
Push-Pull Block Puzzles are Hard

Erik D. Demaine?, Isaac Grosof, and Jayson Lynch

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street,
Cambridge, MA 02139, USA

{edemaine,isaacg,jaysonl}@mit.edu

Abstract. This paper proves that push-pull block puzzles in 3D are PSPACE-
complete to solve, and push-pull block puzzles in 2D with thin walls are NP-hard
to solve, settling an open question [19]. Push-pull block puzzles are a type of
recreational motion planning problem, similar to Sokoban, that involve moving a
‘robot’ on a square grid with 1×1 obstacles. The obstacles cannot be traversed by
the robot, but some can be pushed and pulled by the robot into adjacent squares.
Thin walls prevent movement between two adjacent squares. This work follows
in a long line of algorithms and complexity work on similar problems [3–9, 14,
16, 18]. The 2D push-pull block puzzle shows up in the video games Pukoban as
well as The Legend of Zelda: A Link to the Past, giving another proof of hardness
for the latter [2]. This variant of block-pushing puzzles is of particular interest
because of its connections to reversibility, since any action (e.g., push or pull)
can be inverted by another valid action (e.g., pull or push).

Keywords: Complexity, NP, PSPACE-complete, puzzles, motion planning

1 Introduction

Block-pushing puzzles are a common puzzle type with one of the best known example
being Sokoban. Puzzles with the ability to push and pull blocks have found their way
into several popular video games including The Legend of Zelda series, Starfox Adven-
tures, Half-Life and Tomb Raider. Block-pushing puzzles are also an abstraction of mo-
tion planning problems with movable obstacles. In addition to these games, one could
imagine real-world scenarios, like that of a forklift in a warehouse, bearing similarity.
Since motion planning is such an important and computationally difficult problem, it
can be useful to look at simplified models to try to get a better understanding of the
larger problem.

A significant amount of research has gone into characterizing the complexity of
block sliding puzzles. This includes PSPACE-completeness for well-known puzzles like
sliding-block puzzles [13], Sokoban [3, 9], the 15-puzzle [15], 2048 [1], Candy Crush
[12] and Rush Hour [10]. Block pushing puzzles are a type of block sliding puzzle in
which the blocks are moved by a small robot within the puzzles. This type of block
sliding puzzle has gathered a significant amount of study. Table 1 gives a summary of
results on block pushing puzzles. Variations include Sokoban [3,9], where blocks must

? MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge,
MA 02139, USA, {edemaine,isaacg,jaysonl}@mit.edu

{edemaine,isaacg,jaysonl}@mit.edu
{edemaine,isaacg,jaysonl}@mit.edu


2 Erik D. Demaine, Isaac Grosof, and Jayson Lynch

reach specific targets (the Path? column), versions where multiple blocks can be pushed
[3–5, 9, 14, 16] (the Push column), versions where blocks continue to slide after being
pushed [7, 14] (the Sliding column), versions where fixed blocks are allowed [5, 8] (the
Fixed? column), and versions where the robot can pull blocks [16] (the Pull column).

We are particularly interested in the push-pull block model because any sequence
of moves in the puzzle can be undone. Having an undirected state-space graph seems
like an interesting property both mathematically and from a puzzle stand-point. This
sort of player move reversibility lead to some of our gadgets being logically reversible,
a notion that is fundamentally linked to quantum computation and the thermodynamics
of computation.

Name Push Pull Fixed? Path? Sliding Complexity

Push-k k 0 No Path Min NP-hard [4]
Push-* * 0 No Path Min NP-hard [14]
PushPush-k k 0 No Path Max PSPACE-c. [7]
PushPush-* * 0 No Path Max NP-hard [14]
Push-1F 1 0 Yes Path Min NP-hard [8]
Push-kF k ≥ 2 0 Yes Path Min PSPACE-c. [5]
Push-*F * 0 Yes Path Min PSPACE-c. [5]
Sokoban 1 0 Yes Storage Min PSPACE-c. [3]
Sokoban(k, 1) k ≥ 5 1 Yes Storage Min NP-hard [9]
Pull-1 0 1 No Storage Min NP-hard [16]
Pull-kF 0 k Yes Storage Min NP-hard [16]
PullPull-kF 0 k Yes Storage Max NP-hard [16]
Push-k Pull-lW k l Wall Path Min NP-hard (§2)
3D Push-k Pull-lF k l Yes Path Min NP-hard (§B)
3D Push-1 Pull-1W 1 1 Wall Path Min PSPACE-c. (§3)
3D Push-k Pull-kF k > 1 k > 1 Yes Path Min PSPACE-c. (§3)

Table 1: Summary of past and new results on block pushing and/or pulling. The Push
and Pull columns describe how many blocks in a row can be moved by the robot. Here k
and l are positive integers; * refers to an unlimited number of blocks. The Fixed column
notes whether fixed blocks (Yes) or thin walls (Wall) are allowed. In the problem title,
F means fixed blocks are included; W means thin walls are included. The Path column
describes whether the objective is to have the robot find a path to a target location, or
to store the blocks in a specific configuration. The Sliding column notes whether blocks
move one square or as many squares as possible before stopping.

We add several new results showing that certain block pushing puzzles, which in-
clude the ability to push and pull blocks, are NP-hard or PSPACE-complete. The push-
pull block puzzle is instantiated in the game Pukoban and heuristics for solving it have
been studied [19], but its computational complexity was left as an open question.

