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Abstract

Sand drawings form a part of many cultural artistic traditions. Depending on the part of the world in
which they occur, such drawings have different names such assona, kolam, andMalekula drawings.
Gaussian graphsare mathematical objects studied in the disciplines of graph theory and topology. We
uncover a bridge between sand drawings and Gaussian graphs, leading to a variety of new mathematical
problems related to sand drawings. In particular, we analyze sand drawings from combinatorial, graph-
theoretical, and geometric points of view. Many new mathematical open problems are illuminated and
listed.

1. Introduction

Different cultures around the world contain mathematics in one form or another. Not all of these mathe-
matical ideas have developed out of necessity, like counting and calculation: some mathematical ideas are
developed in the context of cultural arts. The study of this mathematical art within and without its cultural
context constitutes the field ofethnomathematics[2, 3, 12, 22].

In this paper, we explore the mathematics and geometry found in a particular kind of visual art that seems
to have developed independently in different forms in disparate cultures. In its basic form, the artist draws
dots and one surrounding continuous loop, which crosses itself repeatedly, in the sand or on a floor sprinkled
with powder. Collectively, we refer to these practices assand drawings, though each practicing culture has
its own name for the visual art.

For example, the women in Tamil Nadu (South India) create geometric designs using rice flower, called
kolam, at the entrances of their homes [3]. One type of kolam, calledpulli kolam, consists of first drawing
a grid of dots (thepulli), and then drawing a continuous closed curve that partitions the planar space into
as many bounded regions as there are dots, such that each bounded region contains exactly one dot. Each
kolam drawing has a name. Figure 1 illustrates two such drawings.

Figure 1: Two examples ofpulli kolam: the Anklet of
Krishna(left) andThe Ring(right).

Figure 2: Two examples ofsona: theAntelope’s Paw
(left) and theSpider(right).
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TheTshokwepeople of the West Central Bantu area of Africa make similar drawings calledsona. In these
drawings, it may happen that some regions contain more than one dot, or that some regions are empty [2, 12].
Figure 2 shows two such drawings: the drawing on the left has two empty bounded regions, while the drawing
on the right has one bounded region with five dots. Some sona drawings do not have dots at all. However, in
most sona drawings, there is exactly one dot per region.

Paulus Gerdes [12] has developed several geometric algorithms for constructing some families ofsona
drawings. One such algorithm uses Euclid’s algorithm for computing the greatest common divisor of two
natural numbers. It is interesting that the Euclidean algorithm [9] not only generates traditional drawings in
visual art, but also traditional rhythms in music [19].

In other traditions, people make drawings on the sand without first placing a grid of dots. TheMalekula
sand drawings are one such example. The Malekula people live on the island of Vanuatu in the South Pacific.
Marcia Ascher [4] has analysed these drawings from the graph theoretic, geometric, and topological points
of view.

From a geometric perspective, a sand drawing can be viewed as a self-intersecting closed curve drawn
in the two-dimensional plane. Translating this definition of sand drawings into graph theory, the intersection
points of the curve map to vertices and the portions of the curve connecting these vertices map to edges of a
planar map. We are also interested in how dots can be placed so that exactly one dot lies in each region of
the planar map (except for the infinite outside face). Although not all sand drawings have this property, this
seems to be the most natural mathematical abstraction of the majority of sand drawings.

In this paper we unveil the bridge between sand drawings and a class of graphs known as Gaussian
graphs. We pose a variety of basic questions about sand drawings and Gaussian graphs, solve some of them,
and leave the reader with many interesting mathematical problems to consider.

2. Gaussian Graphs

Gaussian graphs implicitly go back to an observation of Carl Gauss around 1830 [11] that was proved by
Julius v. Sz. Nagy almost a hundred years later [21]. The formal notion of Gaussian graphs was introduced
more recently by Michael Gargano and John Kennedy [10], and then generalized by John Kennedy and
Brigitte and Herman Servatius [14]. We follow the latter, more general, definition here, although our main
interest is in the original definition of Gargano and Kennedy.

