
The Stackelberg Minimum Spanning Tree Game∗

Jean Cardinal† Erik D. Demaine‡ Samuel Fiorini§ Gwenaël Joret¶

Stefan Langerman‖ Ilan Newman∗∗ Oren Weimann††

Abstract

We consider a one-round two-player network pricing game, the Stackelberg Mini-
mum Spanning Tree game or StackMST.

The game is played on a graph (representing a network), whose edges are colored
either red or blue, and where the red edges have a given fixed cost (representing the
competitor’s prices). The first player chooses an assignment of prices to the blue edges,
and the second player then buys the cheapest possible minimum spanning tree, using
any combination of red and blue edges. The goal of the first player is to maximize the
total price of purchased blue edges. This game is the minimum spanning tree analog
of the well-studied Stackelberg shortest-path game.

We analyze the complexity and approximability of the first player’s best strategy
in StackMST. In particular, we prove that the problem is APX-hard even if there are
only two different red costs, and give an approximation algorithm whose approximation
ratio is at most min{k, 1+ln b, 1+lnW}, where k is the number of distinct red costs, b is
the number of blue edges, and W is the maximum ratio between red costs. We also give
a natural integer linear programming formulation of the problem, and show that the
integrality gap of the fractional relaxation asymptotically matches the approximation
guarantee of our algorithm.

∗A preliminary version of this article appeared in the Proceedings of the 10th Workshop on Algorithms
and Data Structures (WADS 2007), see [7]. This work was partially supported by the Actions de Recherche
Concertées (ARC) fund of the Communauté française de Belgique.
†Université Libre de Bruxelles, Département d’Informatique, c.p. 212, B-1050 Brussels, Belgium,

jcardin@ulb.ac.be.
‡MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA, ede-

maine@mit.edu.
§Université Libre de Bruxelles, Département de Mathématique, c.p. 216, B-1050 Brussels, Belgium,

sfiorini@ulb.ac.be.
¶Université Libre de Bruxelles, Département d’Informatique, c.p. 212, B-1050 Brussels, Belgium,

gjoret@ulb.ac.be. G. Joret is a Postdoctoral Researcher of the Fonds National de la Recherche Scientifique
(F.R.S.–FNRS).
‖Université Libre de Bruxelles, Département d’Informatique, c.p. 212, B-1050 Brussels, Belgium,

slanger@ulb.ac.be. S. Langerman is a Research Associate of the Fonds National de la Recherche Scien-
tifique (F.R.S.–FNRS).
∗∗Department of Computer Science, University of Haifa, Haifa 31905, Israel, ilan@cs.haifa.ac.il.
††MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA,

oweimann@mit.edu.

1

1 Introduction

Suppose that you work for a networking company that owns many point-to-point connec-
tions between several locations, and your job is to sell these connections. A customer wants
to construct a network connecting all pairs of locations in the form of a spanning tree. The
customer can buy connections that you are selling, but can also buy connections offered
by your competitors. The customer will always buy the cheapest possible spanning tree.
Your company has researched the price of each connection offered by the competitors. The
problem considered in this paper is how to set the price of each of your connections in
order to maximize your revenue, that is, the sum of the prices of the connections that the
customer buys from you.

This problem can be cast as a Stackelberg game, a type of two-player game introduced
by the German economist Heinrich Freiherr von Stackelberg [18]. In a Stackelberg game,
there are two players: the leader moves first, then the follower moves, and then the game
is over. The follower thus optimizes its own objective function, knowing the leader’s move.
The leader has to optimize its own objective function by anticipating the optimal response
of the follower. In the scenario depicted in the preceding paragraph, you were the leader
and the customer was the follower: you decided how to set the prices for the connections
that you own, and then the customer selected a minimum spanning tree. In this situation,
there is an obvious tradeoff: the leader should not put too high price on the connections—
otherwise the customer will not buy them—but on the other hand the leader needs to put
sufficiently high prices to optimize revenue.

Formally, the problem we consider is defined as follows. We are given an undirected
graph1 G = (V,E) whose edge set is partitioned into a red edge set R and a blue edge set
B. Each red edge e ∈ R has a nonnegative fixed cost c(e) (the best competitor’s price).
The leader owns every blue edge e ∈ B and has to set a price p(e) for each of these edges.
The cost function c and price function p together define a weight function w on the whole
edge set. By “weight of edge e” we mean either “cost of edge e” if e is red or “price of edge
e” if e is blue. A spanning tree T is a minimum spanning tree (MST) if its total weight∑

e∈E(T)

w(e) =
∑

e∈E(T)∩R

c(e) +
∑

e∈E(T)∩B

p(e) (1)

is minimum. The revenue of T is then ∑
e∈E(T)∩B

p(e). (2)

The Stackelberg Minimum Spanning Tree problem, StackMST, asks for a price function p
that maximizes the revenue of an MST. Throughout, we assume that the graph contains a
spanning tree whose edges are all red; otherwise, there is a cut consisting only of blue edges
and the optimum value is unbounded. Moreover, to avoid being distracted by epsilons, we

1All graphs in this paper are finite and may have loops and multiple edges.