We introduce thin walls, which prevent motion between two adjacent empty squares.
We prove that all path planning problems in 2D with thin walls or in 3D, in which the
robot can push k blocks and pull l blocks for all k, l ∈ Z+ are NP-hard. We also show



Push-Pull Block Puzzles are Hard 3

that path planning problems where the robot can push and pull k blocks are PSPACE-
complete, with thin walls needed only for k = 1. Our results are shown in the last four
lines of Table 1. To prove these results, we introduce two new abstract gadgets, the set-
verify and the 4-toggle, and prove hardness results for questions about their the legal
state transitions.

2D Push-k Pull- j is defined as follows: There is a square lattice of cells. Each cell is
connected to its orthogonal neighbors. Cells may either be empty, hold a movable block,
or hold a fixed block. Additionally, in settings that allow thin walls, edges between cells
may be omitted. There is also a robot on a cell. The robot may move from its current
cell to an unoccupied adjacent cell. The robot may also push up to k movable blocks
arranged in a straight line one cell forward, as long as there is an open cell with no
wall in that direction. Here the robot moves into the cell occupied by the adjacent block
and each subsequent block moves into the adjacent cell in the same direction. Likewise,
the robot may pull up to j movable blocks in a straight line as long as there are no
walls in the way and there is an open cell behind the robot. The robot moves into that
cell, the block opposite that cell moves into the one the robot originally occupied, and
subsequent blocks also move once cell toward the robot. The goal of the puzzle is for
the robot to reach a specified goal cell. Given such a description, is there a legal path for
the robot from its starting cell to the goal cell? The 3D problem is defined analogously
on a cubic lattice.

2 Push-Pull Block Puzzles are NP-hard

In this section we show NP-hardness for Push-k Pull-l in 2D with thin walls for all
positive integers k, l in Section 2 and Push-q Pull-r in 3D for all positive integers q, r in
Section B.

Thin walls are a new, but natural, notion for block pushing puzzles. They prevent
blocks or the robot from passing between two adjacent, empty squares, as though there
were a thin wall blocking the path. We will prove hardness by a reduction from 3SAT.
The 3SAT problem asks whether, given a set of variables {x1, x2, . . . xn} and a boolean
formula in conjunctive normal form with exactly three variables per clause, there exists
an assignment of values to those variables that satisfies the formula [11]. To do so we
will introduce an abstract gadget called the Set-Verify gadget. This gadget will then be
used to construct crossover gadgets (in Appendix A), and variable and clause gadgets.

Set-Verify Gadgets The Set-Verify gadget is an abstract gadget for motion planning
problems. The gadget has four entrances/exits which have different allowable paths
between them depending on the state of the gadget. There are four possible states of
the Set-Verify gadget: Broken, Unset, Set, and Verified. The three relevant states are
depicted in Figures 1 and 2. Entrances to the gadget are labeled S i, S o,Vi,Vo and the
directed arrows show the allowed passages in the shown state. Further details are given
in Appendix A.

Since the Set-Verify gadget has no hallways with length greater than 3, any capa-
bilities the robot may have of pushing or pulling more than one block at a time are



4 Erik D. Demaine, Isaac Grosof, and Jayson Lynch

irrelevant. Thus, the following proof will apply for all positive values of j and k in
Push- j Pull-k.

Si

Vi

So

Vo

U
(a) Abstract Unset Set-Verify

Si

Vi

So

Vo

S
(b) Abstract Set Set-Verify

Si

Vi

So

Vo

V
(c) Abstract Verified Set-Verify

4

3

1 2

So

Si

Vo

Vi

(d) Set-Verify, unset state

34

1

2

So

Si

Vo

Vi

(e) Set-Verify, set state

34

1

2

So

Si

Vo

Vi

(f) Set-Verify, verified state

Fig. 1: Diagrams of three of the states of Set-Verify gadgets along with their construc-
tion in a push-pull block puzzle. Red blocks are moveable, black blocks are fixed, thick
black lines are thin walls.

U :
(U, si) → (S , S o)

S :
(S , so) → (U, S i)
(S , vi) → (V, vo)

V :
(V, vi) → (V, vo)
(V, vo) → (V, vi)
(V, vo) → (S , vi)

Table 2: State transitions of a Set-Verify gadget as seen in Figure 1

Variable and Clause Gadgets We will be making use of the Set-Verify gadget to
produce the literals in our 3SAT formula. One significant difficulty with this model is
the complete reversibility of all actions. Thus we need to take care to ensure that going



Push-Pull Block Puzzles are Hard 5

backward at any point does not allow the robot to cheat in solving our 3SAT instance.
The directional properties of the Set-Verify allow us to create sections where we know
if the robot exits, it must have either reset everything to the initial configuration or have
correctly proceeded through that gadget.

Our literals will be represented by Set-Verify gadgets. They are considered true
when the Vi to Vo traversal is possible, and false otherwise. Thus we can set literals
to true by allowing the robot to run through the S i to S o passage of the gadget. This
allows a simple clause gadget, shown in Figure 5, consisting of splitting the path into
three hallways, each with the corresponding verify side of our literal. We can then pass
through if any of the literals are set to true, and cannot pass otherwise. Notice that the
Unset and Set states do not have a backward transition. Thus the only way to go back
through the clause is through the verified literal, after which the clause has been reset
to the state it was in before the robot went through it.

The variables will be encoded by a series of passages which split to allow either the
true or negated literals to be set, shown in Figure 6. Once the robot has gone through
at least one gadget in one hallway, there are only two possibilities remaining: either the
robot can continue down the hall setting more literals to true, or the robot can go back
through the gadget it has just exited, returning it to its unset state. Thus, before entering
or after exiting a hallway all of the literals in that hallway will be in the same state.
Additionally, unset gadgets do not allow a transition from S o to S i, which means at any
point while setting variables, if the robot decides to go back it can only return through a
hallway which has been switched to the set state. Going back through these returns them
to the unset state, putting that variable gadget back in its initial configuration before the
robot interacted with it.