First we need some basic terminology from graph theory. Agraph is a collection of vertices (or points)
together with a collection of edges (or lines) connecting pairs of vertices. Thedegreeof a vertex is the
number of edges incident to it. Acircuit in a graph is a cyclic sequence alternating between vertices and
edges such that the two endpoints of each edge are the two adjacent vertices in the sequence. Thus a circuit
may repeat vertices and/or edges. A graph isEulerianif it has a circuit visiting every edge exactly once. It is
well known that a graph is Eulerian if and only if it is connected and every vertex has even degree. A special
family of Eulerian graphs is4-regular graphs, in which every vertex has degree exactly4. A planar mapis
a graph together with aplanar embedding, a placement of the vertices as points in the plane and a drawing
of the edges as curves that intersect each other only at common endpoints. When such a planar embedding
exists, the graph itself is also calledplanar. A planar graph can have several different planar embeddings.
We call two planar embeddings(combinatorially) equivalentif they define the same clockwise cyclic order
of edges around each vertex.

Intuitively, aGaussian graph[14] is a planar map that can be drawn by a single closed curve that “goes
straight” at each vertex. More precisely, two edges incident to a common vertexv areparallel if these edges
partition the clockwise order of edges aroundv into two pieces with an equal number of edges. In other
words, if we label the edges incident tov by 1, 2, . . . ,degree(v) in clockwise order, then two of these edges
are parallel precisely if they have the same label modulodegree(v)/2. A transverse circuitof a planar map
is a circuit whose successive edges are parallel. A planar map is Eulerian if and only if it is connected and its



edges decompose into one or more transverse circuits. AGaussian mapis an Eulerian map that decomposes
into exactly one transverse circuit.

Intuitively, asand drawingor sona drawingis a closed curve drawn in the plane such that no more than
two pieces of the curve intersect at the same point and such that the curve does not “touch” itself without
crossing itself. More precisely, if we label the four portions of the curve around an intersection pointv by
1, 2, 3, 4 in clockwise order, then the curve in a sona drawing should connect portion1 to portion3, connect
portion2 to 4, and connect no other pairs. In other words, a sona drawing is a4-regular Gaussian map, so we
also use the termsona mapto make clear the underlying graph and embedding structure. Kennedy et al. [14,
Theorem 2] show that, for any 4-regular planar graph, the number of its transverse circuits is independent of
its embedding. Thus, all embeddings of the underlying graph in a sona map are sona maps. We can therefore
define asona graphto be a planar 4-regular graph whose planar embeddings (all) create sona maps.

There are efficient (linear-time) algorithms to determine whether a given graph or map are sona. To
decide whether a planar map is sona, check 4-regularity and check whether all edges are visited by starting on
an arbitrary edgee0 in an arbitrary orientation and, upon entering a vertexv along an edgee, exitingv along
the unique edge incident tov that is parallel toe. Kennedy et al. [14] give an incremental characterization
of all sona maps, which also leads to an efficient algorithm for deciding whether a planar map is sona. To
decide whether a graph is sona, find a planar embedding using, e.g., the algorithm of [6], and upon success,
test whether the resulting planar map is sona as above.

Throughout this paper,n denotes the number of bounded regions orfacesof a sona map, or the number
of such regions that a sona graph would have if it were embedded into the plane. This countn corresponds
to the number of dots that would be placed, exactly one per bounded face, in many cultural practices. We
therefore sometimes speak of “a sona map onn dots” or “a sona graph onn dots”.

Lemma 1 A sona graph onn dots hasn− 1 vertices and2(n− 1) edges.

