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ABSTRACT
Embedding metrics into constant-dimensional geometric spaces,
such as the Euclidean plane, is relatively poorly understood. Moti-
vated by applications in visualization, ad-hoc networks, and molec-
ular reconstruction, we consider the natural problem of embedding
shortest-path metrics of unweighted planar graphs (planar graph
metrics) into the Euclidean plane. It is known that, in the special
case of shortest-path metrics of trees, embedding into the plane
requiresΘ(

√
n) distortion in the worst case [19, 1], and surpris-

ingly, this worst-case upper bound provides the best known ap-
proximation algorithm for minimizing distortion. We answer an
open question posed in this work and highlighted by Matoušek
[21] by proving that some planar graph metrics requireΩ(n2/3)
distortion in any embedding into the plane, proving the first separa-
tion between these two types of graph metrics. We also prove that
some planar graph metrics requireΩ(n) distortion in any crossing-
free straight-line embedding into the plane, suggesting a separation
between low-distortion plane embedding and the well-studied no-
tion of crossing-free straight-line planar drawings. Finally, on the
upper-bound side, we prove that all outerplanar graph metrics can
be embedded into the plane withO(

√
n) distortion, generalizing

the previous results on trees (both the worst-case bound and the ap-
proximation algorithm) and building techniques for handling cycles
in plane embeddings of graph metrics.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Geometrical
problems and computations

General Terms
Algorithms, Theory
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1. INTRODUCTION
Metric embedding is a mathematical study arising out of the clas-

sic field of multidimensional scaling, originally motivated by such
applications as visualization, compression, clustering, and nearest-
neighbor searching [26, 27, 16, 17], and more recently finding ap-
plications in geometric reconstruction of ad-hoc wireless sensor
networks [8, 25, 23] and molecular structure of proteins [6, 9, 13].
Roughly speaking, the goal is to embed a given metric (matrix of
pairwise distances amongn points) into a target space while min-
imizing the maximum additive or multiplicative error, calleddis-
tortion, introduced in the distances.1 Of particular interest in many
of these applications is embedding into low-dimensional geometric
spaces, typically Euclidean. For example, in visualization, the nat-
ural target spaces are 2D and 3D Euclidean space, for display on
an LCD panel or a holographic display. Similarly, in ad-hoc wire-
less sensor networks and molecule structure of proteins, 2D and 3D
Euclidean spaces are the natural spaces inhabited by these objects,
so embedding into these spaces corresponds to reconstructing the
original object.

Yet despite persistent efforts by many researchers leading to
many recent results about embedding—see, e.g., [14] for a
survey—we remain in the dark about most aspects of embedding
into low-dimensional geometric spaces. Even when the target space
is the one-dimensional line, little is known. For example, when the
given metric is the shortest-path metric of an (unweighted) tree,
the best known approximation factor for multiplicative distortion
is Õ(n1/3) (improving on theO(n1/2)-approximation for general
graphs) [5], and it is unknown whether it is possible to achieve a
factor ofno(1); see [3]. (On the other hand, additive distortion is
less interesting in this context: there is anO(1)-approximation for
embedding a general metric into the line [12].)

Even less is known about embedding into the two-dimensional
plane. For additive distortion and the Euclidean plane, the only

1More precisely, given a metricM on a point setV and a tar-
get space ofd-dimensional̀ s space, the goal is to find a map-
ping f : V → Rd to either approximately minimizeadditive
distortion maxv,w∈V | ‖f(v) − f(w)‖s − M [v, w] |, or approx-
imately minimize multiplicative distortionmaxv,w∈V ‖f(v) −
f(w)‖s/M [v, w] subject to‖f(v) − f(w)‖s ≥ M [v, w] (non-
contractiveness). (Ind-dimensional̀ s space, distances and lengths
are measured according to thès norm ‖(x1, . . . , xd)‖s =
s
p

xs
1 + · · ·+ xs

d.)



o(n)-approximation algorithm runs in pseudo-quasipolynomial
time [4]. For additive distortion and thè1 plane, there is a
polynomial-timeO(1)-approximation [2]. But for the most natural
case of multiplicative distortion, nothing beyond a trivialO(n)-
approximation is known for embedding general metrics into any
`s plane. Essentially the only result is by Babilon, Matoušek,
Maxová, and Valtr [1]: anO(

√
n)-approximation for embedding

the shortest-path metric of an (unweighted) tree into the Euclidean
plane. In fact, this approximation result comes trivially from a
worst-case bound: all such metrics can be embedded into the Eu-
clidean plane with multiplicative distortionO(

√
n) (improving on

an earlier bound by Gupta [10]), and thus such an embedding is
anO(

√
n)-approximation on the optimal multiplicative distortion.

This bound is tight in the worst case for trees (or even stars), but
can we generalize beyond trees?

One of the major open questions about embedding into the Eu-
clidean plane, posed in [21, 1] and addressed in this paper, is
whether there is a worst-case bound on distortion better thanO(n)
for shortest-path metrics of all (unweighted)planar graphs, in par-
ticular whether there is anO(

√
n) bound like trees. It has been

known for over 15 years that the shortest-path metrics of some non-
planar graphs, such asK5 with each edge subdividedn/10 times,
requires multiplicative distortionΩ(n) [19, 14]. But for shortest-
path metrics of (unweighted) planar graphs, which we callplanar
graph metrics, no worst-case lower bound better thanΩ(

√
n) is

known. One of the results of this paper is a stronger, more com-
plicated lower bound ofΩ(n2/3) for the shortest-path metrics of a
family of planar graphs called “globe graphs”. Interestingly, this
graph family has not been considered before (at least in the con-
text of embedding) and the lower-bound argument uses topological
graph theory, in contrast to the standard packing arguments in most
embedding lower bounds.

Planar graph metrics are a natural family of metrics to embed:
many structures of interest, such as communication networks and
traffic networks, are planar (or nearly planar) graphs, and low-
distortion embedding of such structures is important, e.g., for visu-
alization. There is also a wealth of knowledge aboutcrossing-free
straight-line drawingsof planar graphs into the plane, originating
with Tutte’s embedding theorem [29] and studied more recently in
the context of graph drawing (see, e.g., [28]). It is natural to con-
sider to what extent such embeddings can preserve approximate
distances as well. Another result of this paper is that, in fact,Ω(n)
distortion can be required if we restrict attention to crossing-free
straight-line embeddings of planar graph metrics, even when the
graph has bounded treewidth.

One intriguing aspect of the problem of embedding planar graph
metrics into the plane is that, in the context of embeddings, planar
graphs usually behave the same as graphs excluding any fixed mi-
nor. For example, the same upper bound ofO(

√
log n) distortion

is known for embedding into Euclidean space [24, 20], the same
upper bound ofO(1) distortion is known for embedding intò∞
space [15], and the same upper bound ofO(1) distortion is con-
jectured for embedding intò1 space [11]. (All of these bounds
require a superconstant number of dimensions.) While we prove in
this paper anΩ(n2/3) lower bound on the distortion required to em-
bed a planar graph metric into a plane, a sublinear upper bound is
still quite possible. In contrast, the subdividedK5 graph mentioned
above excludes a fixed minor (e.g.,K3,3), yet its shortest-path met-
ric requiresΩ(n) distortion when embedded into the plane. There-
fore, any sublinear upper bound on distortion for planar graph met-
rics will need substantially different techniques compared to previ-
ous approaches, which seem to apply equally well to planar graphs
and graphs excluding a fixed minor.