Theorem 1. Push-k Pull-l in 2D with thin walls is NP-hard.

Proof. We will reduce from 3SAT. Given a 3SAT instance with variables (x1, x2, . . . xn)
and clauses (xa, xb, xc), . . ., we will construct an equivalent PushPull instance as follows:

First, we will set up the clause gadgets. Each clause gadget will look like Figure 5,
with all of the Set-Verify gadgets initially in the unset state. There will be one clause
gadget for each clause in the 3SAT formula. The clauses will be linked together in
series, Ck out to Ck+1 in. At the final clause gadget’s exit, we will place the goal square.

Next, we will set up the variable gadgets. For each variable xk, there will be a vari-
able gadget Xk, consisting of a positive literal pathway, connecting to every clause where
the variable is used positively, and a negative literal pathway, connecting to every clause
where the variable is negated, as shown in Figure 6. These variable gadgets will be
linked together in series, Xk out to Xk+1 in. The final variable gadget’s out exit will be
linked to the first clause gadget’s in. Just in front of the first variable gadget’s in entrance
will be the start square.

The connections between these gadgets will consist of empty hallways, except where
such hallways would cross. The hallways inside the clause and variable gadgets will also
need to cross, and we will handle them similarly. We need crossovers for this reduction,
rather than reducing to a PlanarSAT variant, because we need crossovers just to make
the clause gadgets work.

At all crossings, we will place a Two Use Directed Crossover, from Figure 8. The
orientation of the gadget will be chosen according to a specified ordering, where the



6 Erik D. Demaine, Isaac Grosof, and Jayson Lynch

later pathway will never be used before the earlier pathway, and no pathway will ev-
ery be traversed twice in the same direction. The ordering is each variable gadget’s
hallways, in increasing order of the variable gadgets, followed by each clause gadget’s
hallways, in increasing order of clause gadgets. Within the variable gadgets, the order-
ing will be from in to out along the positive and negative lines, with the positive lines
arbitrarily placed before the negative lines. The clause gadget hallways won’t cross each
other.

The construction is complete. To see that it is solvable if and only if the correspond-
ing SAT problem is satisfiable, first let us consider the case where the SAT problem
is satisfiable. If the SAT problem is satisfiable, then there is an assignment of variables
such that each clause is satisfied, e.g. has at least one true literal. Therefore, the PushPull
construction is solvable. It can be solved by traversing each variable gadget via the side
corresponding to the satisfying assignment, then traversing each clause, which is pass-
able because it is satisfied. The crossovers do not impede traversal, since the path taken
goes through each crossover at most once of each of its pathways, and strictly in the
forward direction of the ordering which determined the orientation of the crossovers.
Thus, the entire PushPull problem can be solved, as desired.

Next, let us consider the case where the SAT problem is not satisfiable. Consider a
partial traversal of the PushPull problem, from the start cell through the variable gad-
gets. Regardless of any reverse transitions through a variable gadget or interactions with
its clause gadget, if the robot is beyond a given variable gadget exactly one of the vari-
able lines must be set and the other must be unset. Likewise, the interactions with the
crossover gadgets do not allow any transitions other than within the variable gadgets,
regardless of reversals. Moreover, interactions with the clause gadgets only change the
state of Set-Verify gadgets corresponding to literals between the Set and Verified states.
If a Set-Verify is Unset, its state cannot be altered via its verify line (Vi − Vo).

Thus, regardless of the robot’s prior movements, the only literals that will be Set or
Verified are at most those corresponding to a single assignment for each variable. No
two literals corresponding to opposite assignments of the same variable will every be in
the Set or Verified states at the same time.

Since the SAT problem is assumed to be unsatisfiable, no assignment of variables
will satisfy every clause. Thus, as the robot exits the variable gadgets and enters the
clause gadgets, for any prior sequence of moves, there must be some clause gadget
which has all of its literals in the Unset state, corresponding to the unsatisfied clause for
this setting of variables. Since all clauses must be traversed to reach the goal cell, and a
clause cannot be traversed if all of its literals are Unset, the robot cannot reach the goal
cell. Thus, the PushPull problem is unsolvable.

We have demonstrated that the PushPull problem is solvable if and only if the cor-
responding 3SAT instance is satisfiable. The reduction mentioned above is polynomial
time reduction, as long as the hallways are constructed reasonably. Thus, Push-k Pull-l
in 2D with thin walls is NP-hard.



Push-Pull Block Puzzles are Hard 7

3 PSPACE

In this section we show the PSPACE-completeness of 3D push-pull puzzles with equal
push and pull strength. We will prove hardness by a reduction from True Quantified
Boolean Formula (also known as TQBF and 3QSAT), which asks whether, given a set
of variables {x1, x2, . . . xn, y1, y2, . . . yn} and a boolean formula θ(x1, . . . xn, y1 . . . yn) in
conjunctive normal form with exactly three variables per clause, the quantified boolean
formula ∀y1∃x1∀y2∃x2 . . . θ(x1, . . . xn, y1, . . . yn) is true.

We introduce a gadget called the 4-toggle and use it to simulate 3QSAT [11]. We
construct the 4-toggle gadget in 3D push-pull block puzzles, completing the reduc-
tion. In particular we prove 3D Push1-Pull1 with thin walls is PSPACE-complete and
3D Pushi-Pull j, for all positive i = j, is PSPACE-complete. A gap between NP and
PSPACE still remains for 3D puzzles with different pull and push values, as well as for
2D puzzles.