2

assume that among all edges of the same weight, blue edges are always preferred to red
edges; this is a standard assumption. As a consequence, all minimum spanning trees for a
given price function p have the same revenue; see Section 2 for details.

Related work. A similar pricing problem, where one wants to price the edges in B and
the customer wants to construct a shortest path between two vertices instead of a spanning
tree, has been studied in the literature; see van Hoesel [17] for a survey. Complexity and
approximability results have recently been obtained by Roch, Savard and Marcotte [15],
and by Bouhtou, Grigoriev, van Hoesel, van der Kraaij, Spieksma, and Uetz [4]: the prob-
lem is strongly NP-hard and O(log |B|)-approximable. A generalization of the problem to
more than one customer has been tackled using mathematical programming tools, in par-
ticular bilevel programming; see Labbé, Marcotte, and Savard [13]. This generalization was
motivated by the problem of setting tolls on highway networks. Note that the StackMST
problem is only interesting in the single-customer case, since otherwise all customers pur-
chase the same tree. Cardinal, Labbé, Langerman, and Palop [8] give a geometric version
of the shortest path problem.

Recently, part of the results of the current paper have been generalized to other prob-
lems by Briest, Hoefer and Krysta [5]. They also exhibit a polynomial-time algorithm for
a special case of a Stackelberg vertex cover problem, in which the follower’s problem is to
find a minimum vertex cover in a bipartite graph.

Other pricing problems have been studied, in which the goal is to find the best prices
for a set of items, after bidders have announced their preferences in the form of subset
valuations. Envy-free pricing, in particular, can be viewed as a simple Stackelberg game.
APX-hardness and approximability of such problems have been established by Hartline and
Koltum [12], and by Guruswami, Hartline, Karlin, Kempe, Kenyon, and McSherry [11].
Balcan and Blum [2] gave improved approximation results. Approximability within a
logarithmic factor has also been recently established for more general cases by Balcan,
Blum and Mansour [3]. The case in which items are edges of a graph has been studied by
Grigoriev, van Loon, Sitters and Uetz [10], and Briest and Krysta [6]. A semi-logarithmic
inapproximability result for a special case of the unlimited supply pricing problem has been
given by Demaine, Feige, Hajiaghayi, and Salavatipour [9].

Our results. We analyze the complexity and approximability of the StackMST prob-
lem. Specifically, we prove the following:

1. StackMST is APX-hard, even if there are only two red costs, 1 and 2 (Section 3).
This result is also the first NP-hardness proof for this problem, and, to our knowledge,
the first APX-hardness proof for a Stackelberg pricing game with a single customer.
The reduction is from SetCover.

2. StackMST is O(log n)-approximable, and is O(1)-approximable when the red costs
either fall in a constant-size range or have a constant number of distinct values
(Section 4). More precisely, we analyze the following simple approximation algorithm,

3

called Best-out-of-k: for all i between 1 and k, consider the price function for which
all blue edges have price ci, and output the best of these k price functions. Here,
and throughout the paper, ci denotes the ith smallest cost of a red edge and k the
number of distinct red costs. We prove that the approximation ratio of this algorithm
is bounded above by min{k, 1 + ln b, 1 + ln(ck/c1)}, where b is the number of blue
edges.

3. The integrality gap of a natural integer linear programming formulation asymptoti-
cally matches the approximation guarantee of Best-out-of-k (Section 5). Thus, effec-
tively, any approximation algorithm based on the linear programming relaxation of
our integer program (or any weaker relaxation) cannot do better than Best-out-of-k.
Of course, this result does not imply that Best-out-of-k is optimal. In fact, a cen-
tral open question about StackMST is to determine if it admits a constant factor
approximation algorithm.

2 Basic Results

Before we proceed to our main results, we prove a few basic lemmas about StackMST.
We claimed in the introduction that the revenue of the leader depends on the price

function p only, and not on the particular MST picked by the follower. To see this, let
w1 < w2 < · · · < w` denote the different edge weights. The greedy algorithm (a.k.a.
Kruskal’s algorithm) will work in ` phases: in its ith phase, it will consider all blue edges
of price wi (if any) and then all red edges of cost wi (if any). The number of blue edges
selected in the ith phase will not depend on the order in which blue or red edges of weight
wi are considered. This shows the claim. Moreover, if there is no red edge of cost wi then
p is not an optimal price function because the leader can raise the price of every blue edge
of price wi to the next weight wi+1 and thus increase his/her revenue. This implies the
following lemma.

Lemma 1. In every optimal price function, the prices assigned to the blue edges appearing
in some MST belong to the set {c(e) : e ∈ R}.

Notice that for optimal price functions, the prices given to the blue edges that are in
no MST do not really matter, as long as they are high enough. We find it convenient to
see them as equaling ∞. This has the same effect as deleting those blue edges. A direct
consequence of Lemma 1 is that the decision version of StackMST belongs to NP, using
some price function p with p(e) ∈ {c(e) : e ∈ R} ∪ {∞} for all e ∈ B as a certificate.
Another possibility for a certificate is an acyclic set of blue edges F , interpreted as the
set of blue edges in any MST. Given F , we can easily compute an optimal price function
such that F is the set of blue edges in any MST, with the help of Lemma 2 below. In the
lemma, we use the notation C(B′, e) for the set of cycles of G = (V,R ∪ B′) that include
the edge e, where B′ is an acyclic subset of blue edges and e ∈ B′. (Notice that C(B′, e) is
nonempty because (V,R) is connected.)