Toward this goal, we develop new techniques for embedding

into the plane with sublinear distortion. Specifically, we prove an
O(
√

n) upper bound on distortion for the shortest-path metrics of
(unweighted)outerplanar graphs, i.e., graphs that can be drawn
in the plane without crossings and with all vertices on the outer
face. Interestingly, this result does not take the obvious approach
of embedding the dual tree of an outerplanar graph; rather, it uses
a breadth-first-search tree. The main challenge is in handling the
cycles in the graph.

Our results. In more detail, the main results of this paper are as
follows.

On the lower-bound side, we prove that some planar graph met-
rics requireΩ(n2/3) distortion in any embedding into the plane,
and prove that some planar graph metrics requireΩ(n) distortion
in any crossing-free straight-line embedding into the plane. These
results imply that embedding planar graph metrics into the plane
with sublinear distortion is different from planar drawings of planar
graphs, suggesting that we cannot apply the well-studied tools from
that domain. In fact, ourΩ(n2/3) lower bound builds on theΩ(n)
crossing-free lower bound, extending the structure of the underly-
ing planar graph substantially to force a “planar-like” drawing. We
use topological graph theory to reason about which vertices must be
embedded “interior” to cycles in the graph, even though these cy-
cles may embed as curves with many self-crossings and crossings
of each other. To help cope with this difficulty, we use a combina-
torial approach to eliminate some of the crossings.

On the upper-bound side, we prove that every outerplanar graph
metric can be embedded into the plane withO(

√
n) distortion. In

particular, this result improves the best approximation factor for
minimum-distortion embedding of outerplanar graph metrics from
O(n) to O(

√
n), which is the only nontrivial such result for mul-

tiplicative distortion into the Euclidean plane other than trees. The
result uses the following ideas. First, we decompose the graph into
a “tree of cycles”, cutting apart faces so that they do not share
edges. We cannot use the dual tree itself: the main challenge is
to correctly handle the cycles in the graph. Second, we perform a
breadth-first search in this graph, partitioning the graph into a BFS
tree and several nontree edges. Third, we use a modification of the
O(
√

n)-distortion embedding for trees so as to embed the BFS tree
without stretching the nontree edges too much. We modify the in-
put to the algorithm, augmenting the BFS tree with extra paths in
key locations to force desired gaps in the output, and we modify the
output of the algorithm, shifting vertices to close unwanted gaps in
the output.

2. LOWER BOUND FOR PLANAR
GRAPH EMBEDDING

In this section we prove a separation between embedding trees
and embedding planar graphs into the plane. Namely, we prove
that embedding some planar graphs withn vertices into the plane
requires distortionΩ(n2/3), whereas trees can be embedded into
the plane with distortionO(n1/2). Along the way, we prove that
every crossing-free straight-line embedding of some planar graphs
with n vertices into the plane has distortionΩ(n).

Throughout this section, we use the odd-even notion of “inside”
and “outside” of self-crossing polygons. Namely, for a pointv
not on the boundary of a (potentially self-crossing) polygonP , we
count the number of times that an arbitrary half-infinite ray emanat-
ing from v properly crosses the polygonP ; we do not count when
the ray “grazes” the polygon (with the polygon locally on one side
of the ray). If this count is odd, the pointv is insidethe polygonP ;
otherwise,v is outsideP . Also, let |P | denote the number of ver-
tices of polygonP .



Figure 1. The subtended angles of an edge at a point.

LEMMA 1. For any pointv inside a (potentially self-crossing)
polygonP in the plane, if the distance fromv to every vertex ofP
is at leastr, then there is an edge ofP of lengthΩ(r/|P |).

Proof: Let u1, u2, . . . , u|P | be the vertices ofP in counterclock-
wise order. For each edge ofP , we consider the absolutesub-
tended angleof this edge atv, as shown in Figure 1. In any poly-
gon, these subtended angles sum to at least360◦ (larger because
of taking absolute values, and if the winding number ofP is larger
than1). Thus, at least one edge(ui, ui+1) has subtended angle at
least360◦/|P | (and at most180◦ by definition). Considering the
trianglev, ui, ui+1, because‖ui − v‖ and‖ui+1 − v‖ are both at
leastr, ‖ui − ui+1‖ is Ω(r/|P |). 2

Our result about crossing-free straight-line planar embeddings is
based on graphs that inspire our main result later on.

THEOREM 2. There are planar graphs where every crossing-
free straight-line embedding into the plane has distortionΩ(n).

Proof: Consider the graphG obtained by starting withK4 and
attaching a path of lengthn to each vertex ofK4. Any crossing-
free straight-line embedding ofG in particular embedsK4 with-
out crossings, which implies that one vertexv of K4 is inside the
cycleC connecting the other three vertices ofK4. (This fact fol-
lows because all outerplanar graphs excludeK4 as a minor.) Any
crossing-free straight-line embedding ofG must therefore place the
path attached tov completely insideC. Let u denote the endpoint
of this path (other thanv). The graph distance fromu to every
vertex ofC is at leastn, so in any expansive embedding ofG, the
Euclidean distance betweenu and every vertex ofC is at leastn.
By Lemma 1 withP = C, an edge ofC (which is an edge ofK4)
has lengthΩ(n/|C|) = Ω(n). Therefore, the distortion of any
crossing-free straight-line embedding ofG is Ω(n). 2

Our main result is based on theglobe graph, defined as follows;
see Figure 2. On a sphere (the globe), drawn1/3 longitude and
n1/3 latitude lines. These lines define a preliminary graph, whose
vertices are the intersections of the lines (including the two poles)
and whose edges are portions of the lines. We subdivide each of
these edges into a path ofn1/3 edges. We attach a path of lengthn
to each of the two polesvN andvS , and to each of two antipodal
pointsvW andvE on the equator. The resulting globe graphGn is
planar and hasΘ(n) vertices.

In the spherical embedding of the globe graph shown in Figure 2,
each face is called acountry.2 Thus each country is a cycle of
lengthΘ(n1/3).

The four verticesvN , vS , vW , andvE , together with the three
longitudes at0◦ and±90◦ and the rear half of the equator, define
a subdividedK4 as a subgraph ofGn. This subgraph is shown in

2We use the term “country” instead of “face” in order to refer to the
same cycles when considering not-necessarily-planar embeddings
of the globe graph.

n
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Figure 2. The globe graph Gn.

Figure 2 with heavy edges. The distance between any two vertices
in the subdividedK4 is within a constant factor of the distance
between those vertices in the globe graphGn.

LEMMA 3. If two graph edges cross in a straight-line embed-
ding of a graph into the plane, and the graph distance between
each endpoint of the first edge and each endpoint of the second
edge (four pairs) is at leasts, then the distortion of the embedding
is Ω(s).