3.1 Toggles

We define an n-toggle to be a gadget which has n internal pathways and can be in one
of two internal states, A or B. Each pathway has a side labeled A and another labeled
B. When the toggle is in the A state, the pathways can only be traversed from A to B
and similarly in the B state it can only be traversed from B to A. Whenever a pathway
is traversed, the state of the toggle flips.

A

1a

2a

3a

4a

1b

2b

3b

4b

(a) 4-Toggle in state A.

B

1a

2a

3a

4a

1b

2b

3b

4b

(b) 4-Toggle in state B.

Fig. 2: Diagrams of the two possible states of a 4-Toggle.

Figure 3a acts as a 2-toggle. The locations 1a, 1d, 2a, and 2d, are all entrances
and exits to the 2-toggle, while 1b connects directly to 1c, and 2b connects directly to
2c. Notice that there is a single block missing from the ring of eight blocks. When the
missing block is on top, as diagrammed, it will represent state A, and when it is on the
opposite side, we call it state B. Notice that in state A, it is impossible to enter through
entries 1d or 2d. When we enter in the 1a or 2a sides, we can follow the moves in the
series of diagrams to exit the corresponding 1d or 2d side, leaving the gadget in the
B state. One can easily check that the gadget can only be left in either state A, B, or



8 Erik D. Demaine, Isaac Grosof, and Jayson Lynch

1d

1a

1c

1b

2d

2a

2c

2b

(a) 2-Toggle in state A. The arrows indicate
the transition to state B.

1d

1a

1c

1b

2d

2a

2c

2b

(b) 2-Toggle in state B.

Fig. 3: 2-Toggles constructed in a push-pull block puzzle.

A :
(A, 1a) → (B, 1b)
(A, 2a) → (B, 2b)
(A, 3a) → (B, 3b)
(A, 4a) → (B, 4b)

B :
(B, 1b) → (A, 1a)
(B, 2b) → (A, 2a)
(B, 3b) → (A, 3a)
(B, 4b) → (A, 4a)

Table 3: State transitions of a 4-toggle as seen in Figure 2

a broken state with the empty square left in a corner. Notice that in the broken state,
every pathway except the one just exited is blocked. If we enter through that path, it
is in exactly the same state as if it had been in an allowed state and entered through
the corresponding pathway normally. For example, in the diagram one can only enter
through 1a and after doing so the blocks are in the same position as they would be after
entering in path 1a on a 2-toggle in state A. Thus the broken state is never more useful
for solving the puzzle and can be safely ignored. To generalize to Push-k Pull-k we
simply expand the number of blocks between entrances and exists. Instead of having 3
blocks between each entrance and exit, we have 2k + 1 blocks. There is still one vacant
square left in the center of one of the rows of blocks to dictate the state of the toggle.
The robot can push the row of k blocks to the center or pull k blocks opening up a square
in the center, giving us the same function as before.

To construct a 4-toggle we essentially take two copies of the 2-toggle, rotate them
perpendicular to each other in 3D, and let them overlap on the central axis, where the
block is missing. See Figure 10a. We still interpret the lack of blocks in the same po-
sitions as in the 2-toggle as states A or B. For Push1-Pull1, this construction requires
thin walls, since the exit pathways from 1b, 2b, 3b and 4b must pass immediately next
to each other. For Pushk-Pullk, with k > 1, thin walls are not necessary, since the exit
pathways are separated from each other.



Push-Pull Block Puzzles are Hard 9

3.2 Locks

A 2-toggle and lock is a gadget consisting of a 2-toggle and a separate pathway. Travers-
ing the separate pathway is only possible if the 2-toggle is in a specific state, and the
traversal does not change the internal state of the 2-toggle. The 2-toggle functions ex-
actly as described above.

This gadget can be implemented using a 4-toggle by connecting the 3b and 4b en-
trances of the 4-toggle with an additional corridor, as shown in Figure 11. Traversing
the resultant full pathway, from 3a to 3b to 4b to 4a, is possible only if the initial state
of the 4-toggle is A, and will leave the 4-toggle in state A. In addition, a partial traver-
sal, such as from 3a to 3b and back to 3a, does not change the internal state. The two
unaffected pathways of the toggle, 1 and 2, continue to function as a 2-toggle.

A 2-toggle and lock can be extended to a 2-toggle with many locks. The 2-toggle
with many locks is a gadget consisting of a 2-toggle and any number of separate path-
ways which can only be traversed when the gadget is in state B. This can be constructed
using one 2-toggle and lock per separate pathway needed and attaching the toggles in
series. We orient the 2-toggles so that their 2-toggles are all passable at once in one
direction. When the 2-toggle is traversed, all of the internal locks’ states flip, rendering
the gadget passable in the opposite direction, and switching the passability and impas-
sibility of all of the external pathways.

3.3 Quantifiers

Existential Quantifier An existential gadget is like a 2-toggle and many locks, except
that instead of a 2-toggle, it has a single pathway which is always passable in both
directions. Upon traversing the pathway the robot may or may not change the internal
state of the 2-toggle and many locks, as it chooses. The variable is considered true if the
2-toggles and many locks is in state A and false if it is in state B. This gadget is shown
in Figure 12.

∀y1 ∃x1 ∀y2

y1 ← 0

∃x2 ∀y3

y1 ← 0

y2 ← 0

formula

∃x3

Fig. 4: A segment of the alternating quantifier chain. Each square represents the 2-toggle
part of a 2-toggle and many locks.

Alternating Quantifier Chain An alternating quantifier chain, shown in Figure 4,
implements a series of alternating existential and universal variables, as well as external



10 Erik D. Demaine, Isaac Grosof, and Jayson Lynch

literal pathways, which may be traversed if and only if their corresponding variables are
set to a prespecified value.

