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Abstract. We introduce the problem of staged self-assembly of one-
dimensional nanostructures, which becomes interesting when the ele-
ments are labeled (e.g., representing functional units that must be placed
at specific locations). In a restricted model in which each operation has a
single terminal assembly, we prove that assembling a given string of labels
with the fewest steps is equivalent, up to constant factors, to compressing
the string to be uniquely derived from the smallest possible context-free
grammar (a well-studied O(logn)-approximable problem) and that the
problem is NP-hard. Without this restriction, we show that the opti-
mal assembly can be substantially smaller than the optimal context-free
grammar, by a factor of Ω(

√
n/ logn) even for binary strings of length n.

Fortunately, we can bound this separation in model power by a quadratic
function in the number of distinct glues or tiles allowed in the assembly,
which is typically small in practice.

Keywords: context-free grammar, Wang tile, DNA computing, com-
plexity

1 Introduction

Self-assembly is the study of how small particles (typically at the nanoscale,
where electrostatic forces overwhelm gravity) interact with each other to con-
glomerate into larger objects. In theoretical computer science, the standard
model is the tile assembly model [14] in which the system begins with infinitely
many copies of certain square tiles, each with specified glues on the four sides,
and tiles translate nondeterministically in the plane until they attach to each
other at matching glues. This model effectively enables performing computation,
but out of simple geometric parts, and at the cost of physical space resulting
from the assembly.

The most studied problem in the tile assembly model is to determine the
number of distinct tile types required to assemble a given shape (made out of
unit squares). An obvious upper bound is the area of the shape, but in many cases
fewer tiles suffice, by building computation into the construction. For example,
an n × n square requires Θ(log n/ log log n) distinct tile types (and glues), by
embedding a base-log n counter, while an n × 1 rectangle requires Θ(n) tile
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types. The most general result is that any shape, scaled by a sufficiently large
factor, can be constructed from O(K/ logK) tile types (and glues), where K
is the Kolmogorov complexity of the shape [13]. Unfortunately, the scale factor
is polynomial in the running time of the Turing machine generating the shape,
which is at least the area of the shape. So this result does not directly address
the tile complexity of a specific shape, though it suggests that it is difficult to
characterize.

An alternate approach is offered by staged self-assembly [4] in which the sys-
tem’s tile set can change in a sequence of stages, in particular by an experimenter
mixing two systems together. In this model, it is possible to make any shape us-
ing a constant number of tile types (and glues); as a result, the main objectives
are to minimize both the number of mix operations (work for the experimenter)
and the number of stages that must be executed sequentially (makespan or wait
time). For example, both an n × n square and an n × 1 rectangle can be as-
sembled using O(1) tiles and glues and O(log n) mixes and stages. This level
of efficiency using a constant number of glues is only matched by self-assembly
models incorporating concentration (e.g. the work of Kao and Schweller [7] and
the PTAM model of Chandran et al. [1]) and assemble a given shape with high
probability.

Our personal communication with bioengineers suggests that the staged as-
sembly model is natural and practical, essentially exposing the experimenter’s
ability to perform actions as part of a computation/assembly. Furthermore, the
results are more practical, as it is difficult in practice to design many different
glues that attract only in pairs, without any attraction between unpaired glues.
Assembling a 1000×1 rectangle would be impractical without staging (requiring
1000 tile types and 999 distinct glues), but is extremely practical with staging
(requiring only 6 tile types, 3 distinct glues and 10 stages).

In this paper, we aim to characterize the resources required to staged-assemble
a one-dimensional object. Just making a 1×n rectangular shape is trivial, so this
direction has so far been overlooked. But in practice, experimenters often want
to build an object that not only takes on a desired shape but also carries out a
desired functionality. A typical example is to arrange nanodots or bioagents in
a particular pattern within a shape.3 We model this problem as constructing a
labeled shape, where each unit square has a label within a fixed alphabet, and
each tile type used to build the shape also has a label, which must match in
construction. Thus the input to the problem is a string of labels, and the goal
is to find a staged assembly with few glues, mixes, and stages. In fact we show
that four glues and O(log n) stages always suffice, so a single objective remains:
minimize the mixes.

The problem of computing a minimal tile assembly system that produces
a labeled shape has been studied previously. Heuristic approaches have been
developed to find the smallest tile set that uniquely assembles an input labeled
shape [10,6], and the problem of finding a minimum-size tile set for a labeled
square using a restricted form of self-assembly has been shown to be NP-hard [3].

3 Personal communication with Hyunmin Yi, 2008–2010.
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We successfully characterize the number of mixes required to staged-assemble
a string in two natural situations. In the first setting (Section 4), we restrict mix-
ing operations to produce a single terminal assembly for use in the next mix.
This restriction seems to be common to all previous staged-assembly algorithms
[4], but we do not know it to be practically motivated. If the number of glues is
constant, we show that finding the minimum number of mixings in this setting is
NP-hard. In the second setting (Section 5.5), we allow multiple “parallel assem-
blies” resulting from a mix (a new though natural idea), and consider the more
natural restriction that the number of glues is constant. In both settings, we show
that the minimum number of mixes is within a constant factor of the smallest
context-free grammar that generates exactly the given string. The latter prob-
lem is well-studied, has a polynomial-time O(log n)-approximation algorithm
based on Lempel-Ziv compression, and likely has no o(log log n)-approximation
[2,9,11,12].