4

Lemma 2. Consider a price function p, a corresponding minimum spanning tree T , and
let F = E(T) ∩B. Then for every e ∈ F , we have

p(e) ≤ min
C∈C(F,e)

max
e′∈E(C)∩R

c(e′). (3)

Moreover, whenever F is any acyclic set of blue edges and we set p(e) equal to the right
hand side of (3) for e ∈ F and p(e) =∞ for e ∈ B − F , we have E(T ′) ∩ B = F for any
corresponding MST T ′.

Proof. The first part of the lemma is straightforward. Indeed, if (3) fails for some edge
e ∈ F , then there exists a red edge e′ with c(e′) < p(e) that links the two components of
T − e, and so T cannot be an MST. We now turn to the second part of the lemma. First
note that E(T ′) ∩ B is clearly contained in F because no MST can use any edge with an
infinite price. By contradiction, suppose there is some edge e in F that is not used by T ′

and let e′ be a red edge with maximum cost on the unique cycle of T ′ + e. Because the
price function p we have chosen satisfies (3) (with equality), the weight of edge e is at most
the weight of e′, and thus T ′ is not an MST because of our assumption that blue edges
have priority over the red edges of the same weight.

It follows from the above lemma that StackMST is fixed parameter tractable with
respect to the number of blue edges. Indeed, to solve the problem, one could try all acyclic
subsets F of B, and for each of them put the prices as above (this can easily be done in
polynomial time), and finally take the solution yielding the highest revenue. We conclude
this section by stating a useful property satisfied by all optimal solutions of StackMST.

Lemma 3. Let p be an optimal price function and T be a corresponding MST. Suppose
that there exists a red edge e in T and a blue edge f not in T such that e belongs to the
unique cycle C in T + f . Then there exists a blue edge f ′ distinct from f in C such that
c(e) < p(f ′) ≤ p(f).

Proof. The inequality c(e) < p(f) follows from the optimality of T and from our assumption
on the priority of blue edges versus red edges of the same weight. If all blue edges f ′ distinct
from f in C satisfied p(f ′) ≤ c(e) or p(f) < p(f ′) then by decreasing the price of f by some
amount we would be able to find a new price function p′ such that T ′ = T − e′ + f is an
MST with respect to p′, where e′ is some red edge on C. This contradicts the optimality
of p because the revenue of T ′ is bigger than that of T .

3 Complexity and Inapproximability

By Lemma 1, StackMST is trivially solved when the cost of every red edge is exactly 1,
i.e., when c(e) = 1 for all e ∈ R. In this section, we show that the problem is APX-hard
even when the costs of the red edges are only 1 and 2, i.e., when c(e) ∈ {1, 2} for all e ∈ R.
We start with NP-hardness:

5

Theorem 1. StackMST is NP-hard even when c(e) ∈ {1, 2} for all e ∈ R.

Proof. We present a reduction from SetCover (in its decision version). Let (U ,S)
and the integer t be an instance of SetCover, where U = {u1, u2, . . . , un}, and
S = {S1, S2, . . . , Sm}. Without loss of generality, we assume that un ∈ Si for every
i = 1, 2, . . . ,m (we can always add one element to U and to every Si to make sure this
holds).

We construct a graph G = (V,E) with edge set E = R ∪ B and a cost function
c : R→ {1, 2} as follows. The vertex set of G is U ∪S = {u1, u2, . . . , un}∪{S1, S2, . . . , Sm}.
The edge set of G and cost function c are defined as follows:

• there is a red edge of cost 1 linking ui and ui+1 for every 1 ≤ i < n;

• there is a red edge of cost 2 linking un and S1, and linking Sj and Sj+1 for every
1 ≤ j < m;

• whenever ui ∈ Sj we link ui and Sj by a blue edge.

1u1

S1

S2

S3

(a) (b)

u2 u3 u4 u5 u6
1 1 1 1 1u1

S1

S2

S3

u2 u3 u4 u5 u6
1 1 1 1

2
22

11
1111

1

Figure 1: (a) The graph G constructed for n = 6, m = 3 with S1 = {u1, u2, u3, u4, u6},
S2 = {u3, u4, u6} and S3 = {u5, u6}. The red edges of cost 2 are omitted for clarity. The
red edges of cost 1 are dashed, and the blue edges are solid. (b) An optimal price function
p on the blue edges that yields a revenue of 9, an example MST is depicted in bold.

We illustrate such a construction in Fig. 1. We claim that (U ,S) has a set cover of size t
if and only if there exists a price function p : B → {1, 2,∞} for the blue edges of G whose
revenue is n+ 2m− t− 1.

(⇒) Suppose (U ,S) has a set cover of size t. We construct p as follows: for every blue edge
e = uiSj , we set p(e) to be 1 if Sj is in the set cover, and 2 otherwise. We show that the
revenue of p equals n+ 2m− t− 1 by running Kruskal’s MST algorithm starting with an
empty tree, T . Because the blue edges of weight 1 are the lightest, we start with adding
them one by one to T such that we add an edge only if it doesn’t close a cycle in T . After
going over all blue edges of weight 1, we are guaranteed that T is a tree that spans all
the vertices ui for every i = 1, . . . , n, and every vertex Sj such that Sj is in the set cover.

