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1 PROBLEM DEFINITION

Many NP-hard graph problems become easier to approximate on planar graphs and their
generalizations. (A graph is planar if it can be drawn in the plane (or the sphere) without
crossings. For definitions of other related graph classes, see the entry on Bidimensionality
(2004; Demaine, Fomin, Hajiaghayi, Thilikos).) For example, maximum independent set
asks to find a maximum subset of vertices in a graph that induce no edges. This problem
is inapproximable in general graphs within a factor of n1−ε for any ε > 0 unless NP =
ZPP (and inapproximable within n1/2−ε unless P = NP), while for planar graphs there is
a 4-approximation (or simple 5-approximation) by taking the largest color class in a vertex
4-coloring (or 5-coloring). Another is minimum dominating set, where the goal is to find a
minimum subset of vertices such that every vertex is either in or adjacent to the subset. This
problem is inapproximable in general graphs within ε log n for some ε > 0 unless P = NP,
but as we will see, for planar graphs the problem admits a polynomial-time approximation
scheme (PTAS): a collection of (1 + ε)-approximation algorithms for all ε > 0.

There are two main general approaches for designing PTASs for problems on planar
graphs and their generalizations: the separator approach and the Baker approach.

Lipton and Tarjan [15, 16] introduced the first approach, which is based on planar sep-
arators. The first step in this approach is to find a separator of O(

√
n) vertices or edges,

where n is the size of the graph, whose removal splits the graph into two or more pieces each
of which is a constant fraction smaller than the original graph. Then recurse in each piece,
building a recursion tree of separators, and stop when the pieces have some constant size
such as 1/ε. The problem can be solved on these pieces by brute force, and then it remains
to combine the solutions up the recursion tree. The induced error can often be bounded in
terms of the total size of all separators, which in turn can be bounded by ε n. If the optimal
solution is at least some constant factor times n, this approach often leads to a PTAS.
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There are two limitations to this planar-separator approach. First, it requires that the
optimal solution is at least some constant factor times n; otherwise, the cost incurred by the
separators can be far larger than the desired optimal solution. Such a bound is possible in
some problems after some graph pruning (linear kernelization), e.g., independent set, vertex
cover, and forms of the Traveling Salesman Problem. But, for example, Grohe [12] states
that dominating set is a problem “to which the technique based on the separator theorem
does not apply”. Second, the approximation algorithms resulting from planar separators are
often impractical because of large constant factors. For example, to achieve an approximation
ratio of just 2, the base case requires exhaustive solution of graphs of up to 22400

vertices.
Baker [1] introduced her approach to address the second limitation, but it also addresses

the first limitation to a certain extent. This approach is based on decomposition into over-
lapping subgraphs of bounded outerplanarity, as described in the next section.

2 KEY RESULTS

Baker’s original result [1] is a PTAS for maximum independent set (as defined above) on
planar graphs, as well as the following list of problems on planar graphs: maximum tile
salvage, partition into triangles, maximum H-matching, minimum vertex cover, minimum
dominating set, and minimum edge-dominating set.

Baker’s approach starts with a planar embedding of the planar graph. Then it divides
vertices into layers by iteratively removing vertices on the outer face of the graph: layer j
consists of the vertices removed at the jth iteration. If one now removes the layers congruent
to i modulo k, for any choice of i, the graph separates into connected components each
with at most k consecutive layers, and hence the graph becomes k-outerplanar. Many
NP-complete problems can be solved on k-outerplanar graphs for fixed k using dynamic
programming (in particular, such graphs have bounded treewidth). Baker’s approximation
algorithm computes these optimal solutions for each choice i of the congruence class of layers
to remove, and returns the best solution among these k solutions. The key argument for
maximization problems considers the optimal solution to the full graph, and argues that the
removal of one of the k congruence classes of layers must remove at most a 1/k fraction of
the optimal solution, so the returned solution must be within a 1 + 1/k factor of optimal. A
more delicate argument handles minimization problems as well. For many problems, such as
maximum independent set, minimum dominating set, and minimum vertex cover, Baker’s
approach obtains a (1 + ε)-approximation algorithms with running time of 2O(1/ε)nO(1) on
planar graphs.

Eppstein [10] generalized Baker’s approach to a broader class of graphs called graphs
of bounded local treewidth, i.e., where the treewidth of the subgraph induced by the set of
vertices at distance at most r from any vertex is bounded above by some function f(r)
independent of n. The main differences in Eppstein’s approach are replacing the concept of
bounded outerplanarity with the concept of bounded treewidth, where dynamic programming
can still solve many problems, and labeling layers according to a simple breadth-first search.
This approach has led to PTASs for hereditary maximization problems such as maximum
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independent set and maximum clique, maximum triangle matching, maximum H-matching,
maximum tile salvage, minimum vertex cover, minimum dominating set, minimum edge-
dominating set, minimum color sum, and subgraph isomorphism for a fixed pattern [10, 8, 6].
Frick and Grohe [11] also developed a general framework for deciding any property expressible
in first-order logic in graphs of bounded local treewidth.