Proof: The numberE of edges is half the total degree of theV vertices. Because every vertex has degree4,
E = 2V . By Euler’s Formula,V − E + F = 2 whereF = n + 1 is the number of faces including the
infinite outside face. SubstitutingE andF , we obtainV − 2V + n + 1 = 2, i.e.,V = n − 1. Therefore,
E = 2V = 2(n− 1). 2

In addition to their connection to Gaussian graphs in graph theory, sona maps are equivalent to generic
closed curves (immersions of the unit circle into the plane) in the field of topology. Bygeneric, we mean that
the curve is not tangent to itself anywhere and that no more than two portions of the curve cross at any point.
Arnol′d [1], for example, proves several topological invariants about such curves. Craveiro [7] considers
the curves that are “maximally looped”. Ozawa [17] considers the number of bitangents, shared tangents
between different points on the curve.

3. Combinatorics of Sand Drawings

In this section, we analyze the number of different sona drawings. There are two main different objects we
can count: sona graphs and sona maps. Each sona graph has one or more associated sona maps, so in general
there are more maps than graphs.

3.1. Enumeration and Drawing. We have developed a software program that generates all sona graphs
and sona maps onn dots, for smalln. More precisely, the program generates all distinct sona graphs on
n dots, and all distinct sona maps onn dots, incrementally forn = 2, 3, 4, . . .. It uses the incremental
characterization of sona maps by Kennedy et al. [14] to generate, for each sona map onn− 1 dots, a list of
O(n2) sona maps onn dots. The combined list of all such sona maps onn dots includes all possible sona
maps onn dots, but it lists the same sona map more than once if it can be generated in multiple ways. The



time consuming part of the computation is to then remove duplicates from the resulting list, first according to
combinatorial equivalence of sona maps, and second according to isomorphism of sona graphs. The program
simply tests each pair of sona maps for equivalence of either type, by testing all possible bijections between
the vertices of the two maps, and removes duplicates.

sona sona
n dots graphs maps
n = 1 1 1
n = 2 1 2
n = 3 1 5
n = 4 3 21
n = 5 5 102
n = 6 13 639
n = 7 38 4,492
n = 8 133 34,032

Table 1: Number of sona graphs
and sona maps onn dots for
smalln.

Table 1 shows the computed number of sona graphs and sona maps
onn dots forn between1 and8.

The program also draws a polygonal planar embedding of each sona
map, where each edge is represented by a chain of up to three line seg-
ments, by triangulating and applying a theorem of Tutte [20]. Unfor-
tunately, these drawings make poor use of area and are barely visible
without zooming in extremely close. We redrew each sona map forn
between1 and4 using a combination of circular arcs and straight lines,
joined at common tangents, so that the resulting curve always crosses it-
self at right angles, and to illustrate all symmetries in the map. Figure 3
shows these drawings of all sona maps forn between1 and4.

We distinguish sona maps from their reflections, but the only sona
map in Figure 3 that lacks reflectional symmetry is the second and fourth
maps in the second row ofn = 4, which resemble a treble clef.

3.2. Combinatorial Complexity. One measure of thecombinatorial complexityof a sona map onn dots is
the sum of the depths of all its faces; thedepthof a face is the minimum number of edges that a point within
the face needs to cross in order to reach the outer face of the map. Forn = 4, the sona map with the highest
complexity is the third map on the second row ofn = 4 in Figure 3, It consists of a loop nested within double
edges and a loop, resembles a rose, and has complexity10. The face depth sequenceof a sona map is the
ordered sequence of the depths of all its bounded faces. The face depth sequence does not uniquely define
a sona map. For example, the two rightmost maps on the first row ofn = 4 in Figure 3 have the same face
depth sequence1, 1, 2, 2.

3.3. Sona Maps. The general combinatorics of sona maps remains open:

Open Problem 1 How many different sona maps are there onn dots?

This question has been studied before for smalln by Arnol′d [1]. The sequence is in OEIS [18,
A008981]. The rightmost column of Table 1 shows the sequence for smalln, computed by Arnol′d [1]
and verified exhaustively by our software. To our knowledge, however, no closed-form solution or asymp-
totic bounds have been published previously. Again we can provide asymptotic upper and lower bounds of
2Θ(n):

Theorem 2 There are at leastΩ(4n/n3/2) different sona maps onn dots.

