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Relaxed Gabriel Graphs

Prosenjit Bose∗ Jean Cardinal† Sébastien Collette†‡ Erik D. Demaine§ Belén Palop¶

Perouz Taslakian† Norbert Zeh‖

Abstract

We study a new family of geometric graphs that interpo-
late between the Delaunay triangulation and the Gabriel
graph. These graphs share many properties with β-
skeletons for β ∈ [0, 1] (such as sublinear spanning ratio)
with the added benefit of planarity (and consequently
linear size and local routability).

1 Introduction

A geometric graph is a finite graph whose vertices are
points in the plane and whose edges are represented by
straight line segments between their endpoints. We con-
sider here a class of geometric graphs called proximity
graphs [10]. Two points p and q in the vertex set S are
deemed “close” to each other if some neighborhood of
the segment pq is empty of other points in S. The cor-
responding proximity graph contains an edge between
every such close pair of points. In this paper we study
three well-known families of proximity graphs: Gabriel
graphs, Delaunay triangulations, and β-skeletons and
combine the interesting aspects of each.

The Gabriel graph [9] is a proximity graph where two
vertices p and q are joined by an edge if and only if
the disk with diameter pq has no other points of S in
its interior. If the empty circle instead merely has to
pass through p and q, and not necessarily have pq as
its diameter, then the resulting graph is the Delaunay
triangulation. The Delaunay triangulation was intro-
duced by Delaunay in 1934 [6] and has been studied
extensively to this day. (See [13] for a survey.) Finally,
the β-skeleton is a well-known proximity graph where
the shape and size of the region that needs to be empty
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in order for two vertices of the graph to be connected by
an edge depends on a parameter β. For β = 1, the β-
skeleton of S is the Gabriel graph; as β decreases, more
and more edges are added to the β-skeleton. In general,
β-skeletons are not planar for values of β < 1, and for
small enough β they can have Θ(n2) edges.

Let d2(p, q) denote the Euclidean distance between
points p and q, and dG(p, q) the Euclidean length of the
shortest path between p and q in the graph G. A graph
G = (V,E) in the plane is a t-spanner if

dG(u, v)
d2(u, v)

≤ t for all u, v ∈ V,

where t ≥ 1 is called the spanning ratio of G.
Intuitively, graphs having a large number of edges are

more likely to have a smaller spanning ratio. In partic-
ular, the spanning ratio of the complete graph (having
an edge between every pair of vertices) is 1. However,
in 1986, Chew [4] showed that every point set has a pla-
nar 2-spanner. He also conjectured that the Delaunay
triangulation is an O(1)-spanner. Dobkin, Friedman,
and Supowit [7] proved this conjecture in the early 90’s,
establishing an upper bound of (1 +

√
5)/2 · π ≈ 5.08

on the spanning ratio of the Delaunay triangulation.
In 1992, Keil and Gutwin [11] decreased the bound to
2π/(3 cosπ/6) ≈ 2.42. A tight bound is still not known.

The Gabriel graph, on the other hand, has an un-
bounded spanning ratio [2, 8, 14]. In other words, there
exists a family of point sets such that the spanning ra-
tio of the Gabriel graph of each such point set S in the
family is a growing function of the size of S. Somewhat
surprisingly, an even stronger result holds: for any value
of β > 0, β-skeletons have an unbounded spanning ratio.
This result seems counterintuitive because the spanning
ratio of a β-skeleton is 1 for β = 0.

Ideally, we would like to have a family of proximity
graphs that have a linear number of edges (like Delaunay
and Gabriel graphs), are planar, and are parameterized
(similar to β-skeletons) to allow tuning of properties of
the graph. To this end, we define a parameterized class
of graphs called the relaxed Gabriel graph (RGG). The
relaxed Gabriel graph of a point set S is the intersection
of the Delaunay triangulation and a β-skeleton of S.
Depending on the choice of β, the spanning ratio of
the relaxed Gabriel graph ranges between that of the
Delaunay triangulation and the Gabriel graph.
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We explore the various properties of the relaxed
Gabriel graph. In particular, we show in Section 3
that the worst-case spanning ratio is nΘ(f(β)) where
0 ≤ f(β) ≤ 1, like β-skeletons. We also show in
Section 4 that relaxed Gabriel graphs admit competi-
tive online routing strategies, in particular by exploit-
ing their planarity. Finally we mention in Section 5 a
variation with better spanning ratio.

2 Definitions

In what follows, we assume that no four points are con-
cyclic.