6

This is because these vertices are connected through un with only blue edges of weight 1.
So the current weight of T is |T | − 1 = n + t − 1. We next try to add the red edges of
weight 1, but every such edge connects two vertices, ui and ui+1, already spanned by T
and therefore closes a cycle, so we add none of them. Next we add the blue edges of weight
2. For every Sj not in the set cover, we connect Sj to T with one blue edge of weight 2
(the second one will close a cycle). Therefore, after going over all the blue edges of weight
2, we added a weight of 2(m− t) to T . Furthermore, T spans the entire graph so there is
no need to add any red edges of weight 2. All the edges in T are blue and the revenue of
T is (n+ t− 1) + 2(m− t) = n+ 2m− t− 1.

(⇐) Suppose that there exists a price function p : B → {1, 2,∞} for the blue edges of G
whose revenue is n+2m− t−1 for some t. By Lemma 1, there exists such a function p that
is optimal. Choose then p : B → {1, 2,∞} as an optimal price function that minimizes the
number of red edges in an MST T .

Assume first that T contains only blue edges. Then every vertex ui is incident to some
blue edge in T with price 1. To see this, observe that ui is adjacent to a vertex Sj that
is not a leaf, thus Sj has a neighbor uk, and the red edges in the cycle Sj , u1, . . . , uk, Sj
all have cost 1. Thus the set S ′ of those Sj ’s that are linked to some blue edge in T with
price 1 is a set cover of (U ,S). On the other hand, notice that any Sj ∈ S \ S ′ is a leaf
of T , because if there were two blue edges uiSj , ui+`Sj in T then none of them could have
a price of 2 because of the cycle Sjuiui+1 . . . ui+`Sj . Therefore, the revenue of p equals
(n+|S ′|−1)+2(m−|S ′|) = n+2m−|S ′|−1. As by hypothesis this is at least n+2m−t−1,
we deduce that the set cover S ′ has size at most t.

Suppose now that T contains some red edge e and denote by X1 and X2 the two
components of T − e. There exists some blue edge f = uiSj in G that connects X1 and
X2 because the graph (V,B) induced by the blue edges is connected (because un is linked
with blue edges to every Sj). By Lemma 3, there exists a blue edge f ′ = ui′Sj′ distinct
from f in the unique cycle C in T + f such that c(e) < p(f ′) ≤ p(f). In particular, we
have c(e) = 1 and p(f ′) = 2. By an argument given in the preceding paragraph, Sj′ is a
leaf of T , hence we have j′ = j. Also, every blue edge distinct from f and f ′ in C has price
1. But then the price function p′ obtained from p by setting the price of both f and f ′ to
1 is also optimal and has a corresponding MST that uses less red edges than T , namely
T − e+ f , a contradiction. This completes the proof.

The reduction used in Theorem 1 implies a stronger hardness result.

Theorem 2. StackMST is APX-hard even when c(e) ∈ {1, 2} for all e ∈ R.

Proof. We will show that, for any ε > 0, a (1− ε)-approximation for StackMST implies a
(1 + 8ε)-approximation for VertexCover in graphs of maximum degree at most 3. The
claim will then follows from the APX-hardness of the latter problem [1, 14].

Let H denote any given graph with maximum degree at most 3. We can assume that H
is connected because otherwise we process each connected component separately. Moreover,
we can assume that H has at least as many edges as vertices because VertexCover can
be solved exactly in polynomial time if H is a tree.

7

Clearly, the VertexCover instance we consider is equivalent to a SetCover instance
with |V (H)| sets and |E(H)| elements in the ground set. Let (U ,S) be the SetCover
instance obtained from the latter one by adding a new dummy element d in the ground
set, and adding d to every subset of the instance. Hence, we have n = |U| = |E(H)| + 1
and m = |S| = |V (H)|. Any vertex cover of H yields a set cover of (U ,S) with the
same size, and vice-versa. Thus the reduction used in the proof of Theorem 1 provides a
way to convert in polynomial time a vertex cover of size s into a feasible solution of the
StackMST instance corresponding to (U ,S) with revenue n+ 2m− s− 1, and vice-versa.
In particular, we have OPT = n+ 2m−OPTVC − 1, where OPT and OPTVC denote the
value of the optimum for the StackMST and VertexCover instances, respectively.

Now consider the vertex cover found by running the (1−ε)-approximation algorithm on
the StackMST instance and then converting the result into a vertex cover of H. Denoting
by s its size and letting r = n+ 2m− s− 1, we obtain:

s = n+ 2m− r − 1 ≤ n+ 2m− (1− ε) OPT− 1

= n+ 2m− (1− ε) (n+ 2m−OPTVC − 1)− 1

= ε (n− 1 + 2m) + (1− ε) OPTVC

≤ ε (3 OPTVC + 6 OPTVC) + (1− ε) OPTVC

= (1 + 8ε) OPTVC.

