moves that we consider. Our problem differs somewhat from Snake in
that we consider bidirectional movement, while in Snake the motion must always
be forwards. Snake is typically played on grid graphs, and it is known to be
PSPACE-complete to determine whether the Snake can reach a specific goal state
from a given start state on generalized grid graphs [6]. Independently of our
work, Gupta et al [7] have found that reconfiguring snakes (paths that can move
only unidirectionally) is fixed-parameter tractable in the length of the path,
analogously to our Theorem 1.

https://arxiv.org/abs/1905.00518

Fig. 2. A graph G of tree-depth 2 (solid black edges) and a tree T realizing this depth
(dashed blue edges).

2 Preliminaries

2.1 Reconfiguration sequences and time reversal

Definition 1. We define a reconfiguration step in a graph G to be a pair of
edges (e, f), and a reconfiguration sequence to be a sequence σ of reconfiguration
steps. We may apply a reconfiguration step to a path P by adding edge e to P
and removing edge f , whenever f is one of the two edges at the ends of P , e is
incident to the vertex at the other end, and the result of the application is another
simple path. We may apply a reconfiguration sequence to a path by performing a
sequence of applications of its reconfiguration steps. If applying reconfiguration
sequence σ to path P produces another path Q we say that we can reconfigure P
into Q or that σ takes P to Q.

If (e, f) is a reconfiguration step, then we define its time reversal to be the
step (f, e). We define the time-reversal of a reconfiguration sequence σ to be
the sequence of time reversals of the steps of σ, taken in the reverse order. If
σ takes P to Q, then its time reversal takes Q to P . For this reason, when
we seek the existence of a reconfiguration sequence (the path reconfiguration
decision problem) or the shortest reconfiguration sequence (the path reconfiguration
optimization problem), reconfiguring a path P to Q is equivalent under time
reversal to reconfiguring Q to P . We call this equivalence time-reversal symmetry.

We define the length |P | of a path P to be its number of edges, and the
length |σ| of a reconfiguration sequence to be its number of steps.

2.2 Tree-depth

Tree-depth is a graph parameter that can be defined in several equivalent ways [8],
but the most relevant definition for us is that the tree-depth of a connected
graph G is the minimum depth of a rooted tree T on the vertices of G such that
each edge of G connects an ancestor-descendant pair of T (Figure 2). Here, the
depth of a tree is the length of the longest root-to-leaf path. Another way of

expressing the connection between G and T is that T is a depth-first search tree
for a supergraph of G. For disconnected graphs one can use a forest in place of a
tree, but we will only consider tree-depth for connected graphs.

Tree-depth is a natural graph parameter to use for path configuration, because
it is closely connected to the lengths of paths in graphs. If a graph G has maximum
path-length `, then clearly its tree-depth can be at most `, because any depth-first
search tree of G itself will achieve that depth. In the other direction, a graph
with tree-depth d has maximum path-length at most 2d+1 − 2, as can be proven
inductively by splitting any given path at the vertex closest to the root of a tree T
realizing the tree-depth. Therefore, the tree-depth and maximum path-length
are equivalent for the purposes of determining fixed-parameter tractability. The
parameterized complexity of reconfiguration problems on graphs of bounded
tree-depth has been studied by Wrochna [9]. However, these graphs are highly
constrained, so algorithms that are parameterized by tree-depth are not widely
applicable.

We will prove as a lemma that path reconfiguration is fixed-parameter
tractable for the graphs of bounded tree-depth. Because these graphs have
bounded path lengths, this result will be subsumed in our theorem that path
reconfiguration is fixed-parameter tractable when parameterized by path-length.
However, we will use this lemma as a stepping-stone to the theorem, by proving
that in arbitrary graphs we can either find a structure that allows us to solve the
problem easily or restrict the input to a subgraph of bounded tree-depth.

3 Parameterized by path length

In this section we show that path reconfiguration is fixed-parameter tractable
when parameterized by path length. As discussed above, our strategy is to
find a structure (loose paths, defined below), whose existence allows us to solve
the reconfiguration problem directly. When these structures do not exist or
exist but cannot be used, we will instead restrict our attention to a subgraph of
bounded tree-depth. We begin with the lemma that the problem is fixed-parameter
tractable when parameterized by tree-depth instead of path length.