Proof: Consider the quadrilateral formed by the endpoints of the
two edges. In any expansive embedding of the graph into the plane,
the Euclidean length of each side of the quadrilateral is at leasts
(the graph distance between the two edge endpoints). By the trian-
gle inequality, at least one diagonal of the quadrilateral (i.e., one of
the two edges) also has Euclidean length at leasts. Therefore, the
distortion of any such embedding isΩ(s). 2

LEMMA 4. Any o(n2/3)-distortion straight-line embedding of
the subdividedK4 into the plane puts one vertex ofK4 inside the
cycle (polygon) connecting the other three vertices ofK4.

Proof: Call a vertex ofK4 goodif it is inside the cycle connecting
the other three vertices ofK4. If the straight-line embedding of the
subdividedK4 is crossing-free, then there must be a good vertex as
in the proof of Theorem 2. Otherwise, we modify the embedding
into an embedding ofK4, drawing each edge as a curve, in such a
way that eliminates all crossings while preserving the parity of the
number of good vertices ofK4. Thus, if there is an odd number of
good vertices in the new embedding, then there was a good vertex
in the original embedding too.

Throughout the modification of the embedding, we maintain a
labelingof some portions of these curves. Namely, in the original
embedding, we label every edge of the subdividedK4 whose end-
points are within distance1

3
n2/3 of vertexvd, d ∈ {N, S, E, W},

with labeld. (Every point has at most one label.) As we modify
the embedding ofK4, every point of a curve that remains in the
embedding keeps the same label that we originally assigned it.

This labeling has several properties with respect to the original
straight-line embedding, and as we shall see, with respect to the
modified embeddings we create. First, for any pointx labeleda
along the curve representing an edge{va, vb} of K4, the subcurve
from va to x is entirely labeleda. Second, for any three distinct
verticesva, vb, vc of K4, the edge{va, vb} embeds to a curve that
does not cross any portion of a curve labeledc. Third, two non-
incident edges ofK4 cannot cross. Fourth, two incident edges of



K4 sharing an endpointva can intersect only along the portions
labeleda. The last three properties use Lemma 3, which tells us
that, in the original straight-line embedding of the subdividedK4

with distortiono(n2/3), two endpoints of two crossing edges must
have graph distanceo(n2/3). Because we only remove portions of
curves and/or change curves locally around removed crossings, we
maintain all four of these properties as invariants of the modified
embedding.

Whenever an edge ofK4, say{vN , vS}, is embedded as a self-
crossing curve, we remove a self-crossing as follows. Consider
starting from one endpointvN of the curve and following the curve
until reaching a pointq that has already been visited. Thusq de-
composes the curve into three pieces: a curve fromvN toq, a closed
curve starting and ending atq, and a curve fromq to vS . We re-
move the closed curve from the embedding ofK4. This removal
affects only the embedding of the edge{vN , vS} of K4, which
is not involved in the definition of whethervN or vS is good, so
the goodness ofvN andvS is preserved. On the other hand, the
nonincident edge{vW , vE} of K4 cannot cross the edge{vN , vS}
(before or after the removal), sovW is inside the removed closed
curve if and only ifvE is inside the removed closed curve. Thus,
the goodness ofvW andvE either both remain the same or both
change as a result of the removal. Hence, the removal preserves the
parity of the number of good vertices ofK4.

Whenever the edges ofK4 do not have self-intersections (i.e.,
the previous modification has been applied fully), yet two (inci-
dent) edges, say{vN , vS} and {vN , vW }, embed to curves that
cross each other at a pointx, then we remove the crossing as fol-
lows; see Figure 4. The pointx divides the edge{vN , vS} into
two curves, one of which connectsvN to x. Similarly, the edge
{vN , vW } gives us a curve fromvN to x. We swap these two
curves fromvN to x, switching the identity of to which edge each
curve belongs. This change affects the embedding of only these
two edges, which are not involved in the definition of whethervN

is good, so the goodness ofvN is preserved. Also, because we did
not remove any portions of curves connectingvN , vS , andvW from
the embedding—we only changed how they were connected—we
preserve the number of crossings with a ray emanating fromvE ,
and thus we preserve its parity and whethervE is good. Finally,
we claim that the goodness ofvS andvW either both change or
both stay the same. By our invariants, the pointx is labeledN on
both curves fromvN to x, and therefore the entire curves fromvN

to x are labeledN . Therefore, the edge{vS , vW } must embed to a
curve that does not cross either of these curves, sovS andvW must
both be either inside or outside of the closed curve formed by the
two curves fromvN to x. In the former case, the goodness ofvS

andvW both change, and in the latter case, they both stay the same.
By repeatedly applying each of the two rules above for removing

crossings, giving preference to the removal of self-crossings, we
eventually remove all crossings in the embedding ofK4. Removing
a crossing between two different edges ofK4 can introduce new
self-crossings, but every operation decreases the total number of
crossings, so the process terminates. As we have argued, the parity
of the number of good vertices ofK4 has remained the same, any
crossing-free straight-line embedding has a good vertex, and thus
we obtain the desired good vertex in the original embedding.2

By symmetry, assume that vertexvN is embedded inside the cy-
cle (polygon)C in the subdividedK4 connectingvS , vW , vE . Let
u denote the endpoint of the path attached tovN (other thanvN

itself). By Lemma 3,u must also be inside the cycle connecting
vS , vW , vE in any o(n2/3)-distortion embedding, because every
edge of the chain attached tovN has distanceΩ(n2/3) to every
edge of the cycle.

(a) Before (b) After

Figure 3. Eliminating self-intersections. Bold lines indicate a
hypothetical labeling of part of the curve.

vN

(a) Before

vN

(b) After

Figure 4. Eliminating edge intersections. Bold lines indicate
portions of the curve labeled vN .

LEMMA 5. In any o(n2/3)-distortion embedding of the globe
graph, the endpointu is embedded inside a country of the globe
graph.

Proof: If we draw the globe graph on a sphere as in Figure 2, then
the cycleC divides the sphere into two regions: inside and outside.
We define theinside regionto be the region containingvN , which is
roughly three quarters of the sphere; theoutside regionis the other
region, the back lower quarter of the sphere. We define aninside
countryto be a country (face) of the globe graph that is within the
inside region (viewed on the sphere). An edge of an inside country
is boundaryif it is an edge of the cycleC.

By the definition ofu being insideC, a half-infinite ray emanat-
ing from u properly crossesC an odd number of times. LetS de-
note the sum, over all inside countries, of the number of times that
the ray properly crosses that country in the embedding. This sum
decomposes into two parts: the number of crossed boundary edges
of inside countries and the number of crossed nonboundary edges
of inside countries. Every crossed nonboundary edge is shared by
exactly two inside countries and therefore is counted exactly twice
in the sumS. Hence, the parity ofS is the same as the parity of the
number of crossed nonboundary edges (i.e., crossed edges ofC),
which we know to be odd. Thus, at least one term in the sumS is
odd, i.e., at least one inside country is crossed an odd number of
times by the ray. Therefore,u is embedded inside this country.2

THEOREM 6. Every embedding of the globe graph into the
plane has distortionΩ(n2/3).