Above we have used the fact that n − 1 = |E(H)| ≥ |V (H)| = m and that OPTVC ≥
|E(H)|/3 = (n− 1)/3 because H has maximum degree at most 3.

4 The Best-Out-Of-k Algorithm

As before, let k denote the number of distinct red costs, and let c1 < c2 < · · · < ck denote
those costs. Without loss of generality, we assume that all red costs are positive (otherwise
we contract all red edges of cost 0). Recall that the Best-out-of-k algorithm is as follows.
For each i between 1 and k, set p(e) = ci for all blue edges e ∈ B and compute an MST Ti.
Then pick i such that the revenue of Ti is maximum and output the corresponding feasible
solution. In this section, we analyze the approximation ratio ensured by this algorithm.

Theorem 3. Best-out-of-k is a min{k, 1+ln b, 1+lnW}-approximation algorithm, where b
denotes the number of blue edges, and W = ck/c1 is the maximum ratio between red costs.

Proof. We let T ∗ be an MST of the graph with an optimal price function, and let ni denote
the number of blue edges of price ci in T ∗. We also define Ni as the set of blue edges of
price at least i in T ∗, that is, Ni =

∑k
j=i nj .

Let Gi be the graph in which all blue edges have price ci. We first prove the following
claim: any MST Ti of Gi contains at least Ni blue edges. For S ⊆ E, let r(S) denote
the maximum cardinality of an acyclic subset of S (that is, the rank function of the cycle

8

matroid of G). We also let Ri be the set of red edges with cost at most ci, and Bi be the
set of blue edges with price at most ci in G∗. We have

Ni ≤ r(Ri−1 ∪B)− r(Ri−1 ∪Bi−1) ≤ r(Ri−1 ∪B)− r(Ri−1).

If we consider an execution of Kruskal’s algorithm on Gi, the latter expression is exactly
the number of blue edges that are added to Ti. This proves the claim.

Using this claim, we can bound the revenue q:

q ≥ k
max
i=1

Ni · ci.

We also know that OPT =
∑k

i=1 ni · ci.
Since ni ≤ Ni, we have

OPT =
k∑
i=1

ni · ci ≤
k∑
i=1

Ni · ci ≤ k · q,

proving the first approximation factor.
Also, we have (letting Nk+1 = 0):

OPT =
k∑
i=1

ni · ci

=
k∑
i=1

Ni · ci ·
ni
Ni

=
k∑
i=1

Ni · ci ·
Ni −Ni+1

Ni

≤ (
k

max
i=1

Ni · ci) ·
k∑
i=1

Ni −Ni+1

Ni

≤ q ·
k∑
i=1

Ni −Ni+1

Ni
,

and
k∑
i=1

Ni −Ni+1

Ni
≤ 1 +

∫ N1

Nk

dt

t
≤ 1 + ln

N1

Nk
≤ 1 + ln b,

which proves the second approximation factor.

9

Finally, we also have the following (letting c0 = 0):

OPT =
k∑
i=1

ni · ci

=
k∑
i=1

ni

i∑
j=1

(cj − cj−1)

=
k∑
j=1

Nj · (cj − cj−1)

≤ q ·
k∑
j=1

cj − cj−1

cj
,

and
k∑
j=1

cj − cj−1

cj
≤ 1 + lnW,

establishing the third approximation factor.

The three approximation factors are tight for the following examples. Consider a graph
with k + 1 vertices v1, v2, . . . , vk+1, in which the red edges are of the form vivi+1, and
there is a blue edge parallel to every red edge. The cost of the red edge vivi+1 is 1/i. The
optimal solution involves setting a price of 1/i for every blue edge vivi+1, yielding a revenue
of

∑k
i=1 1/i. On the other hand, the Best-out-of-k algorithm sets the price of every blue

edge to 1/i for some i, always yielding a revenue of 1. This proves that the ratios 1 + ln b
and 1 + lnW are tight.

The factor k can be proven tight as well by considering a similar example. The graph
is composed of 1 +

∑k
i=1 a

i−1 vertices for some large integer a. The red edges form a path
connecting these vertices using ak−i edges of cost ci = ai−1 for every i between 1 and k.
Every red edge is doubled by a blue edge. The optimal solution again involves setting the
prices of the blue edges equal to that of the parallel red edge, yielding a revenue of k ·ak−1.
The Best-out-of-k algorithm setting the prices to ci yields an MST containing

∑k
j=i a

k−j

blue edges, with a revenue of

ai−1 ·
k∑
j=i

ak−j = ai−1 · a
k−i+1 − 1
a− 1

< ak−1 · a

a− 1
.

The ratio between the two revenues tend to k as a tends to infinity.

A natural generalization of StackMST to matroids is as follows. Given a matroid
(S, I) with I partitioned into two sets R and B, and nonnegative costs on the elements of
R, assign prices on the elements of B in such a way that the revenue given by a minimum

10

weight basis of (S, I) is maximized. We mention that the analysis of Best-out-of-k given
in the proof of Theorem 3 extends swiftly to the case of matroids, yielding the same
approximation for this more general case.