We show that our relations are nearly tight by constructing a family of strings
(Section 5) showing a separation in power between (unrestricted) staged assem-
bly and context-free grammars. Specifically, an n-bit binary string can be as-
sembled using O(k) glues with O(k) mixes but requires a context-free grammar
of size Ω(k2), for a ratio of Ω(k). Our upper bound shows that the worst-case
separation is O(k2). As a function of n (with an unbounded number of glues),
we prove that the ratio is Ω(

√
n/ log n). In practice, small feature sizes make

the number of glues typically small, in which case context-free grammars are
actually a good approximation to optimal staged self-assemblies.

The labeled 1D staged self-assembly model offers a balance of tractability,
being easier than general staged assembly by reducing the dimension to 1, yet
harder (and more practical) by adding labels to the target shape. The connec-
tions we show to context-free-grammar compression illustrate that the problem
is difficult, yet for the case of many glues, still not fully understood. The approx-
imation algorithm resulting from our study is simple and efficient, having been
implemented in an online web system described in Section 6, which is currently
being considered for practical use by the Tufts Department of Bioengineering,
in a setting where labeled 1D assemblies are of significant interest.

2 Context-Free Grammars

Definition 1. A context-free grammar (CFG) is defined as a 4-tuple (Σ,Γ, S,∆)
where Σ is a set of terminal symbols, Γ is a set of non-terminal symbols, S is
a special element of Γ called the start symbol and ∆ is a set of productions.

Each production consists of a left-hand side containing a single non-terminal
symbol, and a right-hand side containing a (non-empty) sequence of terminal and
non-terminal symbols. A CFG derives a string by repeated replacement of non-
terminal symbols with strings of terminal and non-terminal symbols according
to the productions in ∆, beginning with the single symbol S. The language of a
CFG is the set of derivable strings consisting solely of terminal symbols.
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Definition 2. The size of a context-free grammar G, denoted |G|, is the total
number of symbols appearing on the right-hand sides of the productions in G.

Note that this definition counts the total number of symbols, so symbols
appearing multiple times contribute to the count multiple times. In this paper
we consider only CFGs that are deterministic (with only one production per
left-hand side) and generate exactly one string.

Definition 3. A restricted context-free grammar (written RCFG) is a CFG
which is deterministic and has a language consisting of a single string.

For an RCFG G deriving a string s, the parse tree of G is the tree created
by beginning with a single node with label S (the start symbol), and adding
children to a leaf node in a left-to-right order for each production applied. The
result is a tree where each internal node is a non-terminal symbol, each leaf node
is a terminal symbol, and a left-to-right traversal of the leaves gives the string s.

Definition 4. The smallest grammar problem is the following: given an input
string s, find the smallest RCFG deriving s.

Any RCFG G has exactly one parse tree. Each internal node in the parse tree
has a corresponding non-terminal symbol from G. If we merge all such nodes
with the same non-terminal, the result is a directed acyclic graph (DAG) called
the parse DAG. See Figure 1 for an example of an RCFG and its parse tree and
parse DAG.

A → BC

B → DC
C → aa
D → cc

A

B

CD

a ac c

C

a a

A

B

CD

a ac c

Fig. 1: A restricted context-free grammar (RCFG) and its corresponding parse
tree and parse DAG.

3 Staged Self-assembly

In this section we describe the 1D labeled staged self-assembly system model.
The model described here is a variant of the staged self-assembly model defined
in [4]. In this model, individual building blocks are 2D square-shaped tiles that
translate in the plane. Each tile has four sides (north, south, east, and west) and
has glues on its east and west sides. Each tile also has a label (a, b, c, . . .). We
denote a tile x1[x2]x3 where x1 is the west glue, x2 is the label, x3 is the east
glue (e.g., 1[a]2).
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Tiles combine when the pair of glues on the west side of one tile and east
side of the other are complementary. We denote glue values by numbers (e.g.,
1, 2, . . .), and the complementary glues are denoted 1′, 2′, . . .. In this paper we
use the convention that east glues are always complementary (prime) glues. So
a tile 1[a]2 actually has east glue 2′.

When tiles combine they create assemblies (and we consider tiles to be a
special case of assemblies). The labels of each individual tile combine to form
a label string of the assembly consisting of the labels of the combined tiles in
order. For example, 1[a]2 and 2[b]3 combine to form the assembly 1[ab]3. Note
that the east glue of 1[a]2 and west glue of 2[b]3 have disappeared: they are on
the interior of the assembly and are omitted for clarity. Assemblies can also be
combined to form larger assemblies. The size of an assembly is the number of
tiles it contains.

Initially each tile type exists in a separate bin. When bins are mixed, the
assemblies present in each bin are free to attach to each other. The products
of each mixing are terminal assemblies: assemblies that do not attach to any
other assemblies, and we refer to the terminal assemblies of a mixing as the
bin’s contents. All other assemblies produced during the mixing are assumed to
be filtered out before the bin is combined with other bins. Any bin may be used
in as many mixings as desired.

A self-assembly system instance is defined by the starting tiles and a mix
DAG defining bins and the orders in which they are mixed (see Figure 2). The
mix DAG is a rooted DAG : a DAG with only one node (the root) without in-
edges. where each node represents a bin and the edges leaving it point to the
bins whose contents are mixed into this bin. Each leaf of the DAG is a bin of a
single tile type.

1[b]2 2[c]33[a]2

⇒

1[b]2 2[c]33[a]2

mixing

1[bca]2

1[bc]3

1[bcac]3

Fig. 2: A self-assembly system (SAS) consisting of its mix DAG and initial bins
(left), and generated assembly (right).

Definition 5. A self-assembly system (SAS) is a one-dimensional labeled staged
self-assembly instance that produces a single goal assembly and is defined by a
mix DAG and a unique tile type for each leaf of the DAG.
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Definition 6. The size of a SAS A (denoted |A|) is the number of edges in its
mix DAG.