Traversing the quantifier chain repeatedly in the primary direction will cycle the
universal variables through all 2n possible settings. Upon each traversal, an initial se-
quence of the universal variables will have their values flipped. During the traversal,
the robot will have the option to set a series of corresponding existential variables to
whatever value it wishes. These comprise the existentials nested within the universal
variables whose values were flipped. An analysis of the Quantifier Chain can be found
in Appendix C

3.4 Clause Gadget

We construct a clause gadget by putting lock pathways of three 2-toggle with many
locks in parallel, as we did with Set-Verify gadgets in Figure 5. Each of these paths
can be traversed only if the corresponding variable has been set to true, or to false,
depending on the orientation of that particular lock. Since they are in parallel, only one
needs to be passable for the robot to be able to continue on to the next clause.

3.5 Beginning and End Conditions

The overall progression of the robot through the puzzle starts with the quantifier chain.
The robot increments the universal variables and sets the appropriate existential vari-
ables arbitrarily, then traverses a series of clause gadgets to verify that the TQBF for-
mula represented by those clauses is true under that setting of the variables. Then, the
robot cycles around to the quantifier chain, and repeats.

At the beginning of this procedure, the robot must be allowed to set all of the ex-
istential variables arbitrarily. To ensure this, we will set up the quantifier gadget in the
state 01 . . . 11, with all variables set to 1 except the highest order one. The highest order
variable will be special, and will not be used in the 3CNF formula. The initial position
of the robot will be at the entrance to the quantifier gadget. This will allow the robot to
flip every universal in the quantifier gadget, from 01 . . . 11 to 10 . . . 00, and accordingly
set every existential variable arbitrarily. To force the robot to go forward through the
quantifier gadget instead of going backwards through the clause chain, we will add a
literal onto the end of the formula gadget which is passable if and only if the highest
order variable is set to 1. After this set up, the robot will progress through the loop con-
sisting of the quantifier gadget and the formula gadget, demonstrating the appropriate
existential settings for each assignment of the universal quantifiers.

At each point in this process, the robot has the option to proceed through this cycle
backwards, as is guaranteed by the reversibility of the game. However, at no point does
proceeding in the reverse direction give the robot the ability to access locations or set
toggles to states that it could not have performed when it initially encountered the tog-
gles or locations. Thus, any progression through the states of the alternating quantifier
chain must demonstrate a TQBF solution to the formula given.

After progressing through every possible state of the universal quantifiers, the uni-
versals will be in the state 11 . . . 11. At this point, the robot may progress through the



Push-Pull Block Puzzles are Hard 11

quantifier gadget and exit via its special pathway, the carry pathway of the highest or-
der bit. This special pathway will lead to the goal location of the puzzle. Thus, only by
traversing the quantifier - formula loop repeatedly, and demonstrating the solution to
the TQBF problem, will the robot be able to reach the goal. The robot may reach the
goal if and only if the corresponding quantified boolean formula is true.

Theorem 2. Push-k Pull-k, k > 1 in 3D with fixed blocks is PSPACE-complete.

Proof. By the above construction, TQBF can be reduced to Push-k Pull-k in three di-
mensions with fixed walls, through the intermediate step of construction a 4-toggle.
This implies that Pushk-Pullk is PSPACE-hard. Since Pushk-Pullk has a polynomial-
size state, the problem is in NPSPACE, and therefore in PSPACE by Savitch’s Theo-
rem [17]. So it is PSPACE-complete.

Theorem 3. Push-1 Pull-1 in 3D with thin walls is PSPACE-complete.

Proof. Push-1 Pull-1 in 3D with thin walls can construct a 4-toggle, and so by the same
argument as in Theorem 2, it is PSPACE-complete.

4 Conclusion

In this paper, we proved hardness results about variations of block-pushing puzzles in
which the robot can also pull blocks. Along the way, we analyzed the complexity of
two new, simple gadgets, creating useful new toolsets with which to attack hardness
of future puzzles. The results themselves are obviously of interest to game and puzzle
enthusiasts, but we also hope the analysis leads to a better understanding of motion-
planning problems more generally and that the techniques we developed allow us to
better understand the complexity of related problems.

This work leads to many open questions to pursue in future research. For Push-
Pull block puzzles, we leave several NP vs. PSPACE gaps, a feature shared with many
block-pushing puzzles. One would hope to directly improve upon the results here to
show tight hardness results for 2D and 3D push-pull block puzzles. One might also
wonder if the gadgets used, or the introduction of thin walls, might lead to stronger
results for other block-pushing puzzles. We also leave open the question of push-pull
block puzzles without fixed blocks or walls. In this setting, even a single 3 × 3 area of
clear space allows the robot to reach any point, making gadget creation challenging.

There are also interesting questions with respect to the abstract gadgets introduced
in our proof. We are currently studying the complexity of smaller toggles and toggle-
lock systems. It would also be interesting to know whether Set-Verify gadgets sufficient
for PSPACE-hardness or if they can build full crossover gadgets. Also, there are also
many variations within the framework of connected blocks with traversibility which
changes with passage through the gadget. Are any other gadgets within this framework
useful for capturing salient features of motion planning problems? Finally, there is the
question of whether other computational complexity problems can make use of these
gadgets to prove new results.



12 Erik D. Demaine, Isaac Grosof, and Jayson Lynch

References

1. Ahmed Abdelkader, Aditya Acharya, and Philip Dasler. 2048 without new tiles is still hard.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 49. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016.

2. Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games
are (NP-)hard. In Proceedings of the 7th International Conference on Fun with Algorithms
(FUN 2014), Lipari Island, Italy, July 1–3 2014.

3. J. C. Culberson. Sokoban is PSPACE-complete. In Proceedings International Conference
on Fun with Algorithms (FUN 1998), pages 65–76, Waterloo, Ontario, Canada, June 1998.
Carleton Scientific.

4. Erik D. Demaine, Martin L. Demaine, and Joseph O’Rourke. PushPush and Push-1 are NP-
hard in 2D. In Proceedings of the 12th Annual Canadian Conference on Computational
Geometry (CCCG 2000), pages 211–219, Fredericton, New Brunswick, Canada, August 16–
18 2000.

5. Erik D. Demaine, Robert A. Hearn, and Michael Hoffmann. Push-2-F is PSPACE-complete.
In Proceedings of the 14th Canadian Conference on Computational Geometry (CCCG 2002),
pages 31–35, Lethbridge, Alberta, Canada, August 12–14 2002.

6. Erik D. Demaine and Michael Hoffmann. Pushing blocks is NP-complete for noncrossing
solution paths. In Proceedings of the 13th Canadian Conference on Computational Geometry
(CCCG 2001), pages 65–68, Waterloo, Ontario, Canada, August 13–15 2001.

7. Erik D. Demaine, Michael Hoffmann, and Markus Holzer. PushPush-k is PSPACE-complete.
In Proceedings of the 3rd International Conference on Fun with Algorithms (FUN 2004),
pages 159–170, Isola d’Elba, Italy, May 26–28 2004.

8. A. Dhagat and J. O’Rourke. Motion planning amidst movable square blocks. In Proceedings
of the 4th Canadian Conference on Computational Geometry (CCCG 1992), 1992.

9. D. Dor and U. Zwick. Sokoban and other motion planning problems. Computational Geom-
etry: Theory and Applications, 13(4), 1996.

10. Gary William Flake and Eric B. Baum. Rush Hour is PSPACE-complete, or why you should
generously tip parking lot attendants. Theoretical Computer Science, 270(1-2):895 – 911,
2002.

11. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

12. Luciano Guala, Stefano Leucci, and Emanuele Natale. Bejeweled, candy crush and other
match-three games are (np-) hard. In Computational Intelligence and Games (CIG), 2014
IEEE Conference on, pages 1–8. IEEE, 2014.

13. Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles
and other problems through the nondeterministic constraint logic model of computation.
Theoretical Computer Science, 343(1):72–96, 2005.

14. M. Hoffman. Push-* is NP-hard. In Proceedings of the 12th Canadian Conference on
Computational Geometry (CCCG 2000), Lethbridge, Alberta, Canada, 2000.

15. Daniel Ratner and Manfred K Warmuth. Finding a shortest solution for the n× n extension
of the 15-PUZZLE is intractable. In Proceedings of AAAI 1986, pages 168–172, 1986.

16. Marcus Ritt. Motion planning with pull moves. arXiv:1008.2952, 2010.
17. Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexi-

ties. Journal of Computer and System Sciences, 4(2):177 – 192, 1970.
18. Gordon Wilfong. Motion planning in the presence of movable obstacles. Annals of Mathe-

matics and Artificial Intelligence, 3(1):131–150, 1991.
19. Tadeu Zubaran and Marcus Ritt. Agent motion planning with pull and push moves. In Anais

do VIII Encontro Nacional de InteligÃłncia Artificial (ENIA), Natal, July 2011.



Push-Pull Block Puzzles are Hard 13

A Additional Details on 2D Push-Pull Block Puzzles Proof

This section provides some additional figures and description to help explain the proof
of Theorem 1.

Here we walk through the allowable transitions in the Set-Verify gadget and also
address the potential Broken state in the Push-Pull construction which is not in the ab-
stract gadget. In the Unset state, the S i → S o transition is the only possibility, changing
the state to Set. In the Set state, the S o → S i transition is possible, changing the state
back to Unset, as well as the Vi → Vo transition, which changes the state to Verified.
Finally, from the Verified state, the only transitions possible are Vo → Vi, changing the
state back to Set, and Vi → Vo, leaving the state as Verified. In the Broken state, the
only possible transition is S o → S i, changing the state to Unset. Any time we would
enter the Broken state, we could instead enter the Set state, which allows strictly more
transitions, and therefore will be strictly more helpful in reaching the goal. The Broken
state is not helpful towards reaching the goal, so we will disregard its existence.

For the Set-Verify gadget in the Unset state, the S i entrance is the only one which
allows the robot to move any blocks. From the S i entrance it can traverse to S o, and it
can also pull block 2 down behind them. Doing so will allow a traversal from Vi to Vo.
To traverse back from S o to S i, the robot must first traverse back from Vo to Vi. Then,
when the robot travels back from S o to S i, it must push block 2 back, ensuring the Vi to
Vo traversal is impossible. Further, access to any sequence of entrances will not allow
the robot to alter the system to allow traversals between the Vi and S i entrances.

S
So Vo

Si Vi

U
So Vo

Si Vi

U
So Vo

Si Vi

Ck in

Ck out

Xa Xb Xc

Fig. 5: Clause gadget, Ck, with
variables xa = 1, xb = 0, xc =

0.

S
So

Vo

Si

Vi

U
So

Vo

Si

Vi
U

So

Vo

Si

Vi
U

So

Vo

Si

Vi

Xk 

Xk 

S
So

Vo

Si

Vi
S

So

Vo

Si

Vi

Xk inXk out

Fig. 6: A variable gadget representing Xk occur-
ring in six clauses, three of those times negated.
The value of the variable has been set to true.