5 Linear Programming Relaxation

In this section, we give an integer programming formulation for the problem and study
its linear programming relaxation. All red costs ci are assumed to be positive throughout
the section. For each j = 1, . . . , k, and each blue edge e ∈ B we define a variable xj,e.
The interpretation of these variables is as follows: think of a feasible solution p : B →
{c1, c2, . . . , ck} and a minimum spanning tree T with respect to p. Then xj,e = 1 means
that the blue edge e appears in T , with a price p(e) of at least cj .

We let c0 = 0 and denote by Rj the set of red edges of cost at most cj . For t pairwise
disjoint sets of vertices C1, . . . , Ct, we denote by δB(C1 : C2 : · · · : Ct) the set of blue edges
that are in the cut defined by these sets. The integer programming formulation then reads:

(IP) max
∑
e∈B

1≤j≤k

(cj − cj−1)xj,e

s.t.
∑

e∈δB(C1:C2:···:Ct)

xj,e ≤ t− 1 ∀j ∈ {1, 2, . . . , k}, (4)

∀C1, ..., Ct components of (V,Rj−1);∑
e∈P∩B

x1,e + xj,f ≤ |P ∩B| ∀f = ab ∈ B, ∀j ∈ {2, 3, . . . , k}, (5)

∀P ab-path in (B ∪Rj−1)− f ;

x1,e ≥ x2,e ≥ · · · ≥ xk,e ≥ 0 ∀e ∈ B; (6)

xj,e ∈ {0, 1} ∀j ∈ {1, 2, . . . , k}, ∀e ∈ B. (7)

Let us first give some intuition on this integer program. Consider a minimum spanning
tree T with respect to a feasible solution p, let F be the set of blue edges appearing in
T , and let Fj = {e ∈ F : p(e) ≥ cj}. Then F (= F1) must obviously be a forest. Also,
Fj (j ∈ {2, . . . , k}) must be a forest in the graph where every component of (V,Rj−1) has
been contracted, since otherwise we could swap in T some edge of Fj with an edge in Rj−1.
This is encoded by constraints (4). Similarly, if a cycle C of the graph is such that every
red edge in C has cost at most cj−1 and some blue edge f of C appears in T with a price
at least cj , then there must be another blue edge of C which is not included in T . This is
ensured by constraints (5).

Proposition 1. The integer program above is a formulation of StackMST.

Proof. Consider a feasible solution x of the integer program (IP) and let F = {e ∈ B :
x1,e = 1}. Inequality (4) ensures that F is a forest. For e ∈ F , let p(e) = cj if j is the

11

last index for which xj,e = 1 and, for e ∈ B − F , let p(e) = ∞. Now consider a minimum
spanning tree T with respect to p. We claim E(T) ∩ B = F and that the revenue of T is
exactly the objective value for x.

It suffices to prove that all edges of F belong to T . All edges e ∈ F of price c1 are
necessarily in T . Assume that all edges e ∈ F of price less than cj are in T , for some j ≥ 2.
We show that this holds too for edges of price cj . Consider some edge f with p(f) = cj .
Suppose that f is not in T . This means that there exists a cycle in G consisting of blue
edges of price at most cj and of red edges of price at most cj−1. But then (5) is violated,
a contradiction. So the claim holds.

Conversely, consider any optimal solution to the StackMST problem with price func-
tion p(·) and a corresponding MST T . Let F = E(T)∩B. We define a vector x as follows:
for e ∈ B, xi,e = 1 if e ∈ F and p(e) ≥ ci, otherwise xi,e = 0. It is easily checked that the
revenue given by p equals the objective function of the IP for x. Moreover, constraints (4),
(6) and (7) are clearly satisfied by x. Finally, note that if x violates (5) for some e ∈ F ,
then e also violates the min-max formula given in Lemma 2. This completes the proof.

The rest of this section is devoted to the LP relaxation of the above IP, obtained by
dropping constraint (7). We show that the LP is tractable and that its integrality gap
matches essentially the guarantee given by the Best-out-of-k algorithm. (Let us recall that
the integrality gap of the LP on a specified set of instances I is defined as the supremum
of the ratio (LP)/(IP) over all instances in I.)

Proposition 2. The LP can be separated in polynomial time.

Proof. For fixed j, (4) can be separated in polynomial time using standard techniques for
the forest polytope, as described e.g. in Schrijver [16, pp. 880–881]. Inequality (5) can be
rewritten as ∑

e∈P∩B
(1− x1,e) ≥ xj,f .

Thus, for each fixed j and f = ab, (5) can be separated by finding a shortest ab-path in
the graph (V, (B ∪Rj−1)− f) where every red edge has weight 0 and every blue edge e has
weight 1− x1,e. Finally, (6) can obviously be separated in polynomial time.

We first bound the integrality gap from above:

Proposition 3. We have (LP) ≤ min{k, 1 + ln b, 1 + lnW} · (IP), where b denotes the
number of blue edges, and W = ck/c1 is the maximum ratio between red costs.

Proof. Let x be any feasible vector for the LP. The value of the objective function for x is
thus ∑

e∈B
1≤i≤k

(ci − ci−1)xi,e.