Proof: As defined by Arnol′d [1], a sona map istree-likeif cutting any vertex disconnects the map into two
components. For example, the top-right map ofn = 4 in Figure 3 is not tree-like, while the one to its left
is tree-like. Every rooted ordered tree can be converted into a different tree-like sona map, so the number of
such sona maps is at least the number of rooted ordered trees. The number of such trees onn nodes is the
nth Catalan number:

(2n
n

)
/(n + 1) = 1√

π
4n/n3/2 −O(4n/n5/2). 2

Theorem 3 There are at most16n−O(lg n) different sona maps onn dots.



Figure 3: All sona maps onn dots forn between1 and4.

Proof: The number of sona maps onn dots is at most the number of Eulerian planar maps onn′ = 2(n− 1)
edges. This sequence is in the OEIS [18, A069727]. Liskovets and Walsh [15] give an explicit formula
for this sequence. Also they prove that the number of Eulerian planar maps onn′ edges is asymptotically
equal to the number of rooted Eulerian planar maps onn′ edges divided by2n′, while the number of rooted
Eulerian planar maps onn′ edges is

3 · 2n′−1

(n + 1)(n + 2)

(
2n

n

)
= 8n′−O(lg n′).

Therefore, the number of sona maps onn dots is asymptotically at most16n−O(lg n). 2

3.4. Sona Graphs. The general combinatorics of sona graphs also remains open:

Open Problem 2 How many different sona graphs are there onn dots?



Figure 4: Two different sona maps with the same face degree sequence:
1, 1, 4, 5.

Figure 5: A sona map in which all
but two faces have degree 1.

The middle column of Table 1 shows the answer for smalln, found via exhaustive search. This sequence
is not currently listed in theOn-line Encyclopedia of Integer Sequeneces(OEIS) [18], and we plan to submit
it. While the exact counts remain open for generaln, we can provide asymptotic upper and lower bounds of
2Θ(n):

Theorem 4 There are at leastΩ(2.95n) different sona graphs onn dots.

Proof: As in the proof of Theorem 2, we consider tree-like sona maps. Every unrooted unordered tree
can be converted into a different tree-like sona graph, so the number of such sona graphs is at least the
number of unrooted unordered trees. The latter sequence is in the OEIS [18, A000055]. Otter [16] computes
the asymptotic number of unrooted unordered trees onn vertices to be β3

3α9/2

∣∣∣(3/2
n

)∣∣∣αn + O(αn/n7/3) ≈
0.53479 αn/n5/2 + O(αn/n7/2), whereα ≈ 2.955765 andβ ≈ 7.924. 2

Our best upper bound on the number of sona graphs follows trivially from Theorem 3’s upper bound on
the number of sona maps:

Corollary 5 There are at most16n−O(lg n) different sona graphs onn dots.

We are not aware of any better upper bounds on the number of Eulerian planar graphs compared to what
we used in Theorem 3 about Eulerian planar maps. For example, the best known asymptotic upper bound on
the number of unlabeled planar graphs withn vertices is given by Bonichon et al. [5]:2αn+O(log n) where
α ≈ 4.9098. This result implies an upper bound ofO(30.1n), which is strictly worse than Corollary 5.

4. Face Degrees of Sand Drawings

This section investigates the “face degree sequence” of sona maps. Thedegreeof a face in a planar map is
the number of edges that bound the face. Theface degree sequenceof a planar map is the sequence of the
degrees of all bounded faces (excluding the infinite outside face), sorted by degree. There can be multiple
sona maps with the same face degree sequence. Figure 4 shows one such example.

We omit the degree of the outside face from the face degree sequence because it is determined byn and
the rest of the sequence. The total degree of all faces, including the outside face, is twice the number of
edges. By Lemma 1, the degree of the outside face is4(n − 1) minus the total degree of all bounded faces,
i.e., the sum of the values in the face degree sequence.