Proof: If there were an embedding with distortiono(n2/3), then
by Lemma 5, the endpointu of one of the attached paths would be
embedded inside a country of the globe graph. The distance ofu to
the vertices of the country is at leastn, while the country is a cycle
of Θ(n1/3) vertices. By Lemma 1, the distortion of the embedding
must beΩ(n2/3), a contradiction. 2

The same result as Theorem 6 can be proved with a mathemat-
ically more natural graph instead of the cartographically natural
globe graph. Namely, take a tetrahedron and repeatedly refine each
triangle into four subtriangles until each edge of the tetrahedron is
refined intoΘ(n1/3) edges. Then we refine each edge further into
a path ofn1/3 edges, and attach a path of lengthn to each corner
of the tetrahedron.



3. OUTERPLANAR EMBEDDING
In this section, we give an algorithm for embedding outerplanar

graph metrics into the plane withO(
√

n) distortion. Our algorithm
consists of five main steps:

1. Modify the graph so that no two faces3 share an edge, and
so that the number of vertices of every face is congruent to1
modulo4, at the expense ofO(1) distortion.

2. Build the BFS tree rooted at an arbitrary vertexr, conceptu-
ally removing thenontree edges.

3. Add extra “branches” (paths) in between subtrees of the tree
in order to change the shape of the embedding of the BFS tree
(to come in Step 4) to have a desired horizontal gap between
the two subtrees.

4. Embed the resulting tree using Babilon et al.’s tree embed-
ding algorithm.

5. Shift the upper half of the left side of each face to the right to
compensate (if needed) for the nontree edges’ improvements
to shortest paths.

Step 1.We begin with the transformation of the graph into a “tree
of cycles”:

LEMMA 7. Given an outerplanar graphG, we can compute an
outerplanar graphG′ such thatV (G′) ⊇ V (G), no two faces of
G′ share an edge, the number of vertices on every face ofG′ is
congruent to1 modulo4, and any embedding of the shortest-path
metric ofG′ into the plane induces an embedding of the shortest-
path metric ofG with an extra multiplicative factor ofO(1) in dis-
tortion. Also,G′ hasO(n) vertices.

Proof: To satisfy the distortion constraint, it suffices to construct
a suitable graphG′ such that, for any two verticesu, v of G, the
shortest-path distance betweenu andv in G′ is within a factor of
O(1) of their distance inG. The dual ofG is a forest consisting
of one tree for every biconnected component ofG. It suffices to
consider each biconnected component separately, and then glue the
modified components together at the vertices with common labels.

The modification of a biconnected component proceeds recur-
sively. To initialize, we sete to any edge ofG incident to only one
face, and we color the edgee and its endpoints red. In general, we
proceed as follows. Letf be the unique face incident toe. For each
edgee′ 6= e of facef , we double the edgee′ and duplicate one of
its nonred endpoints as in Figure 5. Becausee′ 6= e, at least one
of the endpointsu of e′ is different from the red endpoints ofe; we
split u into two vertices, one with the same labelu, and the other
with duplicate labelu′. We color each of the duplicated edges and
their endpoints red. Afterward, we conceptually remove the facef ,
and we recurse in each component that has more than one face.
Note that, inductively, each component has exactly one red edge,
incident to exactly one face.

Because every duplicated vertex is immediately colored red, and
no red vertices are duplicated, the number of vertices in the result-
ing graphG′ is O(n). Also, the shortest-path distance between
any vertexu of G and its duplicateu′ is exactly2 in G′. Thus,
any shortest path inG′ between distinct vertices inG is at most a
constant factor longer than the shortest path inG, so we obtain the
desired distortion bound.

Finally, we can modifyG′ to guarantee that every face has length
congruent to1 modulo4. For each face inG′ of length congruent
3Throughout this section we use the term “face” to refer to bounded
faces only, excluding the outside face.

vu

(a) Before

vu

u′

(b) After

Figure 5. Eliminating edge neighborings.

to j 6= 1 modulo4, 2 ≤ j ≤ 4, we subdivide one of the edges into
a path of6 − j edges. Now every face has length congruent to1
modulo4. Each edge is subdividedO(1) times, so the total length
of any path, and the size of the whole graph, increases by at most a
constant factor. 2

From now on, we work onG′ instead ofG. We fix a combi-
natorial outerplanar embedding ofG′, so that cycles correspond to
faces.

Step 2.Next we compute a breadth-first search (BFS) tree ofG′

(in the primal). For simplicity, we assign the root of the breadth-
first search to be a degree-2 vertex ofG′. We view this root vertex
as being at the bottom of the embedding. Define theheight of a
vertex to be its level in the BFS tree, i.e., its tree distance to the root.
We view they coordinates of the embedding as being proportional
to height; together with the combinatorial planar embedding ofG′,
this view defines a notion of “left” and “right” between vertices at
the same height. See Figure 6.

The BFS tree decomposes the edges ofG′ into tree edgesand
nontree edges. Each nontree edge completes a face of the outerpla-
nar graphG′ together with only tree edges, because the faces ofG′

are the 2-connected components ofG′. Indeed, there is exactly one
nontree edge per facef . Because faces ofG′ have odd length by
Lemma 7, the endpoints of the nontree edge off have equal height,
namely, the maximum height among all vertices on the facef . In
Figure 6, we draw the nontree edge as an apex at the top of each
face. On the other hand, thebase vertexof a face is the vertex of
minimum height, which is where the breadth-first search first en-
ters the face. The base vertex and the nontree edge divide the tree
edges of the face into aleft sideand aright side, of equal size, each
starting at the base vertex and ending at an endpoint of the nontree
edge. We consider the base vertex to belong to both the left and
right sides unless specified otherwise.

At the end, the endpoints of each nontree edge will need to be
brought closer together. Intuitively, no vertex is pulled in two di-
rections by two different nontree edges: every vertex is incident to
at most one nontree edge, because a vertex is the base of all but at
most one incident face, and the endpoints of the nontree edge of a
face have strictly larger height than the base of the face.

Step 3.We now define a further modificationG′′ of the graph.
The modification is based on attaching new child paths, calledextra
branches, of certain lengths to certain nodes of the BFS tree. Extra
branches are always added in pairs, and each pair of extra branches
is effectively treated as a unit. There are three types of pairs of extra
branches that we add.

Extra branches of the first and second types are created as fol-
lows. For each vertexu with k ≥ 2 children in the BFS tree, we
attachk − 1 pairs of extra branches, one pair between every two
consecutive children ofu in the BFS tree. We first try attaching
the pair of branches atu, and embedding the branches to enter the
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Figure 6. The graph G′′ with extra branches.

region between the two children. However, if this would cause the
branches to enter a facef of the graphG′, then we instead attach
the two branches at the two endpoints of the nontree edge off , one
branch at each endpoint, embedded between any children of the two
endpoints. Branches attached tou are of thefirst type; branches at-
tached to the nontree edge off are of thesecond type. In either
case, theorigin of each branch is the vertexu (even though the
branch may not be attached tou).