The goal assembly produced by a SAS must appear in the bin corresponding
to the root node of the mix DAG. Reading the labels of an assembly from west
to east defines a string which we call the label string of the assembly. The label
string of the goal assembly is the string generated by the SAS.

In previous staged-assembly constructions [4], each bin has a single assembly
produced in it by mixing the contents of two other bins (which also contain single
items). However the model as defined does not require that each bin contains a
single assembly. A mix DAG in which one or more bins has multiple assemblies is
said to use bin parallelism. We distinguish a self-assembly system instance that
does not use bin parallelism as a single self-assembly system (SSAS).

Definition 7. A single self-assembly system (SSAS) is a SAS in which no bin
contains more than one distinct assembly.

Definition 8. The minimum SSAS problem is the following: given an input
string s, find a smallest SSAS generating an assembly with label string s.

4 Equivalence between RCFGs and SSASs

In this section we show that converting between an RCFG G deriving a string s
and a SSAS instanceA assembling a labeled assembly with label s is possible with
only a constant-factor scaling. As a result, any algorithm generating an O(f(n))-
approximation to either the minimum grammar problem or the minimum SSAS
problem implies an O(f(n))-approximation algorithm for the other.

4.1 Converting RCFGs to SSASs

Let G be an RCFG deriving a string s. We begin by converting G to an equivalent
RCFG G′ with at most two symbols on the right-hand side of each production
(such a CFG is called a binary CFG).

Recall that each rule is represented by a subgraph (a sub-DAG) of the parse
DAG consisting of a root node (the left-hand side symbol) and its children (the
right-hand side symbols). This sub-DAG can obviously be converted into a binary
DAG with at most twice as many edges, and so is at most twice the size of the
original sub-DAG. So each rule can be expanded to a set of binary rules with at
most twice as many symbols, as each edge in the DAG corresponds to a symbol
in a rule. As a result, G is at most doubled in size and thus |G′| ≤ 2|G|.

Next we convert each production of G′ to a SSAS mixing. However, a problem
occurs if the same non-terminal appears as a right-hand side symbol in several
production rules. Recall that a production in the grammar specifies the left-to-
right order in which the right-hand side symbols appear, while the west-to-east
order in which assemblies attach is determined by their glues. To produce exactly
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the assembly desired in a mixing requires combining its subassemblies with the
correct glues.

To resolve this issue, we construct several copies of every assembly: one for
each possible west/east glue pair. Since the grammar is binary, at most two
assemblies are mixed in each bin and so three glue pairs is enough to uniquely
specify the mixing product. Given a production A→ BC, we create six bins and
six mixings that assemble the six west/east glue pair combinations for A from
the six west/east glue pair combinations for B and C (see Table 1).

Table 1: The set of mixings to produce all necessary glue pair variations for
assembly A in the production A→ BC.

A glues (1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2)
B glues (1, 3) (1, 2) (2, 3) (2, 1) (3, 2) (3, 1)
C glues (3, 2) (2, 3) (3, 1) (1, 3) (2, 1) (1, 2)

Lemma 1. A parse DAG for a binary RCFG G′ deriving string s can be con-
verted to a valid SSAS A of size at most 6|G′| that constructs an assembly with
label string s.

Proof. We build the mix DAG of A in the following way: For each symbol (ter-
minal and non-terminal) create 6 bins for the glue-pair variants of the symbol.
For each production A → BC of G′, mix the 6 bins of B and C into the 6
bins of A as in Table 1. The resulting mix DAG has 6 bins for each symbol of
G′, each containing a unique glue-pair variant of an assembly with label string
corresponding to the string derived by the symbol in G′. Each edge of the parse
DAG of G′ is converted to 6 edges in the mix DAG of A, one for each glue-pair
variant. So |A| ≤ 6|G′|. ut

Theorem 1. Given an RCFG G deriving a string s, the algorithm described
in Section 4.1 computes a SSAS instance A with |A| ≤ 12|G| that produces an
assembly with label string s.

Proof. The algorithm converts G to a binary RCFG G′, and then converts G′

to a mix DAG for A. By Lemma 1, |A| ≤ 6|G′|. So |A| ≤ 6|G′| ≤ 12|G|. ut

4.2 Converting SSASs to RCFGs

Let A be a SSAS constructing an assembly with label string s. We perform a
one-to-one mapping from the nodes and edges mix DAG of A to the nodes and
edges of the parse DAG of a grammar G. For each leaf bin of A, create a terminal
symbol in G equal to the label string of the tile in the bin. For each non-leaf
bin of A, create a non-terminal symbol in G. For each mixing in A combining
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the contents of bins b1, b2, . . . , bk into bin B, create a production in G with B
on the left-hand side and b1 through bk on the right-hand side in the order they
combine when mixed in B.

Theorem 2. For any SSAS A constructing an assembly with label string s, an
RCFG G deriving s can be constructed from A such that |G| = |A|.

Proof. The terminal symbols of G are equal to the label strings of their corre-
sponding tiles. Each mixing in A produces a single assembly with a label string
equal to the string derived by the corresponding non-terminal symbol in G, be-
cause the production orders the right-hand side symbols in the same order that
they combine in A. So the start symbol of G derives a string equal to the label
string of the assembly produces in the root of the mix DAG of A. So G derives
s. Each edge of the mix DAG of A causes a right-hand side symbol to appear in
a production of G. So |G| = |A|. ut

4.3 Approximation Equivalence

The conversions presented above in Sections 4.1 and 4.2 immediately imply that
approximation algorithms for either problem transfer to the other, at a constant-
factor loss.