Definition 1 (Delaunay Triangulation) Given a
set S of points in general position, the Delaunay
triangulation DT (S) of S is the graph whose vertex set
is S and that has an edge between two vertices x and y
if and only if there exists a closed disk D such that:

1. x and y are on the boundary of D, and

2. D ∩ S \ {x, y} = ∅.

Definition 2 (β-skeleton) Given a point set S in
general position and a real number β ∈ [0, 1], the β-
skeleton Gβ(S) is the graph whose vertex set is S and
that has an edge between two vertices x and y if and
only if, for every point c ∈ S \ {x, y}, the absolute angle
∠xcy ∈ [0, π] is at most α, where α = 2 arcsinβ.

In other words, there exists an edge between two
points x and y if the intersection of the two disks of
radius d2(x, y)/(2β) having x and y on their boundaries
is empty. We call this intersection the β-region of xy.
When β = 1, this intersection is exactly the disk with
diameter xy. The corresponding graph G1(S) is the
Gabriel graph.

The usual definition of β-skeletons extends to β ∈
[0,∞]. In particular, for β ∈ [1,∞[, the corresponding
empty region is the intersection of the two disks of ra-
dius β d2(x, y)/2 and centered at the points (1−β/2)x+
(β/2)y and (β/2)x + (1 − β/2)y, respectively (see Fig-
ure 1). For β ≥ 1, the β-skeleton is planar (being a
subgraph of the Gabriel graph). For β ∈ [0, 1], this may
not be the case. This is the range we concentrate on.

The relaxed Gabriel graph for a point set S is
parametrized by an angle α ∈ [0, π] and denoted by
RGGα(S). The formal definition is given below.

Definition 3 (Relaxed Gabriel graph) Given a
point set S in general position and a real number
α ∈ [0, π], the relaxed Gabriel graph RGGα(S) is the
graph with vertex set S and that has an edge between
two vertices x and y if and only if there exists a closed
disk D with center c such that:

β = 0 0 < β < 1 β = 1 β > 1 β =∞

p q p q p q p q p q

Figure 1: Empty regions defining edges in β-skeletons.
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Figure 2: Edge xy exists if the two bold disks or any
disk contained in their union and touching x and y is
empty of points in S.

1. x and y are on the boundary of D,

2. D ∩ S \ {x, y} = ∅, and

3. the angle at c in the triangle xcy is at least α.

Figure 2 illustrates this definition. Relaxed Gabriel
graphs are planar and connected. They interpolate be-
tween the Gabriel graph (for α = π) and the Delaunay
triangulation (for α = 0).

Lemma 1 The graph RGGα(S) is the Gabriel graph of
S for α = π, and the Delaunay triangulation of S for
α = 0. Given two real numbers α > α′ with α, α′ ∈
[0, π], we have RGGα(S) ⊆ RGGα′(S).

By definition, the graph RGGα(S) is a subgraph of
DT (S). Moreover, we show that the set of edges of
RGGα(S) is exactly the intersection of the edge sets of
DT (S) and the β-skeleton Gβ(S) for β = sin(α/2).

Lemma 2 (Alternative definition)

RGGα(S) = Gβ(S) ∩DT (S), where β = sin(α/2).

Proof. If an edge xy belongs to RGGα(S), then there
exists an empty disk with x and y on its boundary; thus,
the edge belongs to DT (S). The center c of this disk
makes an angle of at least α with x and y; hence, the
disk also contains the β-region of xy for β = sin(α/2).
Therefore, xy also belongs to Gβ(S).
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Figure 3: Alternative definition of the relaxed Gabriel
graphs.

On the other hand, if there exists an edge xy ∈
Gβ(S) ∩ DT (S), then there exists an empty disk with
x and y on its boundary, and the β-region of xy is
empty. If this disk contains the β-region of xy, then
by the choice of β, the center c of this disk is such that
∠xcy ≥ α (see Figure 3). Otherwise, there exists a
smaller empty disk that contains the β-region and has
x and y on its boundary. The center c of this disk is
such that ∠xcy ≥ α. Hence, in both cases, the edge xy
belongs to RGGα(S). �

As already pointed out, the β-skeleton Gβ(S) is not
necessarily planar for β ∈ [0, 1]. By selecting only edges
of the Delaunay triangulation, we ensure that RGGα is
planar. As we show in the next two sections, the restric-
tion to Delaunay edges does not affect the upper bound
on the spanning ratio of the graph, but the planarity
allows us to obtain an efficient online routing algorithm
for relaxed Gabriel graphs.

3 Spanning Ratio

We first give an upper bound on the spanning ratio
of the graph RGGα. This bound matches the O(

√
n)

bound for Gabriel graphs in the case α = π, and is
constant for α = 0, matching the upper bound on the
spanning ratio of the Delaunay triangulation [11]. Inter-
estingly, the upper bound is the same as the best known
upper bound for β-skeletons, with β = sin(α/2). The
proof is essentially the same as that by Bose et al. [2].
Their upper bound is constructive. Because the span-
ning paths they construct only involve Delaunay edges,
they are contained in RGGα. Next we provide more
details.