12

Let i ∈ {1, . . . , k}, let C1, . . . , C` be components of the graph (V,Ri−1∪B), and denote
by Cj1 , . . . , C

j
`j

the components of the subgraph of (V,Ri−1) induced by Cj . For every
j ∈ {1, . . . , `}, we have ∑

e∈B[Cj
1∪···∪C

j
`j

]

xi,e =
∑

e∈δB(Cj
1 :Cj

2 :···:Cj
`j

)

xi,e.

(Here, for S ⊆ V , the notation B[S] means the set of blue edges with both endpoints in
S.) Indeed, this holds trivially if i = 1, since then each Cjp is a vertex of Cj . For i ≥ 2, for
any blue edge f = ab that is internal to a component Cjp of Cj (that is, f ∈ B[Cjp]), there
exists an ab-path consisting of edges of Ri−1, and so (5) enforces that xi,f ≤ 0.

Also, constraints (4) imply ∑
e∈δB(Cj

1 :Cj
2 :···:Cj

`j
)

xi,e ≤ `j − 1,

for every j ∈ {1, . . . , `}. We thus obtain

∑
e∈B

xi,e =
∑̀
j=1

∑
e∈δB(Cj

1 :Cj
2 :···:Cj

`j
)

xi,e ≤
∑̀
j=1

(`j − 1) = r(Ri−1 ∪B)− r(Ri−1).

The number of blue edges in the i-th MST computed by Best-out-of-k being exactly
r(Ri−1 ∪B)− r(Ri−1) =: Ai, it then follows

∑
e∈B

1≤i≤k

(ci − ci−1)xi,e ≤
k∑
i=1

(ci − ci−1)Ai.

Letting q = maxki=1Ai · ci denote the revenue given by the Best-out-of-k algorithm, we
deduce

k∑
i=1

(ci − ci−1)Ai =
k∑
i=1

ci − ci−1

ci
Ai · ci ≤ q ·

k∑
i=1

ci − ci−1

ci
,

and, letting Ak+1 = 0,

k∑
i=1

(ci − ci−1)Ai =
k∑
i=1

ci(Ai −Ai+1) =
k∑
i=1

Ai · ci
Ai −Ai+1

Ai
≤ q ·

k∑
i=1

Ai −Ai+1

Ai
.

As in the proof of Theorem 3, we have

k∑
i=1

ci − ci−1

ci
≤ min{k, 1 + lnW}

13

and
k∑
i=1

Ai −Ai+1

Ai
≤ 1 + ln b.

Therefore, ∑
e∈B

1≤i≤k

(ci − ci−1)xi,e ≤ min{k, 1 + ln b, 1 + lnW} · q

≤ min{k, 1 + ln b, 1 + lnW} · (IP),

as claimed.

Proposition 4. The integrality gap of the LP is

• k on instances with k distinct costs;

• Θ(lnW) on instances with maximum ratio between red costs W , and

• Θ(ln b) on instances with b blue edges.

Proof. We already know from Proposition 3 that the integrality gap of the LP is at most
min{k, 1+ln b, 1+lnW}. We first by prove that the integrality gap is at least k on instances
with k distinct costs. To this aim, we define an instance of StackMST as follows: Choose
an integer a ≥ 2 and let the vertex set of the graph be V = {0, 1, 2, . . . , ak−1}. The
graph has ak−1 blue edges, linking vertex 0 to every other vertex. The ith red cost is
ci = ai−1. For i ∈ {1, 2, . . . , k − 1}, the subgraph spanned by the red edges with cost ci
is a disjoint union of ak−i−1 cliques, each of cardinality ai; the vertex sets of these cliques
are {1, . . . , ai}, {ai + 1, . . . , 2ai}, . . . , {ak−1 − ai + 1, . . . , ak−1}. Finally, there is a unique
red edge with cost ck, linking vertex 0 to vertex 1.

Consider an optimal solution of the StackMST problem for the instance defined above,
and let T be a corresponding MST. Consider any blue edge e in T , of price ci, and let Ce
be the unique component of (V −{0}, Ri−1) that contains an endpoint of e. No other blue
edge of T has an endpoint in Ce, because otherwise one could replace the edge e in T with
an appropriate red edge of Ri−1 and obtain a new spanning tree with weight strictly less
than that of T , a contradiction. Thus, if e and f are two distinct blue edges of T , then
Ce ∩ Cf = ∅. Noticing that the price given to e is ci = ai−1 = |Ce|, we deduce that the
revenue given by T is ∑

e∈B∩E(T)

|Ce| ≤ ak−1.

Moreover, a revenue of ak−1 is easily achieved, set for instance all blue edges of the graph
to the same price ci for some i ∈ {1, . . . , k}. Hence, (IP) = ak−1.

14

We now define a feasible solution x∗ for the LP. The point x∗ will have the property
that x∗i,e = x∗i,f for 1 ≤ i ≤ k and all e, f ∈ B. We thus let yi = x∗i,e for e ∈ B. The
constraints on the yi’s imposed by the LP are then:

ai−1yi ≤ 1 for 1 ≤ i ≤ k;
y1 + yi ≤ 1 for 2 ≤ i ≤ k;
y1 ≥ y2 ≥ · · · ≥ yk ≥ 0.