Corollary 1. An O(f(n))-approximation algorithm for the smallest grammar
problem exists if and only if an O(f(n))-approximation algorithm for the mini-
mum SSAS problem exists.

In practice this theorem makes computing efficient SSAS instances easier, as
several O(log n)-approximation algorithms to the minimum grammar problem
exist [2,11,12]. We have taken advantage of this fact to produce a software tool
(described in Section 6) for finding O(log n) approximations to the minimum
SSAS problem in O(n) time using the algorithm by Sakamoto [12].

This result also suggests that finding an improved approximation algorithm
for the minimum SSAS problem is unlikely. In 2002, Lehman showed that a
polynomial-time approximation algorithm for the smallest grammar problem
with factor o( logn

log logn ) would enable progress on “a difficult algebraic problem in

a well-studied area” [9].

4.4 NP-hardness of Minimum SSAS with k Glues

Lehman also showed an NP-hardness result concerning the approximation of
the smallest grammar [9]. Unfortunately, the constant-factor conversion in Sec-
tions 4.1 and 4.2 cannot be used to extend the NP-hardness to the minimum
SSAS-problem as well, as the mixing versus production rule issue covered in
Section 4.1 prevents a simple mapping between instances of the two problems.
In this section, we give an alternative proof of the NP-hardness of computing a
smallest SSAS when the number of glues is restricted. More formally, we show
the following:
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Theorem 3. For any fixed k ≥ 6, given an input string s it is NP-hard to find a
smallest SSAS A generating an assembly with label string s such that the number
of glues used by A is at most k.

Proof. We begin with some definitions. For convenience, let the character # be
a wildcard character, to be replaced with a new character in each occurrence
in the final string. Using that shorthand, we define the function Padding(t) =
# ◦ t ◦ #k−3. This padding has a nice property: given an assembly 1[t]2, it is
possible to use a single mixing step to construct the assembly 3[Padding(t)]4.
This mixing step involves k − 1 bins (the maximum possible), k − 2 of which
contain unique tiles not used elsewhere in the string. Furthermore, given an
assembly 1[t]2, it is possible to use two mixings to construct an assembly whose
label is the string Padding(Padding(t)) with any (non-matching) pair of glues
on its left and right sides, even the glues 1 and 2.

Our proof is a reduction from the k-coloring problem, which is known to
be NP-hard. In the k-coloring problem, the goal is to assign k colors to the
vertices of a graph such that no edge connects two vertices of the same color.
Our reduction relies on the relationship between assigning colors to vertices, and
assigning glues to the sides of tiles in the assembly.

Suppose that we are given an undirected graph G = (V,E) and a number of
colors k ≥ 6. For each vertex v ∈ V , assign two unique strings Lv and Rv, each
string having length k−1. For each edge (u, v) ∈ E, assign a unique string C(u,v)

of length k − 1. Furthermore, all characters should be unique, so that when all
strings C(u,v), Lv, and Rv are concatenated together, no character is repeated.

In the assembly constructing our string, we want each such string C(u,v), Lv,
or Rv to be the label of the assembly in exactly one bin. This would create a
consistent mapping from each such label to a pair of glues, left and right. When a
pair of labels is placed adjacent to each other in the string we wish to construct,
this places restrictions on the glues assigned to those labels. In this way, we
create a coloring of vertices.

To construct constraints of this type, we use the following building block:

Constraint(t1, t2) = Padding(Padding(#k−3 ◦ t1 ◦ (t2 ◦#k−2)))

Suppose we are given assemblies g[t1]1 and 1[t2]h, where g, h 6= 1, but g may
or may not equal h. Then we can pick another pair of distinct glues i, j that
are different from 1, g, and h. We can then construct the assembly 1[t2 ◦#k−2]j
using a single mixing. We can then combine that assembly with the assembly
g[t1]1 and k − 3 bins containing unique characters to construct the assembly
i[#k−3 ◦ t1 ◦ (t2 ◦#k−2)]j. As a result, we can construct an assembly with label
Constraint(t1, t2) with any pair of (non-matching) glues on the left and right,
as long as the right glue on the assembly for t1 matches the left glue on the
assembly for t2.

We have three types of constraints. First, we want the glue on the right side
of the assembly for Lv to match the glue on the left side of the assembly for
Rv. This can be accomplished using strings of the form Constraint(Lv, Rv)
for each vertex v ∈ V . The left side of the assembly for C(u,v) should have a glue
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matching the coloring of u. Similarly, the right side of the assembly for C(u,v)

should have a glue matching the coloring of v. This can be accomplished by
having the following strings for each edge (u, v) ∈ E: Constraint(Lu, C(u,v))
and Constraint(C(u,v), Rv). We then concatenate these |V | + 2|E| constraint
strings together to create the string s.

What is the optimal way to construct s with an SSAS? First, note that if
the label of an assembly occurs only once in s, then the assembly cannot not be
included in more than one mixing. If each assembly were used in at most one
mixing, then the optimal SSAS would ensure that every mixing involved k − 1
subassemblies, and the structure of the SSAS would effectively be a tree. Using an
assembly more than once corresponds to taking such a tree and merging subtrees,
thereby removing edges. In s, the only substrings that occur more than once are
substrings of Lv, Rv, and C(u,v), and each such substring has length ≤ k− 1. So
a merge can remove at most k − 1 edges. To remove as many edges as possible,
each merge should remove k−1 edges, and we should perform as many merges as
possible. Hence, an optimal SSAS contains exactly one assembly for each string
Lv, Rv, or C(u,v), and reuses the assembly to generate every occurrence of the
string in s.

