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Abstract. We prove that two polygons A
and B have a reversible hinged dissection (a
chain hinged dissection that reverses inside and
outside boundaries when folding between A
and B) if and only if A and B are two non-
crossing nets of a common polyhedron. Fur-
thermore, monotone hinged dissections (where
all hinges rotate in the same direction when
changing from A to B) correspond exactly to
non-crossing nets of a common convex polyhe-
dron. By envelope/parcel magic, it becomes
easy to design many hinged dissections.

1 Introduction

Given two polygons A and B of equal area, a
dissection is a decomposition of A into pieces
that can be re-assembled (by translation and
rotation) to form B. In a (chain) hinged dis-
section, the pieces are hinged together at their
corners to form a chain, which can fold into
both A and B, while maintaining connectiv-
ity between pieces at the hinge points. Many
known hinged dissections are reversible (orig-
inally called Dudeney dissection [3]), meaning
that the outside boundary of A goes inside of
B after the reconfiguration, while the portion
of the boundaries of the dissection inside of A
become the exterior boundary of B. In partic-
ular, the hinges must all be on the boundary
of both A and B. Other papers [4, 2] call the
pair A,B of polygons reversible.

Without the reversibility restriction, Abbott
et al. [1] showed that any two polygons of same
area have a hinged dissection. Properties of
reversible pairs of polygons were studied by
Akiyama et al. [3, 4]. In a recent paper [2],
it was shown that reversible pairs of polygons
can be generated by unfolding a polyhedron us-
ing two non-crossing nets. The purpose of this
paper is to show that this characterization is
in some sense complete.
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An unfolding of a polyhedron P cuts the sur-
face of P using a cut tree T ,1 spanning all ver-
tices of P , such that the cut surface P \ T can
be unfolded into the plane without overlap by
opening all dihedral angles between the (pos-
sibly cut) faces. The planar polygon that re-
sults from this unfolding is called a net of P .
Two trees T1 and T2 drawn on a surface are
non-crossing if pairs of edges of T1 and T2 in-
tersect only at common endpoints and, for any
vertex v of both T1 and T2, the edges of T1 (re-
spectively, T2) incident to v are contiguous in
clockwise order around v. Two nets are non-
crossing if their cut trees are non-crossing.

Lemma 1. Let T1, T2 be non-crossing trees
drawn on a polyhedron P , each of which spans
all vertices of P . Then there is a cycle C pass-
ing through all vertices of P such that C sepa-
rates the edges of T1 from edges of T2, i.e., the
(closed) interior (yellow region) of C includes
all edges of T1 and the (closed) exterior of C
includes all edges of T2.

We can now state our first characterization.

Theorem 2. Two polygons A and B have a re-
versible hinged dissection if and only if A and
B are two non-crossing nets of a common poly-
hedron.

Proof sketch. To prove one direction, it suffices
to glue both sides of the pieces of the dissection
as they are glued in both A and B to obtain a
polyhedral metric homeomorphic to a sphere,
and note that this metric corresponds to the
surface of some polyhedron [2]. In the other
direction, we use Lemma 1 to define the se-
quence of hinges. Now the cut tree TB of net
B is completely contained in the net A and
determines the dissection.

Often times, reversible hinged dissections are
also monotone, meaning that the turn angles at

1For simplicity we assume that the edges of T are
drawn using segments along the surface of P , and that
vertices of degree 2 can be used in T to draw any polyg-
onal path.
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Figure 1: Example of
Lemma 1. The edges of
T1, T2 are colored blue,
red, respectively.

Figure 2: Reversible
hinged dissection that is
not monotone (or simple).
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Figure 3: Two simple reversible hinged dissections found by our
technique. Left: two non-crossing nets of a doubly covered triangle.
Right: Lobster to fish.

all hinges in A increase to produce B. Figure 2
shows a hinged dissection that is reversible but
not monotone. Monotone reversible hinged
dissections also have a nice characterization:

Theorem 3. Two polygons A and B have a
monotone reversible hinged dissection if and
only if A and B are two non-crossing nets of a
common convex polyhedron.

An interesting special case of a monotone re-
versible hinged dissection is when every hinge
touches only its two adjacent pieces in both
its A and B configurations, and thus A and B
are only possible such configurations. We call
these simple reversible hinged dissections. (For
example, Figure 2 is not simple.)

Lemma 4. Every simple reversible hinged dis-
section is monotone.

Corollary 5. If two polygons A and B have
a simple reversible hinged dissection, then A
and B are two non-crossing nets of a common
convex polyhedron.

Figure 3 shows two examples of hinged dis-
sections resulting from these techniques. His-
torically, many hinged dissections (e.g., in [5])
have been designed by overlaying tessellations
of the plane by shapes A and B. This con-
nection to tiling is formalized by the results of
this paper, combined with the characterization

of shapes that tile the plane isohedrally as un-
foldings of certain convex polyhedra [6].
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