3.1 Tree-depth

Our method for graphs of low tree-depth is based on the fact that, when these
graphs are large, they contain a large amount of redundant structure: subgraphs
that are all connected to the rest of the graph in the same way as each other.
When this happens, we can eliminate some copies of the redundant structures
and reduce the problem to a smaller instance size.

Definition 2. Given a graph G and a vertex set S, we define an S-flap to be a
subset X of the vertices of G such that X is disjoint from S and there are no edges
from X to G \ {S ∪X}. We say that two S-flaps X and Y are equivalent when
the induced subgraphs G[S ∪X] and G[S ∪Y] are isomorphic, by an isomorphism
that reduces to the identity mapping on S (Figure 3).

Fig. 3. Two equivalent S-flaps X and Y in a graph G

Observation 1 For any graph G and any vertex set S, a path of length k can
include vertices from at most d(k − 1)/2e S-flaps of G.

Proof. The path has k + 1 vertices, and any two vertices in distinct flaps must
be separated by at least one vertex of S. ut

Lemma 1. Suppose we are given an instance of path reconfiguration for paths
of length k in a graph G, and that G contains a subset S that is disjoint from
the start and goal positions of the path and has more than d(k + 1)/2e pairwise
equivalent S-flaps X1, X2, . . . , all disjoint from the start and goal. Then we can
construct an equivalent and smaller instance by removing all but d(k + 1)/2eof
these equivalent S-flaps.

Proof. Any reconfiguration sequence in the original graph can be transformed into
a reconfiguration sequence for the reduced graph by using one of the remaining
S-flaps whenever the sequence for the original graph enters an S-flap. Because
the S-flaps are equivalent, the moves within the flap can be mapped to each
other by the isomorphism defining their equivalence, and by Observation 1 there
will always be a free S-flap to use in the reduced graph. ut

Lemma 2. We can solve the decision or optimization problems for path recon-
figuration in time that is fixed-parameter tractable in the tree-depth of the input
graph.

Proof. We provide a polynomial-time kernelization algorithm that uses Lemma 1
to reduce the instance to an equivalent instance whose size is a function only of
the given tree-depth d. The problem can then be solved by a brute-force search
on the resulting smaller instance. We assume without loss of generality that we
already have a tree decomposition T of depth d, as it is fixed-parameter tractable
to find such a decomposition when one is not already given [8, p. 138]. Recall
that, for graphs of tree-depth d, the length k of the paths being reconfigured can
be at most 2d+1 − 2.

We apply Lemma 1 in a sequence of stages so that, after stage i, all vertices
at height i in T have O(1) children. As a base case, for stage 0, all vertices at
height 0 in T automatically have 0 children, because they are the leaves of T .
Therefore, suppose by induction on i that all vertices at height less than i in T
have O(1) children.

For a given vertex v at height i, let Sv be the set of ancestors of v in T
(including v itself). Then, for each child w of v in T , let Xw be the set of
descendants of w (including w itself). Then Xw is an Sv-flap, because Sv includes
all of its ancestors in T and it can have no edges to vertices that are not ancestors
in T . If we label each vertex in T by the set of heights of its adjacent ancestors,
then the isomorphism type of G[Sv ∪Xw] is determined by these labels, so two
children u and w of T have equivalent Sv-flaps whenever they correspond to
isomorphic labeled subtrees of W . Trees of constant size with a constant number
of label values can have a constant number of isomorphism types, so there are a
constant number of equivalence classes of Sv flaps among the sets Wx. Within
each equivalence class, we apply Lemma 1 to reduce the number of flaps within
that equivalence class to a constant. After doing so, we have caused the vertices
of T at height i to have a constant number of children, completing the induction
proof.

To implement this method in polynomial time, we can use any polynomial time
algorithm for isomorphism of labeled trees [10]. The equivalence of subtrees of T
by labeled isomorphism may be finer than the equivalence of the corresponding
subgraphs of G by graph isomorphism (because two different labeled trees may
correspond to isomorphic subgraphs) but using the finer equivalence relation
nevertheless leaves us with a kernel of size depending only on d. The time for this
algorithm can be bounded by a polynomial, independent of the parameter. ut

As the following observation shows, this result is nontrivial in the sense that
its time bound is significantly smaller than the worst-case bound on the size of
the state space for the problem.