Now suppose that we have an optimal SSAS for s. Therefore, there is exactly
one assembly for each of Lv, Rv, and C(u,v), and the assembly is used every-
where that the string occurs in s. Construct the corresponding graph coloring
by assigning vertex v ∈ V the color corresponding to the glue on the right side
of Lv. Because LvRv is a substring of s, the glue on the left side of Rv must
match the glue on the right side of Lv. Because LuC(u,v) is a substring of s, the
left glue of C(u,v) must be the same as the right glue of Lu. Because C(u,v)Rv
is a substring of s, the right glue of C(u,v) must be the same as the left glue of
Rv. Because C(u,v) is the label of a single assembly, we know that the glue on
the left side cannot match the glue on the right side (otherwise it would form
an infinite tile). As a result, we know that for any edge (u, v), the glue assigned
to u must be distinct from the glue assigned to v. Hence, the coloring is valid.

Given a valid coloring, how do we construct an optimal SSAS? First, we
construct one assembly for each of Lv, Rv, and C(u,v). Given a vertex v colored
with color i, we construct the assembly Lv with glue i on the right side and the
assembly Rv with glue i on the left side. For the assembly C(u,v), the glue on
the left should correspond to the color of u, while the glue on the right should
correspond to the color of v. These glue assignments satisfy the constraints
encoded in s, so we can construct an assembly for each constraint string as
outlined above. To combine the assemblies for the constraint strings, we take
advantage of our ability to assign arbitrary glues to the left and right sides of
the assembly for each constraint string. By assigning glues correctly, we can use
(k− 1)-way mixes to construct the final assembly, resulting in an optimal SSAS.
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5 Separation Between SASs and RCFGs

Now we show that the general 1D staged self-assembly model (SAS) is not equiv-
alent to RCFGs. The proof is constructive: we give a set of strings and describe
a set of SAS instances that produce assemblies with these label strings. We then
show that any RCFG producing these strings is asymptotically larger than the
SAS instance producing the corresponding label string.

It might appear obvious that allowing bin parallelism should allow a reduc-
tion in the amount of work needed to construct an assembly. However, using
parallelism has two costs that make saving work difficult. First, for any mini-
mal SAS, no two assemblies in the same bin may share a common glue (this is
proven in Lemma 3). As a result, additional parallelism requires more unique
glues, which in turn requires more starting bins, and thus more work. Second,
since the goal of an assembly system is to construct a single goal assembly, bins
with parallelism must eventually be “collapsed” into a single bin with a single
object (otherwise the parallelism was extraneous). Collapsing bins with paral-
lelism involves adding tiles to join the various assemblies together, and since the
glues on each assembly are unique, creating and mixing the joining tiles requires
additional work proportional to the amount of parallelism in the bin.

5.1 A Set of Strings Sk

To derive an asymptotic bound between SASs and RCFGs, we use a special set
of strings that can be built by small SASs but require large RCFGs. Each string
consists of a sequence of interleavings of pairs of smaller strings. We will consider
only odd values of k for the remainder of the paper.

Let Binary(i, `) be the binary representation of i of length `. The following
is a function used to double every character in a string:

Double(b1b2b3 . . . bn) = b1b1b2b2b3b3 . . . bnbn

We wish to encode a number of distinct “characters” in binary. To construct
a suitably hard-to-compress string, we want to ensure that the beginning and
end of each encoding are clearly delineated. To that end, we define the following
strings for all values of k and all values of i < 2k:

Definition 9. Ak,i = (01) ◦Double(Binary(i, 1 + dlog ke)) ◦ (01).

Note that each such string has length 6 + 2dlog ke.
We wish to use these characters to construct a string with a lot of structure

(so that it is efficiently constructible using a SAS) but minimal repetition (so that
it is not efficiently constructible using a CFG). To minimize repetition, we choose
a string with the property that no sequential pair of substrings Ak,i is repeated.
We define the following functions, which are permutations for 0 ≤ x < k:

πk,0(x) = 2x mod k πk,1(x) = 2x+ 1 mod k

We use these two simple functions to construct a more complex permutation.
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Definition 10. Say that the bits of Binary(i, `) are b1, . . . , b`. Then

Πk,`,i(j) = πk,b`(πk,b`−1
(. . . πk,b2(πk,b1(j)) . . .)).

Because k is odd, this function is a permutation for 0 ≤ j < k. In addition, as long
as 0 ≤ i < 2`, this function has the property that Πk,`,i(j) =

(
2` · j + i

)
mod k.

This means that for fixed values of k, `, and j, each value of i such that 0 ≤ i < k
will generate a different value of Πk,`,i(j).

This permutation can be used to ensure that no sequential pair of characters
is repeated. To do so, we construct pairs of characters as follows:

Ck,i,j = Ak,j ◦ (01)dlog ke ◦Ak,k+Πk,dlog ke,i(j) ◦ (01)dlog ke.

We concatenate these pairs to construct Pk,i = Ck,i,0 ◦Ck,i,1 ◦ . . .◦Ck,i,k−1. Note
that the length of each Ck,i,j is 12 + 8dlog ke, and therefore the length of each
Pk,i is (12 + 8dlog ke) · k.

We concatenate each Pk,i to get the string we wish to compress:

Definition 11. Sk = 01 ◦ Pk,0 ◦ 01 ◦ Pk,1 ◦ 01 ◦ . . . ◦ 01 ◦ Pk,k−1 ◦ 01

In the next two subsections we give bounds on compressing Sk using both a
RCFG and a SAS.