Next we define theheightof the extra branches of the first and
second types, i.e., the height of the top vertex of each such branch.
Initially, we set all of the heights to ben; then we trim some of the
branches in order to guarantee that the number of vertices inG′′

is only a constant factor larger than the number of vertices inG′.
We also try to preserve the property that there is at least one extra
vertex between any two nonextra vertices at the same height not
belonging to the same face. The trimming algorithm proceeds as
follows: while there are two horizontally adjacent extra vertices of
the same type, but not from the same pair of extra branches, remove
the extra vertex that originates from a higher vertex, breaking ties
according to horizontal order with left having highest priority. Note
that extra branches of the second type are given priority according
to the height of their origin at the bottom of the face, not the height
of the endpoints of the nontree edge.

We add pairs of extra branches of the third type wherever a ver-
tex u is on the left side of a facef (excluding the base vertex) and
has at least one child strictly left off . In this case, we attach a
pair of extra branches tou in between the facef and the children
of u strictly left of f . The height of these branches is defined to
be the minimum of two heights: (1) the maximum height among
descendants of the children ofu strictly left of f , and (2) the maxi-
mum height among vertices strictly right off that are descendants
of vertices on the right half of the facef . One vertex may have
attached to it pairs of extra branches of multiple types; in this case,
we arbitrarily assign the left-to-right ordering of the pairs in the
combinatorial embedding. (In fact, we could also simply remove
the shorter pairs of extra branches.)

Figure 6 shows an example with six faces. The extra branches af-
ter trimming are drawn as dashed lines; the dotted extensions show
the original branches of the first type before trimming. For instance,
there are two pairs of extra branches originating from the junction
betweenf1 andf3. As drawn, the left extra branch is of the third
type, and the right extra branch is of the first type (and has been
trimmed).

The extra branches preserve many aspects of the graph. We never
add a branch inside a face, so the faces are preserved. The extra
branches do not change the distances between vertices inG′. Fur-
thermore, the resulting graphG′′ is not much larger thanG′:

LEMMA 8. The graphG′′ with extra branches has sizeO(n).

Proof: We prove that the number of extra vertices is linear sep-
arately for each type. For extra branches of the first or second
type separately, if we remove one branch from each pair of ex-
tra branches, then by the definition of trimming, each extra vertex
is either the leftmost at its height or it has a unique nonextra ver-
tex immediately to its left. Thus we can charge the two vertices
from a pair of extra branches either to the height or to the unique
nonextra vertex. For extra branches of the third type, if we re-
move one branch from each pair of extra branches, then we claim
that each extra vertex has a unique nonextra vertex immediately
to its left. This claim follows from the definition of the height of
an extra branch of the third type: any potentially conflicting hori-
zontally adjacent branches of the third type must be above one of
the two heights whose minimum we take. Thus we can charge to
the nonextra vertex. Because the maximum height and the num-
ber of nonextra vertices isO(n), the total number of extra vertices
is O(n). 2

Step 4.We apply the Babilon et al. tree embedding algorithm [1]
to the BFS tree of the graphG′′ (i.e., the BFS tree ofG′ augmented
with the extra branches). Intuitively, the algorithm assigns an angu-
lar wedge to each subtree proportionally according to the number
of vertices in the subtree, and assignsy coordinates according to the
height of each node plus a complicated perturbation. In particular,
the algorithm preserves the specified combinatorial embedding of
the BFS tree ofG′′. Precisely, the algorithm assigns to each vertex
v the coordinates(x′(v), y(v)) as follows:

y(v) = 2
√

n h(v) + [`(v)mod
√

n],

x′(v) =
k(v)√

n
.

The functionsh(v), `(v), andk(v) are defined as follows. First,
h(v) denotes the height ofv. Let πv denote the BFS path from
the root tov, i.e., the path of ancestors ofv. These paths define
a partial order on the vertices:u ≺ v if u /∈ πv, v /∈ πu, and
πu goes to the left ofπv at the vertex at whichπu andπv branch.
Now `(v) denotes the number of predecessors ofv in this partial
order: `(v) = |{u ∈ V | u ≺ v}|. Definesgnv(u) to be0 if
u ∈ πv or v ∈ πu, +1 if u ≺ v, and−1 if v ≺ u. Let av(u)
denote the tree distance fromv to the nearest common ancestor
of u andv, i.e., the vertex at whichπu andπv branch. Finally,
k(v) =

P
u∈V sgnv(u)av(u).

THEOREM 9. [1, Theorem 1] Babilon et al.’s tree embedding
(x′(v), y(v)) embeds the BFS tree withO(

√
n) distortion: for a

constantc0 > 0, the Euclidean distance between any two vertices
is between (a)c0 times their tree distance and (b)O(

√
n) times

their tree distance.

Before we describe our modifications to this embedding, we
prove a basic fact about it:

LEMMA 10. In Babilon et al.’s tree embedding algorithm, the
difference inx coordinates between two vertices of the same height
is no less than the difference inx between their parents.

Proof: Suppose two verticesw andz have the same height. As-
sume by symmetry thatw is to the left ofz. Let p be w’s par-
ent and letq be z’s parent. Assume thatp 6= q; otherwise,



x′(q) − x′(p) = 0 and the lemma follows trivially. Thus,p is
to the left of q. Let g(v) =

P
u∈V sgnv(u) be the number of

vertices tov’s left minus the number of vertices tov’s right. Let
c(v) = |{u | v ∈ πu}| be the number of descendants ofv (includ-
ing v itself).

We analyze the difference inx coordinates betweenw and its
parentp, i.e., x′(w) − x′(p) = (k(w) − k(p))/

√
n. It suffices

to consider the differencek(w)− k(p), ignoring the factor of
√

n.
By the definition ofk(v), there are two ways in whichk(p) dif-
fers from k(w). First, for every vertexu with sgnp(u) 6= 0,
ap(u) = aw(u) − 1, for an overall decrease in the summation
by g(w). Second, thec(p)− c(w) descendants ofp that are not de-
scendants ofw are no longer counted in the summation; each such
descendantu has lowest common ancestorp with w, soaw(u) = 1,
leading to a contribution of±1 to the summation. Therefore, we
have the following bound on the differencek(w)− k(p):

g(p)− c(p) ≤ k(w)− k(p) ≤ g(p) + c(p). (1)

By symmetry, we obtain the following bound on the difference
k(z)− k(q):

g(q)− c(q) ≤ k(z)− k(q) ≤ g(q) + c(q).

Summing the upper bound onk(w)−k(p) and the lower bound on
k(z)− k(q), we obtain

k(q)− k(p) ≤ k(z)− k(w) + g(p)− g(q) + c(p) + c(q).

We claim thatg(p)−g(q)+c(p)+c(q) ≤ 0, i.e.,g(q)−g(p) ≥
c(p)+c(q), and thus this term can be discarded from the inequality.
By the definition ofg and becausep is left of q, g(q)− g(p) counts
the number of vertices that are horizontally in betweenp and q
(right of p and left ofq), plus the number of descendants ofp and
of q. The number of these descendants isc(p) + c(q).

Therefore,x′(q) − x′(p) = (k(q) − k(p))/
√

n ≤ (k(z) −
k(w))/

√
n = x′(z)− x′(w). 2

Step 5.Because of nontree edges, shortest paths in the BFS tree
may be much larger than inG′′. To compensate for the lack of
nontree edges in tree embedding algorithm, we “shift” part of each
face. Intuitively, the tree embedding algorithm pushes apart the two
sides to match the shortest paths in the BFS tree between the ver-
tices of the sides. On the other hand, the existence of the nontree
edge between its endpoints decreases the shortest path between the
vertices in the upper half of the two sides, so much that the end-
points have distance1 from each other. Roughly speaking, if the
endpoints of the nontree edge of a face are farther thanc1

√
n, for

a suitable constantc1, we shift the upper half of the left side to the
right, so that the endpoints have distanceΘ(

√
n) at the end.