Observation 2 In graphs of tree-depth d, the number of paths of a given length

can be Θ(n2
d

).

Proof. Let T be a tree realizing the depth of the given graph. To prove that the

number of paths is O(n2
d

), consider the vertex v in any path that is highest
in tree T , and apply the same bound inductively for the two parts of the path
on either side of v, both of which must live in lower-depth subtrees. The total
number of paths can be at most the product of the numbers of choices for these
two smaller paths.

To prove that the number of paths can be Ω(n2
d

), let T be a star as the base
case for depth one (with Ω(n2) paths of length two) and at each higher depth
connect two inductively-constructed subtrees through a new root vertex v. Given
a tree T constructed in this way, let G be the graph of all ancestor-descendant
pairs in T (Figure 4). Each two paths in the two subtrees can be connected to

Fig. 4. One of Ω(n4) paths of length 6 in a graph of tree-depth 2

Fig. 5. A loose path R for start and goal paths P and Q

each other through v, so the number of paths in the whole graph is the product
of the numbers of paths in the two subtrees. ut

Therefore, an algorithm that searched the entire state space would only be in
XP, not FPT.

3.2 Loose paths

We have seen that graphs without long paths are easy for path reconfiguration.
Next, we show that graphs with long paths are also easy. The following definition
is central to this part of our results:

Definition 3. Consider an instance of path reconfiguration consisting of a graph
G, a start path P of length k, and a goal path Q of length k. We define a loose
path to be a simple path R of length 2k in G, such that R is vertex-disjoint from
both P and Q (Figure 5).

Lemma 3. Let R be a loose path for an instance (G,P,Q) of path reconfiguration,
such that it is possible to reconfigure path P into a path that uses at least one
vertex of R. Then for every vertex v in R, it is possible to reconfigure path P
into a sub-path of R for which v is an endpoint.

Proof. Consider a sequence σ of reconfiguration steps starting from P that results
in a path using at least one vertex of R and is as short as possible. Because σ
is as short as possible and R is disjoint from P , the last move of σ must cause
exactly one vertex u of R to be an endpoint of the reconfigured path. Because

R has length 2k, at least one endpoint of R is at distance k or more along R
from u. By sliding the path along R towards this endpoint, we can reconfigure
it so that it lies entirely along R. Again, because R has length 2k, one of the
two sub-paths of R ending at v has length at least k. By concatenating to σ an
additional sequence of steps that slide the path along R (if necessary) we can
reconfigure the starting path so that it lies within this sub-path and ends at v. ut

We call a loose path R that meets the conditions of Lemma 3 a reachable
loose path.

Lemma 4. If an instance (G,P,Q) of path reconfiguration has a reachable loose
path, and the graph G is connected, then all loose paths for that instance are
reachable.

Proof. Let R be a reachable loose path, and L be any other loose path. If R
and L share a vertex v, then it is possible to slide any sub-path of R so that
it includes this vertex, showing that L meets the conditions of Lemma 3. If R
and L are disjoint, let T be a shortest path between them in G, and let v be
the unique vertex of T that belongs to R. By Lemma 3, we can reconfigure the
starting path so that it lies along R and ends at v. From there, we can slide the
path along T until it reaches the other endpoint of T , a vertex of L. This shows
that L meets the conditions of Lemma 3. ut

It will be helpful to bound the tree-depth of graphs with no loose path.

Observation 3 If an instance of path reconfiguration for paths of length k has
no loose path, then its graph has tree-depth less than 4k.

Proof. Form a depth-first-search forest F of the subgraph formed by removing
all vertices of the start and goal paths. Because there is no loose path, F has
depth at most 2k − 1. Form a single rooted path R of the vertices of the start
and goal paths, in an arbitrary order. Connect R and F into a single tree T
(not necessarily a subtree of the input graph) by making each root of F be a
child of the leaf node of R. Then every edge in the given graph connects an
ancestor–descendant pair in T , because either it connects two vertices in the
depth-first-search forest or it has at least one endpoint on the ancestral path R.
Thus, T meets the condition for trees realizing the tree-depth of a graph, and its
depth is at most 4k − 1, so the given graph has tree-depth at most 4k − 1. ut

3.3 Win-win

We show now that we can either restrict our attention to a subgraph of bounded
tree-depth or find a reachable loose path, in either case giving a structure that
allows us to solve path reconfiguration.