The foundation of these results is Eppstein’s characterization of minor-closed families
of graphs with bounded local treewidth [10]. Specifically, he showed that a minor-closed
family has bounded local treewidth if and only if it excludes some apex graph, a graph with
a vertex whose removal leaves a planar graph. Unfortunately, the initial proof of this result
brought Eppstein’s approach back to the realm of impracticality, because his bound on local
treewidth in a general apex-minor-free graph is doubly exponential in r: 22O(r)

. Fortunately,
this bound could be improved to 2O(r) [3] and even the optimal O(r) [4]. The latter bound
restores Baker’s 2O(1/ε)nO(1) running time for (1 + ε)-approximation algorithms, now for all
apex-minor-free graphs.

Another way to view the necessary decomposition of Baker’s and Eppstein’s approaches
is that the vertices or edges of the graph can be split into any number k of pieces such that
deleting any one of the pieces results in a graph of bounded treewidth (where the bound
depends on k). Such decompositions in fact exist for arbitrary graphs excluding any fixed
minor H [9], and they can be found in polynomial time [6]. This approach generalizes the
Baker-Eppstein PTASs described above to handle general H-minor-free graphs.

This decomposition approach is effectively limited to deletion-closed problems, whose
optimal solution only improves when deleting edges or vertices from the graph. Another
decomposition approach targets contraction-closed problems, whose optimal solution only
improves when contracting edges. These problems include classic problems such as dominat-
ing set and its variations, the Traveling Salesman Problem, subset TSP, minimum Steiner
tree, and minimum-weight c-edge-connected submultigraph. PTASs have been obtained for
these problems in planar graphs [13, 14, 2] and in bounded-genus graphs [7] by showing that
the edges can be decomposed into any number k of pieces such that contracting any one
piece results in a bounded-treewidth graph (where the bound depends on k).

3 APPLICATIONS

Most applications of Baker’s approach have been limited to optimization problems arising
from “local” properties (such as those definable in first-order logic). Intuitively, such lo-
cal properties can be decided by locally checking every constant-size neighborhood. In [5],
Baker’s approach is generalized to obtain PTASs for nonlocal problems, in particular, con-
nected dominating set. This generalization requires the use of two different techniques. The
first technique is to use an ε-fraction of a constant-factor (or even logarithmic-factor) ap-
proximation to the problem as a “backbone” for achieving the needed nonlocal property.
The second technique is to use subproblems that overlap by Θ(log n) layers instead of the
usual Θ(1) in Baker’s approach.

Despite this advance in applying Baker’s approach to more general problems, the planar-
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separator approach can still handle some different problems. Recall, though, that the planar-
separator approach was limited to problems in which the optimal solution is at least some
constant factor times n. This limitation has been overcome for a wide range of problems [5],
in particular obtaining a PTAS for feedback vertex set, to which neither Baker’s approach
nor the planar-separator approach could previously apply. This result is based on evenly
dividing the optimum solution instead of the whole graph, using a relation between treewidth
and the optimal solution value to bound the treewidth of the graph, and thus obtaining an
O(
√

OPT) separator instead of an O(
√

n) separator. The O(
√

OPT) bound on treewidth
follows from the bidimensionality theory described in the entry on Bidimensionality (2004;
Demaine, Fomin, Hajiaghayi, Thilikos). We can divide the optimum solution into roughly
even pieces, without knowing the optimum solution, by using existing constant-factor (or
even logarithmic-factor) approximations for the problem. At the base of the recursion,
pieces no longer have bounded size but do have bounded treewidth, so fast fixed-parameter
algorithms can be used to construct optimal solutions.

4 OPEN PROBLEMS

An intriguing direction for future research is to build a general theory for PTASs of subset
problems. Although PTASs for subset TSP and Steiner tree have recently been obtained
for planar graphs [14, 2], there remain several open problems of this kind, such as subset
feedback vertex set.

Another instructive problem is to understand the extent to which Baker’s approach can
be applied to nonlocal problems. Again there is an example of how to modify the approach
to handle the nonlocal problem of connected dominating set [5], but for example the only
known PTAS for feedback vertex set in planar graphs follows the separator approach.

5 CROSS REFERENCES

• Bidimensionality (2004; Demaine, Fomin, Hajiaghayi, Thilikos)

• Separators (1988, 1999; Leighton, Rao)

• Treewidth of Graphs (2005; Bodlaender)
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