4.1. Equal Face Degrees.We begin by investigating the extent to which most of the degrees in the face
degree sequence can be equal. First we prove that most of the face degrees are equal, they must be at most4:

Lemma 6 The average face degree of any sona map, counting the outside face, is4(n − 1)/(n + 1) =
4− 8/n + O(1/n2).



Figure 6: A sona map in which all but three
faces have degree exactly2.

Figure 7: “Men-lions that, stealthily, plan their in-
trigues” [12].

Proof: Let D denote the average face degree. The number of edges is half the total face degree:E =
(DF )/2. By Lemma 1,2(n−1) = (D(n+1))/2, soD = 4(n−1)/(n+1). Asymptotically,(n−1)/(n+
1) = 1− 2/n + 2/n2 −O(1/n3). 2

Lemma 7 For anyn, there is a sona map onn dots withn− 1 faces of degree exactly1.

Proof: See Figure 5. The construction loops around each of then dots in turn. For the last dot, however, it
just circles around it and connects to the starting point. 2

Lemma 8 For anyn, there is a sona map onn dots withn− 2 faces of degree exactly2, and with two faces
of degree exactly1.

Proof: See Figure 6. The construction takes a loop of string and twists the two strands (reversing their order)
in between passing over each dot. 2

Interestingly, this construction appears as an element in real-world sona drawings; see Figure 7.

Lemma 9 For anyn, there is a sona map on3n+1 dots with3n− 2 faces of degree exactly3, and with two
faces of degree exactly2.

Proof: See Figure 8. Take the construction from Figure 6 and, just before closing the loop, continue the
drawing by crossing each face, dividing each face into two; then return to the original point to close the loop.

2

Lemma 10 For anyn, there is a sona map onn dots withn−O(
√

n) faces of degree exactly4.

Proof: See Figure 9. Consider the “grid” sona map where all faces except forO(
√

n) on the boundary have
degree exactly4. Now, for any such grid sona map withn faces, we can draw a grid sona map with a higher
value ofn by adding two rows or two columns, whichever is smaller. The total number of faces added to
the new drawing is at most2

√
n. Thus, the gap in the number of faces between any two consecutive grid

sona maps isO(
√

n). To construct a sona map whose number of faces is betweenn andn + 2
√

n, we can
simply pick a non-degree-4 face and add loops to the face until we obtain the number of faces we want. This
modification changes the degree of one face and will add up toO(

√
n) new faces, thus keeping the number

of faces not of degree4 bounded byO(
√

n). 2

This construction also appears in real-world sona drawings; see Figure 10. A similar grid-like construc-
tion appears in the pulli kolam of Figure 1.



Figure 8: A sona map in which all but four faces have
degree exactly3.

Figure 9: A sona map with
n−O(

√
n) faces of degree ex-

actly4.

Figure 10: “A
small animal that
lives in a tree hole
and pierces the
intestines” [2].

4.2. Characterizing Face Degree Vectors.

Open Problem 3 What is the complexity of deciding whether a given finite nondecreasing sequence of pos-
itive integers is the face degree sequence of some sona map? When it exists, can we construct such a sona
map?

An obvious necessary condition for a finite sequence of positive integers to be the (vertex or face) degree
sequence of a graph is that the sum must be even (twice the number of edges). Hakimi [13] proved that every
such sequence is the vertex degree sequence of some graph, possibly with loops and multiple edges. Note
that this problem is substantially easier than characterizing the degree sequences of simple graphs (with no
loops or multiple edges), considered by Erdős and Gallai [8] and Hakimi [13].

Naturally, this universality no longer holds when we add the restrictions of planarity, Eulerian, Gaussian,
and/or sona. One specific related problem, which we are not aware of being studied before, is the following:

Open Problem 4 What is the complexity of deciding whether a given finite nondecreasing sequence of pos-
itive integers is the (vertex or face) degree sequence of some planar map? When it exists, can we construct
such a planar map?

