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1 Introduction

The foldings and unfoldings shown in this video illus-
trate two problems: (1) cut open and unfold a convex
polyhedron to a simple planar polygon; and (2) fold and
glue a simple planar polygon into a convex polyhedron.

A convex polyhedron can always be unfolded, at
least when we allow cuts across the faces of the poly-
hedron. One such unfolding is the star unfolding [2].
When cuts are limited to the edges of the polyhedron,
it is not known whether every convex polyhedron has an
unfolding [3], although there is software that has never
failed to produce an unfolding, e.g., HyperGami [6].

The problem of folding a polygon to form a convex
polyhedron is partly answered by a powerful theorem
of Aleksandrov. The following section describes this in
more detail. After that, we explain the examples that
are shown in the video, and discuss some open problems.

2 Aleksandrov’s conditions

Aleksandrov’s theorem [1] concerns the realization of a
“polyhedral metric,” assigned to a curved surface, by
a convex polyhedron. Here we only consider a version
of the theorem that relates to folding a polygon into a
convex polyhedron. Suppose we glue each portion of the
polygon boundary to another portion of equal length so
that the resulting topological surface is homeomorphic
to a sphere. Then the theorem states that the surface
can be realized by a convex polyhedron provided that
the sum of the angles glued together at any point is
at most 2π. Furthermore, the realizing polyhedron is
unique.

Using Aleksandrov’s theorem, Lubiw and O’Rourke
[7] give a dynamic programming algorithm that decides
in polynomial time whether a polygon can be glued
edge-to-edge to satisfy Aleksandrov’s conditions. The
algorithm can also enumerate all the possible edge-to-
edge gluings satisfying Aleksandrov’s conditions. This

Figure 1: Crease patterns to fold the Latin cross into
(from left to right) a doubly covered quadrilateral, a
pentahedron, a tetrahedron, and an octahedron.

enumeration takes exponential time, but we have shown
that there can be an exponential number of valid glu-
ings. We are currently working on extending this algo-
rithm beyond the case where whole edges of the polygon
must be glued to other whole edges.

There is a considerable gap between finding a glu-
ing satisfying Aleksandrov’s conditions and construct-
ing the actual convex polyhedron his theorem guaran-
tees. It seems natural to divide the problem into two
steps: finding, in the polygonal shape, the fold lines or
creases that will form the edges of the polyhedron; and
finding the dihedral angles at these edges. A superset of
the creases can be found by constructing on the surface
of the polyhedron all shortest paths between vertices,
that is, points at which the sum of the glued angles
is less than 2π. The edges of the polyhedron will be
contained in these paths; the remaining portions of the
paths will maintain dihedral angles of π.

This leaves the second step, which is an algorithmic
version of Cauchy’s rigidity theorem: given the com-
binatorial information about containment of edges and
faces of a purported convex polyhedron, and given the
geometry of each face, find the actual convex polyhe-
dron formed. Cauchy’s rigidity theorem [4] guarantees
uniqueness. It is an open problem to find an algorithm
for this version of Cauchy’s rigidity theorem. An itera-
tive method has been explored [8] that uses springs to
relax the edge to their correct lengths, while “pumping
air” into the polyhedron to maintain convexity. While
this approach has promise, it is only a numerical ap-
proximation algorithm.



Figure 2: Folding the Latin cross into the octahedron.

3 Examples

In the video we first show two standard unfoldings of
the cube, formed by cutting along edges of the cube.
The second one is the familiar Latin cross.

Then from the cross, we show all the possible poly-
hedra than can be formed by folding and gluing edges
to edges. The first, a flat doubly covered quadrilateral,
is perhaps not so surprising. But the remarkable result
is that the cross can be folded into three other nonflat
polyhedra: a 5-vertex pentahedron, a 4-vertex tetra-
hedron, and a 6-vertex octahedron. These gluings were
found using the algorithm from [7]. The crease patterns
are shown in Fig. 1; a sample folding is shown in Fig. 2.

Next, the video shows a strange unfolding of the cube
using cuts across the faces, just to give a taste for the
many possibilities.

Finally, we give an unfolding of the cube using face
cuts, but resulting in a rectilinear polygon (which we
call the “stop-light”), and then show an alternative way
to fold this polygon (into a “spaceship”). See Fig. 3.

As mentioned in the previous section, we have no
algorithm to find the actual polyhedron formed by a
particular gluing of a polygon. Our examples were con-
structed by hand. The creases were found by mak-
ing paper models. The dihedral angles at the edges of
the polyhedra were found by ad hoc calculations using
spherical trigonometry and exploiting the symmetry of
the objects. For the octahedron we resorted to measur-
ing the dihedral angles on a cardboard model!

In our folding animations, we rotated the two faces
at an edge uniformly from angle π to the correct dihe-
dral angle. We do not know whether this will in general
keep the faces from intersecting each other, although it
appears to have done so in our examples.

4 Open Questions

We have already mentioned two major open questions
above. See [8] for an exposition of these problems.

Figure 3: An unusual unfolding of the cube into an or-
thogonal polygon, and another folding of this polygon.

The progressions shown in the video prompt a ques-
tion related to dissections:

1. Given two polyhedra, can you unfold one and fold
it to form the other?

Frederickson’s book on dissections [5] mentions dis-
secting the surface of polyhedra, but without the restric-
tion that the unfolded surface be connected and simple.
In particular he shows an example, due to Theobald,
of cutting the surface of a cube and unfolding into two
polygons that can then be reglued and folded to form
a regular tetrahedron. We transformed the cube into a
tetrahedron using only one connected simple piece, but
the resulting tetrahedron is not regular. Hence a very
specific question:

2. Can a cube be unfolded to a polygon that can then
be folded to form a regular tetrahedron?

Another question raised by the surprising unfoldings
of the cube is simpler but less well-defined:

3. Characterize the class of simple polygons and non-
simple polygons that are unfoldings of a given con-
vex polyhedron, such as the cube.
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