5.2 A SAS Upper Bound for Sk

Now we describe a self-assembly system using bin parallelism that produces an
assembly with Sk as its label string. The system is broken down into several
subsystems described in this section. A diagram of the SAS for S3 is seen in
Figure 3.

Constructing Ak,i for all 0 ≤ i < 2k Say that we are given 2k glue pairs
xi, yi, and that we want to assemble xi[Ak,i]yi. for each 0 ≤ i < 2k. In addi-
tion, say that we are given three additional glues g0, g1, and g2 for use in our
construction. Let ` = 1 + dlog ke.

For each binary string s of length ≤ `, we construct two bins: Is and Fs. Let
s = t ◦ b, where b ∈ {0, 1}. Is will contain an assembly with glue g0 on the left,
glue g1 on the right, and the label Double(t) ◦ b. Fs will contain an assembly
with glue g0 on the left, glue g2 on the right, and the label Double(s). The
assembly in bin Is will be constructed by adding the tile g2[b]g1 to the assembly
in bin Ft. The assembly in bin Fs will be constructed by adding the tile g1[b]g2
to the assembly in bin Is.

To finish this construction, we add the constant-sized assemblies xi[01]g0
and g2[01]yi to the bin FBinary(i,`). This ensures that for 0 ≤ i < 2k, the bin
FBinary(i,`) contains an assembly with the label Ak,i. The total number of bins
required for this construction is Θ(k).
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0[A3,0]1

rotating bin

fixed bin

7[1]1

2[0]8

11[1]3

6[0]10

9[1]5

4[0]12

9[1]1

2[0]10

7[1]3

4[0]8

11[1]5

6[0]12

permutation bin 1 (π3,0)

permutation bin 2 (π3,1)

1[0]7

8[1]2

3[0]9

10[1]4

5[0]11

12[1]6

renormalization bin

6[01]1 1[01]0

6[01]2

2[01]0

2[A3,1]3 4[A3,2]5

1[A3,3]2 3[A3,4]4 5[A3,5]6

Fig. 3: The mix DAG for a SAS generating an assembly with label string S3.

Fixed and Rotating Bins The fixed bin contains the following set of tiles:

0[Ak,0]1, 2[Ak,1]3, . . . , (2k − 2)[Ak,k−1](2k − 1)

The rotating bin contains the following set of tiles:

1[Ak,k+0]2, 3[Ak,k+1]4, . . . , (2k − 1)[Ak,k+(k−1)](2k)

Permutation and Renormalization Bins Permuting the assemblies in the
rotating bin is simulated by attaching permutation tiles to the east and west
ends of those assemblies. The permutations πk,0 and πk,1 are implemented as
two sets of 2k tiles, each set in a separate permutation bin. A third set of 2k
tiles are put in a renormalization bin used to solve a technical issue with the
permutation bins.

The permutation bin for πk,0 has tiles that replace the primal glues of as-
sembly i (2i+ 1 and 2i+ 2) with the dual glues of assembly πk,0(i) (2πk,0(i) +
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1 + (2k + 1) and 2πk,0(i) + 2 + (2k + 1)) for all assemblies 0 ≤ i ≤ k − 1. The
permutation bin for πk,1 is constructed analogously. Each tile attaches to either
the east or west end of the assembly and correspondingly has the primal and
dual glues on its east and west sides. The tiles attaching to the east end of the
assembly have the label 0; the tiles attaching to the west end of the assembly
have the label 1.

The renormalization bin has a pair of tiles for changing the dual glues of
assembly i ((2i+1)+(2k+1) and (2i+2)+(2k+1)) to its primal glues ((2i+1)
and (2i+2)). The tiles attaching to the east end of each assembly have the label
1; the tiles attaching to the west end of each assembly have the label 0.

Creating Interleaved Assemblies The permutation and renormalization bins
are applied in a branching manner to produce all permutation sequences of length
`. First πk,0 and πk,1 are mixed separately with the rotating bin, then πk,0 and
πk,1 are each mixed separately with the product of both of these mixings, etc.
After each mixing with a permutation bin, the renormalization bin is mixed with
the product. After all permutation sequences are created, the fixed bin is mixed
with each, creating single assemblies with label strings Pk,i for all 0 ≤ i < k.

Combining Interleaved Assemblies The final step is to combine each as-
sembly with label Pk,i into a single assembly. Each assembly is contained in a
separate bin after its production, and has glue 0 on its west side and glue 2k
on its east side. To the assembly with label Pk,i, the tiles (2k + 1 + i)[1]0 and
(2k)[0](2k + 2 + i) are added. Then these assemblies are combined to produce a
single long assembly with glue (2k + 1) on the west side, and glue (3k + 1) on
the east. To finish off the assembly, two more tiles are added: (null)[0](2k + 1)
and (3k + 1)[1](null). This ensures that the final result is an assembly with the
label Sk and null glues on both ends.

Theorem 4. The SAS described in Section 5.2 has size O(k).

Proof. Break the SAS into the following sections:

1. Creating the a-bin and b-bin.
2. Creating the permutation and renormalization bins.
3. Creating the interleaved assemblies.
4. Combining interleave assemblies.

Item 1 requires O(k) edges to create a tile for each symbol in Ak or Bk
respectively and mixing them together. Item 2 requires O(k) edges to create
three bins each with a pair of tiles for each c-buffered element of the b-bin.
Item 3 requires O(k) edges: this portion of the mix DAG resembles an upside-
down tree and contains no more than two leaves per permutation assembly.
Item 4 requires O(1) edges per assembly (and thus O(k) edges total) to add two
location-specifying tiles and combine it with the other assemblies into a single
bin. In total k interleave assemblies (one per shift) are created, so O(k) edges
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are in this portion of the mix DAG. Combining interleave assemblies is done by
adding at most two tiles to each interleave assembly followed by combining them
into a single bin. A constant number of edges exist for each assembly, so O(k)
edges exist in this portion of the mix DAG. ut

5.3 An RCFG Lower Bound for Sk

The following definition and theorem are taken from [11].