Face and vertex degree sequences are closely related to face depth sequences defined in Section 3.2: all
three are integer sequences that do not uniquely define a sona map. Thus, the open problems of this section
can also be asked for face depth sequences.

5. Sand Drawings on Given Dots

In this section, we consider a family of geometric sand-drawing problems: givenn dots in the plane, find a
sona map with exactly one of the given dots in each face (except the outside face) subject to some constraints
or optimizing some objective function. This extra constraint captures how sand drawings are often performed
in practice.

5.1. Minimum-Length Sona Maps. A natural geometric objective, albeit of dubious artistic merit, is to
minimize the Euclidean length of the curve (or equivalently, the total Euclidean length of edges in the map).
This minimum length is in fact an infimum, and may not be exactly achievable.

Open Problem 5 What is the complexity of finding the minimum-length sona map for a given set of dots in
the plane?

A natural value to compare to is the minimum length of a Euclidean Traveling Salesman (TSP) tour, i.e.,
the shortest closed tour that visits every dot. We refer to the length of this tour asTSP.



Lemma 11 For anyε > 0, every set of dots has a sona map of lengthTSP + ε.

Proof: As in the proof of Lemma 7 and Figure 5, we loop around each dot in turn, now with very small
loops, connecting the loops together with theTSP tour. We do not loop around the last dot, but we do visit
it to ensure that it is enclosed by the high-degree bounded face. 2

Lemma 12 There is a set of four dots on which the minimum-length sona map has lengthTSP/c0 where
c0 = 2/3 + 2

√
3/9 > 1.05.

Figure 11: The TSP tour (dashed
lines) is slightly longer than the
sona map whose faces encircle the
given dots.

Proof: Consider four dots, three dots forming an equilateral triangle with
side length1 and the fourth dot in the center of the triangle (Figure 11).
The optimal TSP tour has length2 + 2

√
3/3 > 3.15, while the optimal

solution visits only the corners of the triangle, at a cost of3 + ε for some
small positiveε. 2

Open Problem 6 Does every sona map have length at leastTSP/c for
some constantc > 0?

5.2. Other Objectives. Geometrically, it is natural to consider optimiz-
ing objectives other than total Euclidean length. It remains to determine
whether these objectives are artistically more or less interesting.

Open Problem 7 What is the complexity of finding a sona map on a given set of dots, where each edge is
drawn as a polygonal chain of links, that minimizes the total number of links?

Open Problem 8 What is the complexity of finding a sona map on a given set of dots that minimizes the
total absolute turn angle along the transverse circuit?

5.3. Two Coloring. A more difficult family of problems arises when each dot has one of two colors, and
the face 2-coloring of the sona map must match the specified coloring of dots. We can extend Lemma 11 to
this case:

Lemma 13 For anyε > 0, every 2-colored set of dots has a sona map of lengthTSP + ε.

Proof: See Figure 12. We follow the proof of Lemma 11, but loop right or loop left around each dot
according to color. The last dot is in the high-degree face; if it has the wrong color, invert all of the other
dots’ orientations to fix it. 2

5.4. Clockwise Turning.

Open Problem 9 Given a sona map, can we decide in polynomial time whether it can be drawn using only
clockwise turns? Characterize such sona maps. How many are there onn dots?

It is not the case that every face degree vector of a sona map is the face degree vector of a clockwise-
turning sona map. A simple example is the sona drawing illustrated in Figure 13 whose face degree vector
has nine1’s and one10. Another interesting question is whether the family of sona maps with face degree
vector1, 1, . . . , 1, k + 1, where the number of1’s is k > 1, constitutes a family of sona maps that cannot be
drawn with only clockwise turns.



Figure 12: Given dots colored as either circles or
squares, we can always find a sona map in which no
two faces containing elements of the same color share
an edge.

Figure 13: This sona map with face degree vec-
tor 1, 1, 1, 1, 1, 1, 1, 1, 1, 10 cannot be drawn with
only clockwise turns.
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