Definition 4. Given an instance (G,P,Q) of path reconfiguration, we say that
S is a reachable set of vertices if, for every vertex v in S, there exists a sequence

of reconfiguration steps that takes P into a path that uses vertex v. We say that
S is an inescapable set of vertices if, for every vertex v that is not in S, there
does not exist a sequence of reconfiguration steps that takes P into a path that
uses vertex v.

Lemma 5. Given an instance (G,P,Q) of path reconfiguration, parameterized
by the length k of the start and goal paths, we can in fixed-parameter-tractable
time find either a reachable loose path, or a reachable and inescapable set S of
vertices that induces a subgraph G[S] of tree-depth at most 4k − 1.

Proof. We will maintain a vertex set S that is reachable and induces a subgraph
of tree-depth less than 4k until either finding reachable loose path or finding
that S is inescapable and has no path. Initially, S will consist of all vertices of
the start path P ; clearly, this satisfies the invariants that S is reachable and has
tree-depth less than 4k.

Then, while we have not terminated the algorithm, we perform the following
steps:

– For each edge uv where u ∈ S and v 6∈ S, use the algorithm of Lemma 2 to
test whether P can be reconfigured within S ∪ {v} (a graph of tree-depth
at most 4k) into a path that uses vertex v. If we find any single edge uv for
which this test succeeds, we go on to the next step. Otherwise, if no edge uv
passes this test, S is inescapable and we terminate the algorithm.

– Test whether the graph S ∪ {v} contains a loose path. Finding a path of
fixed length is fixed-parameter tractable for arbitrary graphs [11–13] and can
be solved even more easily by standard dynamic programming techniques
for graphs of bounded tree-depth. If this test succeeds, the loose path must
contain v, as the remaining vertices have no loose path. In this case, we
have found a reachable loose path (as v is reachable) and we terminate the
algorithm.

– Add v to S and continue with the next iteration of the algorithm. Because
(in this case) v is reachable but S ∪{v} contains no loose path, it follows that
including v in S maintains the invariants that S be reachable and induce a
subgraph with tree-depth at most 4k − 1.

Because each iteration adds a vertex to S, the loop must eventually terminate,
either with a reachable inescapable subgraph of low tree-depth (from the first
step) or with a reachable loose path (from the second step). ut

3.4 Fixed-parameter tractability

We are now ready to prove our main result:

Theorem 1. The path reconfiguration decision problem is fixed-parameter tract-
able when parameterized by the length of the start and goal paths.

Proof. Our algorithm for path reconfiguration begins by applying Lemma 5 to
find either a reachable inescapable subgraph of low tree-depth or a reachable
loose path. If we find a reachable inescapable subgraph that does not include all
the goal path vertices, the reconfiguration problem has no solution. If we find a
reachable inescapable subgraph that does include all the goal path vertices, we
can solve the reconfiguration problem by applying Lemma 2.

If we find a reachable loose path R for the given instance (G,P,Q), we apply
Lemma 5 a second time, to the equivalent reversed instance (G,Q,P). If we find
a reachable inescapable subgraph that does not include all the vertices of the
original start path P , the reconfiguration problem has no solution. If we find a
reachable inescapable subgraph that does include all the vertices of P , we can
solve the reconfiguration problem by applying Lemma 2.

If we find a second reachable loose path R′, one that (by time-reversal
symmetry) can reach the goal configuration, then the original reconfiguration
problem has a positive solution. For, in this case, we can reconfigure P to a path
that lies along R, then (by Lemma 4) to a path that lies along R′, then (by the
reverse of the reconfiguration sequence found by the second instance of Lemma 5)
to Q. ut

We leave as open the question of whether a similar result can be obtained for
the optimization problem.