Set y1 = (a− 1)/a and yi = 1/ai−1 for 2 ≤ i ≤ k, which satisfies the above constraints.
The value of the objective function of the LP for the point x∗ is

LP(x∗) =
∑
e∈B

1≤i≤k

(ci − ci−1)x∗i,e

= ak−1

a− 1
a

+
∑

2≤i≤k
(ai−1 − ai−2)

1
ai−1

 = kak−1 − kak−2.

Therefore, the ratio LP(x∗)/(IP) tends to k as a→∞.
Now, the same construction can be used to show that the integrality gap is Ω(lnW)

and Ω(ln b) on instances with ck/c1 = W and b blue edges, respectively. We explain it in
the case where the number of blue edges is fixed to some value b, the case where the ratio
ck/c1 is fixed is done similarly.

Take an instance as above, with a = 2 and k being the greatest integer such that
2k−1 ≤ b. Choose an arbitrary blue edge and add b− 2k−1 parallel blue edges to it (so that
the number of blue edges is exactly b). These extra blue edges have clearly no influence on
the value of (IP) and LP(x∗) (where x∗ is defined as before). Using b < 2k, we deduce

LP(x∗)
(IP)

=
k2k−1 − k2k−2

2k−1
=
k

2
>

log2 b

2
,

and thus that the integrality gap is Ω(ln b), as claimed.

To conclude this section, let us mention that we know of additional families of valid
inequalities that cut the fractional point used in the above proof. We leave the study of
those for future research.

Acknowledgments

We thank Martine Labbé and Gilles Savard for preliminary discussions concerning this
problem, Martin Hoefer for his comments which led us to refine our approximability result.
We are also most grateful to the second anonymous referee for providing us with a much
shorter proof of Theorem 3, and for her or his many insightful remarks which led to an
improved version of the paper.

15

References

[1] P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theoret.
Comput. Sci., 237(1-2):123–134, 2000.

[2] M.-F. Balcan and A. Blum. Approximation algorithms and online mechanisms for
item pricing. In Proc. ACM Conference on Electronic Commerce (EC), 2006.

[3] M.-F. Balcan, A. Blum, and Y. Manshour. Item pricing for revenue maximization. In
Proc. ACM Conference on Electronic Commerce (EC), 2008.

[4] M. Bouhtou, A. Grigoriev, S. van Hoesel, A. F. van der Kraaij, F. C. R. Spieksma,
and M. Uetz. Pricing bridges to cross a river. Naval Res. Logist., 54(4):411–420, 2007.

[5] P. Briest, M. Hoefer, and P. Krysta. Stackelberg network pricing games. In Proc.
25th International Symposium on Theoretical Aspects of Computer Science (STACS),
pages 133–142, 2008.

[6] P. Briest and P. Krysta. Single-minded unlimited supply pricing on sparse instances.
In Proc. 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1093–
1102, 2006.

[7] J. Cardinal, E. D. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, and
O. Weimann. The stackelberg minimum spanning tree game. In Proc. 10th interna-
tional Workshop on Algorithms and Data Structures (WADS), volume 4619 of Lecture
Notes in Computer Science, pages 64–76. Springer-Verlag, 2007.

[8] J. Cardinal, M. Labbé, S. Langerman, and B. Palop. Pricing of geometric transporta-
tion networks. In Proc. Canadian Conference on Computational Geometry (CCCG),
pages 92–96, 2005.

[9] E. D. Demaine, U. Feige, M. Hajiaghayi, and M. R. Salavatipour. Combination can be
hard: Approximability of the unique coverage problem. SIAM Journal on Computing,
to appear.

[10] A. Grigoriev, J. van Loon, R. Sitters, and M. Uetz. How to sell a graph: Guidelines
for graph retailers. In Proc. Workshop on Graph-Theoretic Concepts in Computer
Science (WG), volume 4271 of Lecture Notes in Computer Science, pages 125–136.
Springer-Verlag, 2006.

[11] V. Guruswami, J. Hartline, A. Karlin, D. Kempe, C. Kenyon, and F. McSherry. On
profit-maximizing envy-free pricing. In Proc. 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1164–1173, 2005.

[12] J. D. Hartline and V. Koltun. Near-optimal pricing in near-linear time. In Proc.
Workshop on Algorithms and Data Structures (WADS), volume 3608 of Lecture Notes
in Computer Science, pages 422–431. Springer-Verlag, 2005.

16

[13] M. Labbé, P. Marcotte, and G. Savard. A bilevel model of taxation and its application
to optimal highway pricing. Management Science, 44(12):1608–1622, 1998.

[14] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complex-
ity classes. J. Comput. System Sci., 43(3):425–440, 1991.

[15] S. Roch, G. Savard, and P. Marcotte. An approximation algorithm for Stackelberg
network pricing. Networks, 46(1):57–67, 2005.

[16] A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. B, volume 24
of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003. Matroids, trees,
stable sets, Chapters 39–69.

[17] S. van Hoesel. An overview of Stackelberg pricing in networks. Research Memoranda
042, Maastricht : METEOR, Maastricht Research School of Economics of Technology
and Organization, 2006.

[18] H. von Stackelberg. Marktform und Gleichgewicht (Market and Equilibrium). Verlag
von Julius Springer, Vienna, 1934.

17