More precisely, we put a shift values(u) on any vertexu in the
upper half of the left side of a facef . Thus, the distance fromu
to the base vertex off is at leastb|f |/4c where|f | is the number
of vertices on facef . (The facef is well-defined because a vertex
u can be in the upper left part of at most one face.) Letv denote
the vertex on the right side off with the same height asu, and let
p andq be the parents ofu andv, respectively. Letg andt be the
vertices midway along the left and right sides, respectively, of the
facef (of distance exactlyb|f |/4c from the base vertex off ). If
x′(t)− x′(g) ≤ c1

√
n, we defines(u) = 0. Otherwise, we define

s(u) = [x′(p)−x′(u)]−[x′(q)−x′(v)]+
x′(t)− x′(g)− c1

√
n

b|f |/4c .

wherex′(v) is thex coordinate assigned tov by Babilon et al.’s al-
gorithm as defined above. Note that, by Lemma 10,x′(p)−x′(u)+
x′(v)− x′(q) ≥ 0, and thuss(u) ≥ 0. For any vertexu that is not
on the upper half of the left side of any face, we defines(u) = 0.

The shift values(u) applies tou and all of its descendants.
Therefore, our formula for the embedding is as follows:

y(v) = 2
√

n h(v) + [`(v)mod
√

n],

x(v) =
k(v)√

n
+

X
u∈πv

s(u).

In other words, we first make the upper half of the left side of the
face roughly parallel to the upper half of the right side of the face,
and then slant the left side of the upper half of the face to the right
by having a linear growth in shift amount as we proceed up the left
side.

LEMMA 11. For every vertexu, s(u) = O(
√

n).

Proof: Applying (1) with w = u, we obtain that|k(u) − k(p)| =
O(n). Thus,x′(p) − x′(u) = (k(u) − k(p))/

√
n = O(

√
n),

and similarly,x′(v) − x′(q) = O(
√

n). Because the distance
in the BFS tree betweeng and t is less than|f |, and by The-
orem 9(b), we have|x′(g) − x′(t)| = O(|f |

√
n). Therefore,

|x′(g)−x′(h)|−c1
√

n
b|f |/4c = O(

√
n), so by summing all terms, we ob-

tain thats(u) = O(
√

n). 2

Distortion analysis.We prove that the distortion of our em-
bedding isO(

√
n) in two parts: the least any distance is contracted

is Ω(1), and the most any distance is expanded isO(
√

n).

LEMMA 12. The shifting process preserves the horizontal or-
dering of vertices with the same height. Furthermore, two vertices
of the same height that got closer during the shifting process remain
at a horizontal distance of at leastc1

√
n.

Proof: Suppose thatu andv are at the same height and thatu is
to the left ofv in the tree. Letp be the nearest ancestor ofu with
positive shift values(p), and letf be the face causing the shift. Let
q be the ancestor ofv at the same height asp. Assume thatp 6= q,
because otherwiseu is not shifted relative top and any shifting of
v only separatesu andv, so there is nothing to prove. Thus,p is
strictly to the left ofq. Let r be the vertex on the right side of face
f with the same height asp andq. Thus,r is strictly right ofp and
(nonstrictly) left ofq in the tree.

We claim that, after shifting,p is to the left ofr by a horizontal
distance of at leastc1

√
n. Let d denote the graph distance between

p andr in G′′, and suppose thatg andt are the vertices midway
along the left and right sides, respectively, of the facef . Because
this face was shifted,x′(t)− x′(g) > c1

√
n. Thus,

x(r)− x(p)

= x′(r)− x′(p)−
X

r∈f∩πp

s(r)

= x′(r)− x′(p)− [x′(g)− x′(p)] + [x′(t)− x′(r)]

−
X

r∈f∩πp

x′(t)− x′(g)− c1
√

n

b|f |/4c

= x′(t)− x′(g)− (b|f |/4c − d/2)
x′(t)− x′(g)− c1

√
n

b|f |/4c

=

»
1−

b|f |/4c − d/2

b|f |/4c

–
[x′(t)− x′(g)] +

b|f |/4c − d/2

b|f |/4c
c1
√

n

=
d/2

b|f |/4c
[x′(t)− x′(g)] +

„
1−

d/2

b|f |/4c

«
c1
√

n

≥
d/2

b|f |/4c
c1
√

n +

„
1−

d/2

b|f |/4c

«
c1
√

n

= c1
√

n.



Observe thatr either has a strictly smaller height thanu, or it is
to the right ofp = u. Thus, we can apply induction to the vertices
r andq to conclude thatr remains to the left ofq after shifting.
Hence,p remains to the left ofq (in addition tor) by a horizontal
distance of at leastc1

√
n. By repeated application of Lemma 10,

x′(v) − x′(u) ≥ x′(q) − x′(p). Becauseu is shifted the same
amount asp andv is shifted at least as much asq, x(v) − x(u) ≥
x(q) − x(p), which is at leastc1

√
n. Therefore,u remains to the

left of v by a horizontal distance of at leastc1
√

n. 2

LEMMA 13. For sufficiently largec1, the Euclidean distance
between two nonextra vertices of the same height is at least a con-
stant factor times their graph distance.

Proof: Consider any two nonextra verticesu andv of the same
height, and assume by symmetry thatu is to the left ofv. (By
Lemma 12, the notion of “left” is the same before and after shift-
ing.) Assume without loss of generality thatu got closer tov dur-
ing the shifting process; otherwise, the lemma follows from Theo-
rem 9(a).

If u andv are on a common facef , then they are in the upper
half of a face that was shifted. Letd denote the graph distance
betweenu andv in G′′, and suppose thatg andt are the vertices
midway along the left and right sides, respectively, of the facef .
By Theorem 9(a), the Euclidean distance betweeng and t in the
tree embedding is at leastc0b|f |/2c. Furthermore, their vertical
distance|y(g) − y(t)| is at most

√
n, and because this face was

shifted, by Lemma 12, their horizontal distancex′(t) − x′(g) is
at leastc1

√
n. Therefore,x′(t) − x′(g) ≥ (c1 − 1)c0b|f |/2c.