4 Tree-like graphs

In the full version of this paper we show that several special classes of graphs
have polynomial algorithms for path reconfiguration regardless of path length.
The prototypical example are the trees, for which the existence of a polynomial
time algorithm follows immediately from the fact that any n-vertex tree has
O(n2) distinct paths. In the full version, we refine this idea and provide a linear
time algorithm for path reconfiguration in trees.

We also observe that the graphs of bounded circuit rank, and the graphs
of bounded feedback vertex number, have polynomial algorithms for path re-
configuration, because in these graphs the size of the state space (the number
of distinct paths in the graph) is bounded by a polynomial. For circuit rank
the exponent of the polynomial is a constant, and we obtain a fixed-parameter
tractable algorithm. For feedback vertex number, the exponent depends on the
feedback vertex number. We defer the details to the full version of the paper.

5 Hardness

In the full version of this paper we describe a reduction from nondeterministic
constraint logic showing that path reconfiguration (with unbounded path length)
is PSPACE-complete even on graphs of bounded bandwidth. This result rules out
the possibility (unless P = PSPACE) that our results on tree-like graph classes
from Section 4 can be extended to another tree-like class of graphs, the graphs
of bounded treewidth.

Fig. 6. Reduction from nondeterministic constraint logic to path reconfiguration. The
underlying constraint logic instance has six vertices (yellow shaded circles) and nine
edges (thick red and blue shaded arrows). Within each of the shaded circles is a vertex
gadget of our reduction, and within each thick shaded arrow is an edge gadget of our
reduction. The thin green shaded regions contain connection gadgets of our reduction,
which the path that is undergoing reconfiguration uses to pass from one edge or vertex
gadget to another. The heavy black edges depict one possible state of the path to be
reconfigured.

Theorem 2. The path reconfiguration decision problem is PSPACE-complete,
even for graphs of bounded bandwidth.

An example of our reduction is depicted in Figure 6.

References

1. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer
Science 412 (2011) 1054–1065

2. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the
parameterized complexity of reconfiguration problems. Algorithmica 78 (2017)
274–297

3. Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths.
Theoretical Computer Science 412 (2011) 5205–5210

4. Bonsma, P.: The complexity of rerouting shortest paths. Theoretical Computer
Science 510 (2013) 1–12

5. Hanaka, T., Ito, T., Mizuta, H., Moore, B., Nishimura, N., Subramanya, V., Suzuki,
A., Vaidyanathan, K.: Reconfiguring spanning and induced subgraphs. In Wang,
L., Zhu, D., eds.: Computing and Combinatorics: 24th International Conference,
COCOON 2018, Qing Dao, China, July 2–4, 2018, Proceedings. Volume 10976 of
Lecture Notes in Computer Science., Springer (2018) 428–440

6. De Biasi, M., Ophelders, T.: The complexity of Snake. In Demaine, E.D., Grandoni,
F., eds.: 8th International Conference on Fun with Algorithms, FUN 2016, June
8–10, 2016, La Maddalena, Italy. Volume 49 of Leibniz International Proceedings
in Informatics (LIPIcs)., Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
11:1–11:13

7. Gupta, S., Sa’ar, G., Zehavi, M.: The parameterized complexity of motion planning
for snake-like robots. Electronic preprint arxiv:1903.02445 (2019)

8. Nešetřil, J., Ossona de Mendez, P.: Chapter 6. Bounded height trees and tree-depth.
In: Sparsity: Graphs, Structures, and Algorithms. Volume 28 of Algorithms and
Combinatorics. Springer (2012) 115–144

9. Wrochna, M.: Reconfiguration in bounded bandwidth and tree-depth. Journal of
Computer and System Sciences 93 (2018) 1–10

10. Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs
(preliminary report). Proceedings of the Sixth Annual ACM Symposium on Theory
of Computing (STOC ’74) (1974) 172–184

11. Bodlaender, H.L.: On linear time minor tests with depth-first search. Journal of
Algorithms 14 (1993) 1–23

12. Fellows, M.R., Langston, M.A.: On search, decision, and the efficiency of polynomial-
time algorithms. Journal of Computer and System Sciences 49 (1994) 769–779

13. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42 (1995)
844–856

	Reconfiguring Undirected Paths