Definition 12. As defined in [5], the size of the LZ-factorization of a string s
(denoted |LZ(s)|) is the number of elements generated by the LZ77 algorithm
without self-referencing.

Theorem 5. For an RCFG G generating a string s, |LZ(s)| ≤ |G|.

Lemma 2. All factors in the LZ-factorization of Sk have size < 16dlog ke+ 26.

Proof. Assume, for the sake of contradiction, the LZ-factorization of Sk contains
some factor y of size ≥ 16dlog ke+ 26. Then the factor is long enough that there
must be some i, j such that Ck,i,j is a substring of y. Let x be the part of the
string preceding y. Then by the definition of LZ factorization, y is a substring
of x, and therefore Ck,i,j is a substring of x.

Ck,i,j contains as a substring the string Ak,j . To ensure the correct parity
on runs of characters, the portion of x where Ak,j is found must have been
completely generated by some other Ak,j∗ . Then it must be that Ak,j = Ak,j∗ ,
and by Definition 9, it follows that j = j∗. So the portion of x where Ck,i,j is
found must have been completely generated by some other Ck,i∗,j , where i 6= i∗.
Then Ak,k+Πk,dlog ke,i(j) = Ak,k+Πk,dlog ke,i∗ (j). By Definition 9, it follows that
k+Πk,dlog ke,i(j) = k+Πk,dlog ke,i∗(j). Therefore, by Definition 10, i = i∗, which
gives us a contradiction. ut

Theorem 6. The smallest CFG that can be used to construct Sk has size Ω(k2).

Proof. By Lemma 2, the maximum length of an LZ factor is 16dlog ke+ 29. The
sum of the lengths of the LZ factors is equal to |Sk| = Θ(k2 log k). Hence, the
number of LZ factors is Ω(k2). By Theorem 5, the size of the minimum grammar
must therefore be Ω(k2). ut

5.4 Asymptotic Separation of SASs and RCFGs for Sk

Separation refers to the minimum difference in size between an RCFG and a
SAS generating the same (label) string. Here we show the separation achieved
for the strings Sk, where k is the number of glues used to generate the label
string Sk by the SAS in Section 5.3 and n is the length of Sk.

Corollary 2. The strings Sk have separation Ω(k).
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Proof. By Theorem 6, any RCFG generating Sk has size Ω(k2). By Theorem 4,
a self-assembly system of size O(k) exists that produces an assembly with label
string Sk. So the ratio of the size of any grammar generating Sk to the size of
some SAS instance is Ω(k). ut

Corollary 3. The strings Sk have separation Ω(
√
n/ log n).

Proof. The length of Sk is Θ(k2 log k). So k = Θ(
√
n/ log n). By Corollary 2,

the separation is Ω(k). So the separation is also Ω(
√
n/ log n). ut

Given that the number of glues is limited in practice, it is natural to consider
whether Ω(k) separation is possible for k glues where k � n. We show this is
possible for k = Θ(log n).

Definition 13. Define the recursive string Tk,t = 01 ◦ Tk,t−1 ◦ 01 ◦ Tk,t−1 ◦ 01,
where Tk,1 = Sk. The length of Tk,t is Θ(2t|Sk|) = Θ(2tk2 log k).

Theorem 7. The strings Tk,k have separation Ω(k) and use Θ(log n) glues.

Proof. Since Tk,k has Sk as a substring, any CFG generating Tk,k has size Ω(k2)
by Theorem 6. To construct a SAS to generate this string, we first use the
SAS described in Section 5.2 to generate an assembly a[Sk]b. We can then add
a constant number of tiles to get two assemblies c[1Sk0]e and e[1Sk0]d, which
when combined create the assembly c[1Sk01Sk0]d. We then add two more tiles
to construct the assembly a[01Sk01Sk01]b. This process can then be repeated
k times. In total O(k) additional work is performed, so the new SAS has size
O(k). The length n of the string is Θ(2kk2 log k), so k = Θ(log n). ut

5.5 Upper Bounds for Separation of SASs and RCFGs

The SASs described in Section 5.2 constructing Sk used O(k) distinct glue pairs
to achieve a separation of Ω(k). We now show bounds on the worst-case sepa-
ration in terms of the number of glues k and the length of the string n.

Lemma 3. Given a minimal SAS A, any two distinct assemblies A1 and A2 in
the same bin must have different glues on either the west side or the east side.

Proof. For the sake of contradiction, say that there is a distinct pair of assem-
blies A1 and A2 with matching glues on both the west and east sides of the
assemblies. Because the accessible glues on both assemblies are identical, any
assembly which adheres to A1 must also adhere to A2, and vice versa. Hence,
for every superassembly of A1, there is a corresponding superassembly of A2 in
the same bin with the same accessible glues, but a different label sequence. Any
attempt to merge two such assemblies to create a single assembly results in an
infinite label sequence. So the SAS A cannot produce a single goal assembly,
violating the definition of a SAS. ut

Corollary 4. Given a minimal SAS A using k glues to produce a string s, each
bin in A contains at most k2 distinct assemblies.



One-Dimensional Staged Self-Assembly 17

Lemma 4. Given a SAS A using k glues and generating an assembly with label
string s, an RCFG of size O(k2|A|) generating s can be constructed.