Now we can prove thatx(v)− x(u) = Ω(d) and therefore that the
Euclidean distance betweenu andv in our embedding isΩ(d):

x(v)− x(u) = x′(v)− x′(u)−
X

r∈f∩πu

s(r)

= x′(v)− x′(u)− [x′(g)− x′(u)] + [x′(t)− x′(v)]

−
X

r∈f∩πu

x′(t)− x′(g)− c1
√

n

b|f |/4c

= x′(t)− x′(g)−
X

r∈f∩πu

x′(t)− x′(g)− c1
√

n

b|f |/4c

≥ x′(t)− x′(g)−
X

r∈f∩πu

x′(t)− x′(g)

b|f |/4c

=

»
1−

b|f |/4c − d/2

b|f |/4c

–
[x′(t)− x′(g)]

=
d/2

b|f |/4c
[x′(t)− x′(g)]

≥
d/2

b|f |/4c
(c1 − 1)c0b|f |/2c

= (c1 − 1)c0d,

which isΩ(d) for sufficiently largec1.
Now we prove the claim whenu andv are not on a common

facef . Let p be the nearest common anscestor ofu andv. We
distinguish two cases. In Case 1,p is the base vertex of a facef
such that the children ofp that are ancestors ofu andv are precisely
the two children on the left and right sides, respectively, off . In
Case 2, there is no such facef .

Case 2 is the easier case. Because the children ofp that are an-
cestors ofu andv are not on the two sides of any face, there is a pair
of extra branches of the first type attached top in betweenu andv.
Take the leftmost such pair of extra branches (which survives the
longest). The height of these branches is at leasth(u) = h(v) be-
cause this pair of branches is the dominant pair (in terms of priority)

among ancestors ofp in betweenu andv. Let w be a vertex in this
pair of branches at the same height asu andv. By Theorem 9(a), in
the tree embedding, the Euclidean distance betweenw andv is at
leastc0 times their tree distance, which equals their graph distance
(because the tree is a BFS tree andw is on its own path from the
nearest common ancestorp), which equals the graph distance from
u to v (because the extra branches provide a separation betweenu
andv). Becausew is not shifted relative top, and any shifting of
v relative top bringsw andv farther apart, shifting preserves this
property that the Euclidean distance betweenw andv is at leastc0

times the graph distance fromu to v. By Lemma 12,u is to the left
of w and thus the horizontal distance betweenu andv is at least the
horizontal distance betweenw andv. Hence the Euclidean distance
betweenu andv is at least the Euclidean distance betweenw andv
minus2

√
n (to account for possible vertical variations), which is

at leastc0 times the graph distance fromu to v minus2
√

n. By
Lemma 12, becauseu shifted towardv, their horizontal distance
is also at leastc1

√
n. By settingc1 large enough, we obtain that

the Euclidean distance betweenu andv is at least a constant factor
times the graph distance fromu to v.

Now we consider Case 1. Letq be the highest vertex (on the
left side) of the facef that is an ancestor ofu. Because we are
in Case 1,q 6= p, so there is a pair of extra branches of the third
type attached toq. By construction of the height of branches of the
third type, the height of these branches is at leasth(u) = h(v).
Let r be a vertex in this pair of branches that has the same height
asu. We distinguish two subcases according to whether the highest
vertex of f is strictly lower thanu. In each subcase, we argue
that |x(r) − x(v)| = Ω(µrv) − O(

√
n) whereµrv denotes the

graph distance betweenr andv. The construction of the branches
ensures thatµrv = µuv. By Lemma 12,r is betweenu andv,
so |x(u) − x(v)| ≥ |x(r) − x(v)|. Thus we can conclude that
|x(u) − x(v)| = Ω(µrv) − O(

√
n) = Ω(µuv) − O(

√
n). As

argued above,|x(u) − x(v)| ≥ c1
√

n. Therefore, for sufficiently
largec1, we obtain that|x(u)− x(v)| = Ω(µuv) as desired.

In the first subcase, the highest vertex off is not strictly lower
thanu (intuitively, the line segment connectingr andv crosses the
face f ). Let w and z be the vertices on the left and right side,
respectively, off with the same height asu andv. Then we have

|x(u)− x(v)| ≥ |x(r)− x(w)|+ |x(w)− x(z)|+ |x(z)− x(v)|
≥ Ω(µrw + µwz + µzv)−O(

√
n)

≥ Ω(µrv)−O(
√

n).

The first inequality follows from the horizontal ordering given by
Lemma 12. The second inequality follows from Theorem 9(a); be-
causer does not shift relative toq, andw shifting relative toq could
only increase|x(r)−x(w)|; by the proof above for the case of two
vertices on the same face; and because similarlyz andv can shift
only apart from each other. The third inequality follows from the
triangle inequality.

In the second subcase, the highest vertex off is strictly lower
thanu. Consider the pair of extra branches of the second type at-
tached to the endpoints of the nontree edge off . As usual, these
branches have height at leasth(u) = h(v) because this is a dom-
inant pair of branches (in terms of priority) among ancestors ofp
in betweenu andv. (Thus, intuitively, the line segment connect-
ing r andv crosses the extra branches attached to the nontree edge
of f .) Let w andz be the vertices of the left and right branches
in the pair, respectively, with the same height asu. Similar to the
previous subcase, we have

|x(u)− x(v)| ≥ |x(r)− x(w)|+ |x(z)− x(v)|
≥ Ω(µrw + µzv)−O(

√
n)

≥ Ω(µrw + µwv)−O(
√

n)

≥ Ω(µrv)−O(
√

n).



The first, second, and fourth inequalities follow as in the previous
subcase. The third inequality follows because, by the construction
of extra branches,|µzv − µwv| ≤ 1. 2

LEMMA 14. For sufficiently large constantsc1 andc2, two ver-
tices at different heights with graph distance at leastc2

√
n have

Euclidean distance at least a constant factor times their graph dis-
tance.

Proof: Suppose that verticesu andv have graph distance at least
c2
√

n. If the height difference betweenu andv is Ω(
√

n), then the
difference iny coordinates isΩ(n), which is enough for any graph
distance. Therefore, we can assume that|h(u)− h(v)| ≤ ε

√
n for

any constantε > 0. Assume by symmetry thath(u) < h(v). Let
w be the ancestor ofv at the same height atu.

We claim that the descendants ofw (in particular,v) embed to lie
within a cone with apex atv and whose sides are withinθ of vertical
for a constantθ < 90◦. This claim is true in the original Babilon
et al. embedding: the overall cone for the root node has a vertical
axis and angle of at most45◦ from this axis, and all subtree cones
are contained in the original. Now we bound the effect of the shift-
ing process. Consider any two adjacent vertices in the graph with
heights differing by1. Their vertical distance isΘ(

√
n), so by the

45◦ cone property of the original tree embedding, their horizontal
distance in the original tree embedding isO(

√
n). Also, by Lemma

11, every shift value isO(
√

n). Thus, their horizontal distance in
our embedding isO(

√
n), at most a constant factor times the verti-

cal distance. Because this holds for all edges of the graph that span
adjacent heights, the entire subtree ofw’s descendants must lie in a
cone with a constant lower bound on the absolute slope of the two
sides.