Crossover Gadgets In this section we build up the needed two use crossover gadget
from a series of weaker types of crossover gadgets. One may wonder why we need
crossover gadgets when Planar 3SAT is NP-complete. This only guarantees that con-
necting the vertices to their clauses by edges results in a planar graph, it does not ensure
that we can navigate our robot between all of these gadgets in a planar manner or that
our gadgets themselves are planar. The most obvious issue can be seen in the clause



14 Erik D. Demaine, Isaac Grosof, and Jayson Lynch

gadget (Figure 5) where one of the Set Verify gadgets must lie between the other two
hallways, but must also be accessible by its associated variable gadget.

Directed Destructive Crossover This gadget, depicted in Figure 7a, allows either a
traversal from a to a′ or b to b′. Once a traversal has occurred, that path may be traversed
in reverse, but the other is impassable unless the original traversal is undone.

First, observe that transitions are initially only possible via the a and b entrances,
since the transitions possible through a Set-Verify in the Set state can be entered through
Vi and S o, not S i. Assume without loss of generality that the gadget is entered at a. This
changes the state of the left Set-Verify to Verified. At this point, only the right S o and
left Vo transitions are passable. Taking the Vo transition either reverts all changes to the
original state, or leaves the left crossover in the Verified state, which allows strictly less
future transition than the original state. Therefore, we will disregard that option. Taking
the S o transition changes the right Set-Verify to Unset, and completes the crossover. At
this point, the only possible transition is to undo the transition just made, from a′ back
to a, restoring the original state. The gadget could be entered via a, but the robot would
only be able to leave via a, possibly changing the state to Set. Both options result in
the robot exiting out its original entrance, and allow the same or less future transitions,
so we may disregard those options. Thus, the only transition possibilities are as stated
above.

S i

V i

S o

Vo

S
So

Vo

S i

V i

S
a

b'

b

a'

(a) The directed destructive crossover con-
structed from two connected Set-Verify gad-
gets initialized in the set position.

S o

Vo

S i

V i

V
Si

V i

S o

Vo

U
a

b

b'

a'

(b) The in-order directed crossover con-
structed from two connected Set-Verify gad-
gets initialized in the verified and unset posi-
tions.

Fig. 7: Two types of crossover gadgets

In-order Directed Crossover This gadget, depicted in Figure 7b allows a traversal from
a to a′, followed by a traversal from b to b′. These traversals may also be reversed.

Initially, no entrance is passable except for a, since Vo is passable only in the Ver-
ified state, and S o is passable only in the Set state. Once the left Vo → Vi transition is
made, the robot has 2 options. It can either change the left Set-Verify gadget’s state to
Set, or leave it as Verified. In either case, the S i entrance on that toggle is impassable,
since a S i entrance may only be traversed in the Unset state. The only transition possible
on the right crossover is S i → S o, changing the state from Unset to Set. This completes
the first crossing.

Now, there are at most 2 transitions possible: from a′ back to a, undoing the whole
process, or entering at b. Note that entering at b is only possible if the left Set-Verify



Push-Pull Block Puzzles are Hard 15

is in the Set state, so let us assume that state change occurred. In that case, the left
S o → S i transition may be performed, changing the left Set-Verify’s state to Unset. At
that point, the only possible transitions are back to b, or through the right Set-Verify’s
Vi → Vo transition, completing the second crossover.

a

X

b

a'

1
2

b'

2
1

Fig. 8: The two use directed crossover
is constructed from a directed destruc-
tive crossover and two in-order directed
crossovers.

If the left Set-Verify was left in the Ver-
ify state, strictly less future transitions are
possible compared to the case where it was
changed into the set state, so we may disre-
gard that possibility.

Two Use Directed Crossover The Two Use
Directed Crossover, depicted in Figure 8, is
the gadget needed for our proof. It allows a
traversal from a to a′ followed by a traversal
from b to b′, or from b to b′ and then a to a′.
These transitions may also be reversed.

It is constructed out of an In-order Di-
rected Crossover gadget and a Destructive
Directed Crossover, as shown in Figure 8.
The a to a′ traversal is initially passable, and
goes through both gadgets, blocking the de-
structive crossover but leaving the in-order
crossover open for the b to b′ traversal. If the
a to a′ traversal does not occur, the b to b′

traversal is possible via the destructive crossover.
Because of the behavior of the constituent crossovers which make up this gadget,

no transition from a to b a to b′, etc. is possible. The crossover permits reversal of each
of the transitions described, but the crossings can only be reversed in queue order (last
in, first out).

Two Use Crossover Four Directed Crossovers can be combined, as shown below, to
create a crossover that can be traversed in any direction [4]. This is not necessary for
our proof but is shown for general interest. Unfortunately, the inability to go through
this gadget multiple times in the same direction without first going back through means
it likely isn’t sufficient for PSPACE-completeness.

B 3D Push-Pull is NP-hard

In this section we prove that 3D Push-k Pull-l with fixed blocks is NP-hard, for all
positive k and l. All of the hard work was done in Section 2. Here we will simply show
how we can use the additional dimension to tweak the previous gadgets to build them
without thin walls. We reduce from 3SAT, constructing our variables from chains of
3D Set-Verify gadgets, and our clauses from the verify side of the corresponding 3D
Set-Verify gadget.

Theorem 4. 3D Push-k Pull-l with fixed blocks is NP-hard, for all positive k and l.