Proof. For each bin in A and each distinct assembly in that bin, construct one
bin in the SSAS B. By Corollary 4, the number of bins in B will be at most k2

times the number of bins in A.
Now consider what happens when ` bins in A are simultaneously mixed to

produce a single bin c containing several assemblies. How many edges must we
add to B to ensure that each assembly in c is correctly constructed in B? To
determine this, we define G to be a directed graph with a node corresponding
to each glue and, for each distinct input assembly g1[s]g2, a directed edge from
g1 to g2. Then each distinct assembly in c corresponds to a source-sink pair in
G, and each possible way to construct that assembly corresponds to a path in
G from the source of the assembly to the sink of the assembly.

Say that there exist three glues g1, g2, g3 such that (g1, g2) and (g2, g3) are
edges in G but (g1, g3) is not an edge in G. Then we can mix the assembly
corresponding to the edge (g1, g2) with the assembly corresponding to the edge
(g2, g3) to get an assembly with glue g1 to the west and glue g3 to the east. This
is equivalent to adding the edge (g1, g3) to G. Each such mixing requires us to
add a constant number of nodes and edges to the mix DAG B, and increases the
number of edges in G by 1. The graph G can never have more than k2 edges, so
repeated mixings of this type add a total of O(k2) work to B. Hence, any mixing
of bins in A can be replaced by O(k2) binary mixes in B. As a result, |B| has
size O(k2|A|), and can therefore be converted to an RCFG with size O(k2|A|)
by Theorem 2. ut
Theorem 8. With respect to the total number of distinct glue pairs k, the sep-
aration for any string is O(k2).

Proof. Let A be a SAS using k glues that generates a string s. By Lemma 4, there
is an RCFG of size O(k2|A|) that generates s. So separation is at most O(k2). ut
Theorem 9. With respect to the length of the string n, the separation for any
binary string is O

(
(n/ log n)2/3

)
.

Proof. Let A be a SAS generating a string s of length n. Let k be the number
of glues used in A. Either k = O

(
(n/ log n)1/3

)
or k = ω

(
(n/ log n)1/3

)
. If

k = O
(
(n/ log n)1/3

)
then by Lemma 4 there is an RCFG of size O(k2|A|) =

O
(
(n/ log n)2/3 · |A|

)
generating s. So the separation is at most O

(
(n/ log n)2/3

)
.

Now suppose k is ω
(
(n/ log n)1/3

)
. Then |A| = ω

(
(n/ log n)1/3

)
. Lemma 2 of

Section 2.2 in [9] shows that there is an RCFG of size O(n/ log n) generating
s. Hence, the separation is o

(
(n/ log n)2/3

)
. So in both cases the separation is

O
(
(n/ log n)2/3

)
. ut

6 Implementation and Experimentation

Section 4 demonstrated the equivalence of approximation algorithms for the
minimum CFG and minimum SSAS problems. In this section we present an
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easy-to-use software tool named ‘Self-Disassembler’ utilizing this equivalence to
quickly compute efficient SSASs for user-specified goal assemblies. A screenshot
of the system is seen in Figure 4.

Fig. 4: A screenshot of Self-Disassembler: an online tool implementing algorithms
for computing SSAS systems.

To use Self-Disassembler, the user provides an input assembly as a sequence
of characters typed into the text box. A drop-down menu provides a list of
minimum CFG approximation algorithms with asymptotic running times and
approximation ratios. Pressing ‘Disassemble’ sends the input string to the web
server, where a grammar approximation algorithm is applied and the resulting
grammar is converted into a SSAS. Additional information such as bin and stage
assignments and volume measurements for each mixing is also computed. The
result is then sent back to the user and displayed in a color-coded ‘recipe’ format.

The four selectable algorithms available to the user are ‘Exhaustive’, ‘Bisec-
tion’, ‘Lehman’, and ‘Sakamoto’. The Exhaustive algorithm is a simple brute-
force O(4n) exponential algorithm that solves the smallest CFG problem exactly.
The Bisection algorithm [8] is a O((n/ log(n))0.5)-approximation algorithm that
recursively adds production rules that merge two equal-sizes halves of the string,
followed by merging any nonterminals that produce the same substring. The
Lehman algorithm is a O(log3(n))-approximation algorithm described in [2].
Finally, the Sakamoto algorithm is the O(log(n))-approximation algorithm de-
scribed in [12].

Performance experiments were run with an offline version of the software to
evaluate the speed and output SSAS sizes using the four algorithm choices. All
running times are measured on a Macbook Pro laptop with a 2.66 GHz Intel
Core i7 processor and 4 GB of RAM, with implementations in Python using the
Python 2.6.5 interpreter. We found that for small n ≤ 20 all algorithms (includ-
ing the Exhaustive algorithm) performed nearly identically, with the exception
of the speed of the Exhaustive algorithm, which became too slow for n ≥ 14.
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Fig. 5: Plots of the output SSAS sizes and speed of the three smallest grammar
approximation algorithms. Each data point is averaged from a sample of 10
random binary strings.

For larger n (100 ≤ n ≤ 1000), the Bisection algorithm outperformed the
Lehman and Sakamoto algorithms in both speed and output SSAS size for ran-
dom binary strings. Additional experiments in which strings consisting of re-
peated concatenations of a common string of length 1 ≤ i ≤ n, i.e. strings with
complexity ranging from Θ(log(n)) to Θ(2n) were also performed. As string
complexity decreased, the output SSAS sizes in these cases became signficantly
smaller and all three algorithms ran significantly faster, but the relative perfor-
mance of the algorithms remained similar.
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