Becausew is an ancestor ofv in the BFS tree, the lengthµvw of
the shortest path fromv to w is h(v)−h(w), which we assumed to
be at mostε

√
n. By the triangle inequality,µuv ≤ µuw +µvw. The

left-hand side is large—µuv ≥ c2
√

n—yet the second term on the
right-hand side is small—µvw ≤ ε

√
n. Thus,µuw ≥ (1−ε)µuv ≥

(1− ε)c2
√

n.
By Lemma 13, the Euclidean distance betweenu and w is

Ω(µuw), and we have just shown thatµuw ≥ (1 − ε)c2
√

n. By
construction, the difference iny coordinates betweenu andw is at
most

√
n. Thus, by choosingc2 large enough, we obtain that the

horizontal distance betweenu andw is at least any desired constant
times

√
n, while the vertical distance is at most

√
n. Hence, forc2

sufficiently large,u is outsidew’s cone, and furthermore, the abso-
lute slope of the line segment fromu to w is strictly less than the
absolute slope of the sides of the cone. Therefore, the Euclidean
distance fromu to any point in the cone is at least a constant factor
times the Euclidean length of the line segment fromu to w, which
we showed isΩ(µuw) = Ω(µuv). In particular,v is in w’s cone,
so the Euclidean distance fromu to v is Ω(µuv). 2

LEMMA 15. The expansion in our embedding between any pair
of nonextra vertices isO(

√
n).

Proof: First we claim that every edge of the graphG′ has Euclidean
lengthO(

√
n). Each graph edge is either a tree edge or a nontree

edge. The tree edges hadO(
√

n) distortion in the original tree em-
bedding by Theorem 9(b), and by Lemma 11, the shifting process
changes the Euclidean length of each edge by at most an additive
O(
√

n). Thus, the tree edges still have Euclidean lengthO(
√

n).
Now we prove the claim for nontree edges. Letw andz be the

left and right endpoints, respectively, of the nontree edge of facef .
If x′(z) − x′(w) > 2c1

√
n, then by concavity of the horizontal

distance of the two vertices on the facef at the same height in
Babilon et al.’s embedding, the pointsg andt midway along the left

and right sides, respectively, of the facef satisfyx′(t) − x′(g) >
c1
√

n. Thus, in this case, the facef is shifted. After shifting, we
have

x(z)− x(w) = x′(z)− x′(w)−
X

r∈f∩πw

s(r)

= x′(z)− x′(w)− [x′(g)− x′(w)] + [x′(t)− x′(z)]

−
X

r∈f∩πw

x′(t)− x′(g)− c1
√

n

b|f |/4c

= x′(t)− x′(g)− (b|f |/4c)
x′(t)− x′(g)− c1

√
n

b|f |/4c
= c1

√
n.

Hence, if the nontree edge{w, z} is shifted, which is forced when
x′(z)− x′(w) > 2c1

√
n, thenx(z)− x(w) = c1

√
n. Otherwise,

we havex(z)− x(w) = x′(z)− x′(w) ≤ 2c1
√

n. Also, |y(w)−
y(z)| ≤

√
n. Therefore, every edge ofG′ has lengthO(

√
n).

By the triangle inequality, the distortion of the embedding ofG′

isO(
√

n), because the bound holds for each edge of a shortest path.
By Lemma 7, the distortion of the embedding of the original graph
G is O(

√
n). 2

We conclude with the main result of this section:

THEOREM 16. Every outerplanar graphG can be embedded
into the plane with distortionO(

√
n).

Proof: We claim that the Euclidean distance between any two ver-
ticesu andv in the constructed embedding is at least a constant
factor times their graph distance. Ifu andv have the same height,
Lemma 13 proves the claim. Otherwise, their graph distance is ei-
ther at leastc2

√
n or smaller. In the first case, Lemma 14 proves the

claim. In the second case, the Euclidean distance betweenu andv
is at least their distance iny coordinates, which by construction is
at least

√
n, proving the claim.

On the other hand, Lemma 15 proves that the Euclidean distance
between any two verticesu andv in the constructed embedding is
at mostO(

√
n) times their graph distance. Therefore, scaling the

embedding by a constant multiplicative factor yields a noncontrac-
tive embedding with expansionO(

√
n) as desired. 2

4. OPEN PROBLEMS
The main open problem is to obtain tight worst-case bounds

on the distortion required to embed planar graph metrics into the
plane. To this end, it would be a natural step to consider bounded-
outerplanarity graphs (which generalize the notion of outerplanar
graphs), series-parallel graphs (which are slightly more general
than outerplanar graphs), and bounded-treewidth graphs (which
generalize both of these classes). Note that the series-parallel
graph known as the diamond graph, used previously in embedding
lower bounds [7, 18, 22], can be embedded into the plane with
O(
√

n log n) distortion.
We also emphasize the open problem from [1, 19] of embedding

the shortest-path metrics ofweightedtrees and planar graphs into
the plane. Matoǔsek [19] conjectures an upper bound ofO(

√
n)

for trees, but noo(n) upper bound is known. It may also be easier
to prove anω(n2/3) worst-case lower bound for weighted planar
graph metrics.
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[5] Mihai Bădoiu, Kedar Dhamdhere, Anupam Gupta, Yuri
Rabinovich, Harald R̈acke, R. Ravi, and Anastasios
Sidiropoulos. Approximation algorithms for low-distortion
embeddings into low-dimensional spaces. InProceedings of
the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 119–128, Philadelphia, PA, USA, 2005.
Society for Industrial and Applied Mathematics.

[6] Bonnie Berger, Jon Kleinberg, and Tom Leighton.
Reconstructing a three-dimensional model with arbitrary
errors.Journal of the ACM, 46(2):212–235, 1999.

[7] Bo Brinkman and Moses Charikar. On the impossibility of
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[21] Jǐrı́ Matoǔsek. Problem 2.6: Planar-graph metrics intoR2. In
Open Problems from the Workshop on Discrete Metric
Spaces and their Algorithmic Applications. Haifa, Israel,
March 2002. http://kam.mff.cuni.cz/∼matousek/haifaop.ps.

[22] Ilan Newman and Yuri Rabinovich. A lower bound on the
distortion of embedding planar metrics into Euclidean space.
Discrete & Computational Geometry, 29(1):77–81, 2003.

[23] Nissanka B. Priyantha, Anit Chakraborty, and Hari
Balakrishnan. The Cricket location-support system. In
Proceedings of 6th Annual International Conference on
Mobile Computing and Networking, pages 32–43, Boston,
MA, August 2000.

[24] Satish Rao. Small distortion and volume preserving
embeddings for planar and euclidean metrics.Proceedings of
the 15th Annual ACM Symposium on Computational
Geometry, pages 300–306, 1999.

[25] C. Savarese, J. Rabaey, and J. Beutel. Locationing in
distributed ad-hoc wireless sensor networks. InProceedings
of the International Conference on Acoustics, Speech, and
Signal Processing, pages 2037–2040, Salt Lake City, UT,
May 2001.

[26] R. N. Shepard. The analysis of proximities:
Multidimensional scaling with an unknown distance function
1. Psychometrika, 27:125–140, 1962.

[27] R. N. Shepard. The analysis of proximities:
Multidimensional scaling with an unknown distance function
2. Psychometrika, 27:216–246, 1962.

[28] Ioannis G. Tollis, Giuseppe Di Battista, Peter Eades, and
Roberto Tamassia.Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice Hall, 1998.

[29] W. T. Tutte. How to draw a graph.Proc. London Math. Soc.
(3), 13:743–767, 1963.

http://kam.mff.cuni.cz/~matousek/haifaop.ps

	1 Introduction
	2 Lower Bound for Planar  Graph Embedding
	3 Outerplanar Embedding
	4 Open Problems
	5 REFERENCES -9pt 