16 Erik D. Demaine, Isaac Grosof, and Jayson Lynch

Proof. We follow the proof of Theorem 1 using a modified Set-Verify gadget, shown
in Figure 9. It can be easily checked that this has the same properties as the Set-Verify
given in Section 2. The cyclic ordering of the entrances in the 3D Set-Verify is different
from that of the 2D Set-Verify, however this is not important as we no longer need to
construct crossovers. Also, this construction does not use thin-walls. While this was
critical in the prior construction due to the need for closely packed turns, the additional
dimension allows enough freedom to keep separate hallways from being adjacent to
each other. With a functional Set-Verify gadget, the remaining constructions of variables
and clauses proceeded as in Section 2. No crossover gadgets are needed since we are
working in 3D. Finally, we note that all blocks are in hallways of length at most 3, thus
the gadgets still function as described for any positive push and pull values.

So

Si

Vo

Vi

Fig. 9: A Set-Verify gadget in 3D where the entrances and exits extend upward, notated
by the diagonal arrows. This gadget is in the unset state.

C Additional Details on PSPACE-completeness Proof

This section provides some additional figures and description to help explain the proof
of Theorem 2.

Binary Counter Universal quantifiers must iterate through all possible combinations
of values that they can take. In this section we construct a gadget that runs though
all the states of its subcomponents as the robot progresses through the gadget. This
construction will serve as the base for our universal quantifiers.

A binary counter has a fixed number of internal bits. Whenever the binary counter
is traversed in the forwards direction, the binary number formed by the internal bits



Push-Pull Block Puzzles are Hard 17

(a) Diagram of a 4-toggle showing impassi-
ble surfaces.

(b) Diagram of the internals of a 4-toggle.

Fig. 10: 3D diagrams of 4-toggles. Red spheres are blocks and blue surfaces are impass-
able.

A

1a

2a

3a

4a

1b

2b

3b

4b

Fig. 11: Diagram of a lock. The 3a to 4a traversal is only possible in state A and returns
the toggle to state A.

increases by one and the robot leaves via one of the exits. If the binary counter is tra-
versed in the reverse direction, the internal value is reduced by one. If the binary counter
is partially traversed, but then the robot leaves via its initial entrance, the internal value
does not change.

The binary counter is implemented as a series of 2-toggles, as shown in Figure 13.
To see that this produces the desired effect, identify a toggle in state A as a 0 bit, and a
toggle in state B as a 1 bit. Let the entrance toggle’s bit be the least significant bit, and
the final toggle be the most significant. When the robot enters the binary counter in the
forwards direction, it will flip the state of every toggle it passes through. When it enters
a toggle that is initially in state B, and thus whose bit is 1, it will flip the state/bit and
proceed to the next toggle, via the 2B − 2A pathway. When it encounters a toggle that
is initially in state A / bit 0, it will flip the state/bit and exit via the 1A − 1B pathway.



18 Erik D. Demaine, Isaac Grosof, and Jayson Lynch

A

1a

2a

3a

4a

1b

2b

3b

4b

x

A

1a

2a

3a

4a

1b

2b

3b

4b

x̄

Fig. 12: An existential gadget.

1a

2b

1b

2a

A
1a

2b

1b

2a

A
1a

2b

1b

2a

A

Fig. 13: The central portion of a three bit binary counter made from 2-toggles.

Thus, the overall effect on the bits of the binary counter is to change a sequence of bits
ending at the least significant bit from 01 . . . 11 to 10 . . . 00, where the entrance is at the
right. This has the effect of increasing the value of the binary counter by one. We will
not examine the reverse transitions or rigorously complete the binary counter here, as
we do not use it directly in the final construction.

Analysis of the Quantifier Chain A quantifier chain is implemented much like a
binary counter, with some additions. Every universal variable will be represented by a
2-toggle and many locks, where individual locks will serve as a literal. The 2-toggles
are hooked up in the same manner as the 2-toggles in a binary counter gadget. This
forces the 2-toggle and many locks gadgets to be set to the corresponding values in the
simulated binary counter.

Traversing the quantifier chain in the reverse direction is only possible if the robot
enters via the lowest order universal toggle whose setting is 1. The traversal will go back
one setting in the sequence of possible settings of the universal variables, and allow
the robot to set all existential variables corresponding to altered universal variables
arbitrarily. No other existential variables can be changed.

There is also a special exit, the overflow exit, which can only be reached after all
of the universal variable settings have been traversed. This is the goal location for the
robot.

The next addition is the existential variables, which consist of existential gadgets
placed just after the 2A exits of each universal variable, and just before the 1A and 2B
entrances of the next universal variable, as shown in Figure 4.



Push-Pull Block Puzzles are Hard 19

One portion of the apparatus which has not been analyzed thus far is the potential
for the robot to re-enter the chain of existentials via a different exit pathway than the
one just exited. This would be problematic if the robot re-entered via a universal gadget
it had not just exited, both because the robot should not be able to take any action other
than reversing its prior progress, decrementing the binary counter/universal quantifiers.
Problems would also arise if the robot got access to any existential quantifiers it did not
just traverse.

After a traversal, the universal quantifiers have the settings . . .??10 . . . 00, where
the lowest significance 1 is on the pathway just exited. To prevent the robot from re-
entering via any pathway other than the one just exited, we add a series of locks to each
exit that are only passable if all lower-significance universal toggles are in state 0, as
shown in Figure 4. This does not impede the exit that the robot uses initially, since all
lower-significance universal toggles are indeed 0. These locks do prevent re-entry into
any higher-significance universal toggles, since the lock corresponding to the lowest-
significance 1 will be closed. The robot cannot re-enter via any toggle that is in state 0,
due to the arrangement of the toggle pathways. Thus, the unique re-enterable pathway
is the lowest-significance toggle in state 1, as desired.


	Lecture Notes in Computer Science