To prove the upper bound, we construct a walk
W (x, y) between any pair of points x, y where xy is
an edge of DT (S) (note that in a walk, some vertices
may be visited multiple times). For any such pair, it is
known that either there is an edge between x and y in
RGGα(S), or there exists a third point z ∈ S such that
the angle ∠xzy is large.

Lemma 3 Let xy be an edge of DT (S). For β ∈ [0, 1],
either xy is an edge of Gβ(S), or there exists a unique

point z such that xz and zy are also edges of DT (S),
and z lies in the β-region of xy.

Corollary 1 Let xy be an edge of DT (S). For α ∈
[0, π], either xy is an edge of RGGα(S), or there exists
a unique point z such that xz and zy are also edges
of DT (S), and z lies in the β-region of xy, with β =
sin(α/2).

The definition of the walk W (x, y) is as follows:

W (x, y) =

{
xy if xy ∈ RGGα(S),
W (x, z) ∪W (z, y) otherwise.

Bose et al. proved that the overall length |W (x, y)| of
this walk is within a polynomial factor of the Euclidean
distance between x and y.

Lemma 4 (Bose et al. [2]) If W (x, y) has m edges, then

|W (x, y)| ≤ mγd2(x, y),

where
γ = 1

2

(
1− log2(1 + cos α2 )

)
.

Because the Delaunay triangulation is a spanner, we
can find a path in DT (S) between any pair of points x
and y, the length of which is within a constant factor of
d2(x, y). Hence, the spanning ratio of RGGα is within
a constant factor of nγ .

Theorem 5 (Spanning ratio – upper bound)
Given a point set S in general position, the spanning
ratio of RGGα(S) is O(nγ), where

γ = 1
2 − 1

2 log2(1 + cos α2 ).

Because the relaxed Gabriel graph of a point set is
a subgraph of the β-skeleton, any lower bound on the
spanning ratio of the β-skeleton is also a lower bound
on the spanning ratio of the relaxed Gabriel graph. The
result of Wang et al. [14] thus implies the following.

Theorem 6 (Spanning ratio – lower bound)
There exists a point set S such that the spanning ratio
of RGGα(S) is Ω(nγ), where

γ = 1
2 − 1

2 log

(
1 +

√
1 + cos α2

2

)
.

4 Routing

One advantage we obtain by defining the relaxed
Gabriel graph as a planar subgraph of the β-skeleton
is that competitive online routing becomes possible.
In contrast, no deterministic online routing algorithm,
competitive or not, is known for β-skeletons.
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Suppose that we want to route a message from a point
s to a point t in RGGα(S). Let F (s, t) be the subgraph
of RGGα(S) spanned by all edges on the boundary of
the faces intersected by the line segment st. Then we
have the following:

Lemma 7 There exists a path between s and t in
F (s, t), of length at most O(nγ) · d2(s, t).

Proof. First suppose that st ∈ DT (S). Then the walk
defined by W (s, t) uses only edges of F (s, t). Otherwise,
if st 6∈ DT (S), there exists a path between s and t
in DT (S) that only uses edges of the faces of DT (S)
intersected by the segment st. We can replace every
edge uv in this path by the walk W (u, v) (possibly the
edge uv itself), while still using only edges of F (s, t).
Hence in both cases this path exists. �

Bose and Morin [3] proved the same result for the De-
launay triangulation and showed that this condition is
sufficient to obtain a 9t-competitive routing algorithm
for DT (S), where t ≈ 5 is the upper bound on the
spanning ratio of the Delaunay triangulation shown by
Dobkin et al. [7]. The key observation is that the short-
est path from s to t must visit every degree-3 vertex in
the shortest path tree in F (s, t) rooted at s. Because
these vertices can be recognized locally, the doubling
search technique of Baeza-Yates et al. [1] can be used
to obtain the following result.

Theorem 8 There exists an O(1)-memory determinis-
tic online routing algorithm capable of routing a message
between any two nodes s and t in RGGα(S) while travel-
ling distance at most O(nγ · d2(s, t)), where γ is defined
as in Theorem 5.

5 Generalization to Arbitrary Triangulations

Relaxed Gabriel graphs can be obtained by filtering
edges in the Delaunay triangulations. The same tech-
nique can be applied to other triangulations, where
edges that do not belong to the β-skeleton for a cho-
sen value of β in [0, 1] are removed. If we start with
triangulations having a small guaranteed spanning ra-
tio (such as Chew’s variant of Delaunay triangulations
based on triangles instead of disks [5]), we can guaran-
tee a better upper bound on the spanning ratio of the
resulting pruned graph.
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