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Abstract

We investigate when thick 3D polygonal chains are locked,
i.e., have a disconnected configuration space. In particular,
we show that thick 4-chains are never locked, and we ex-
hibit a class of locked thick 5-chains whose ratio of max-
imum edge length to minimum edge length is strictly less
than 3 (the best known ratio for nonthick chains).

1 Introduction

In the study of linkage folding (see, e.g., [5, Part I]),
the typical mathematical model of a mechanical linkage
is a collection of rigid line segments (bars) permanently
attached at certain endpoints (joints). Although there
are many types of joints, the most common mathemati-
cal model is a universal joint, which can flex arbitrarily.
Bars are usually considered physical objects that cannot
intersect each other (usually in 3D). Thus a linkage can
move according to any continuous motion such that the
bar lengths remain preserved, the bars remain attached ac-
cording to the joints, and the bars do not intersect each
other.

In this paper, we consider changing this model to al-
low the bars to have positive thickness. Our motivation is
that such a model is physically more realistic, in partic-
ular when modeling physical objects such as mechanical
linkages or protein backbones. O’Rourke [5, Sect. 6.3.3,
p. 91] introduced one model of thick 3D linkages, where
the chain is a Minkowski sum of a regular nonthick 3D
linkage and a ball, turning edges into cylinders and ver-
tices into identical spheres. We distinguish the thick edges
and thick joints of the resulting shape from the original
nonthick bars and nonthick joints. The linkage is consid-
ered non-self-intersecting if the only thick bars that inter-
sect each other are those whose underlying nonflat edges
share a nonthick vertex. A slight variation is easier to build
in practice, and even exists in many magnetic ball/rod con-
struction kits: if two thick edges intersect, they should be
from incident nonthick bars and the thick edges should
intersect only within their shared thick joint. So far no
nontrivial theorems have been established in either model.

This paper considers thick “locked chains” in
O’Rourke’s model and our variation thereof. A chain
is a linkage in which the bars form a polygonal chain,
connected in a path configuration. A linkage is locked
if its configuration is disconnected, that is, there are two
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configurations that cannot reach each other by continuous
(non-self-intersecting) motions.

O’Rourke originally introduced thick linkages with the
following open problem: is there a locked thick chain
whose underlying nonthick bars have unit length? [5,
Open Prob. 6.1, p. 91] This problem remains open. It is
motivated by the analogous problem for nonthick chains
[1, 5, Open Prob. 9.19, p. 151], which also remains open.
A more general version of the problem was posed by De-
maine and O’Rourke [5, Open Prob. 9.20, p. 152]: what
is the smallest possible length ratio between the longest
bar and the shortest bar that admits a locked nonthick
chain? The smallest ratio known is the original five-bar
chain which achieves a ratio of 3 + ε [2, 1, 5, Thm. 6.3.1,
p. 89]. The case of unit-length bars is the smallest possible
ratio of 1. But so far nothing better than 3 is known, for
nonthick or thick chains.

We analyze a family of locked thick chains that achieve
a length ratio of strictly less than 3. In fact, the fam-
ily is parameterized by the bar thickness as a multiple
λ of the minimum bar length. Whenever a chain with
the necessary structural properties exists, we prove that
the chain is locked when its bar-length ratio is at least√

9− 8 ·
(

λ
1−λ

)2

, which is strictly less than 3 for all

λ > 0.
Our locked thick chain has five bars, the same as the

classic example of a locked nonthick chain. Indeed, it is
known that all locked nonthick chains have at least five
bars [2]. As a complementary result, we prove that all
locked thick chains have at least five bars as well.

2 Preliminaries

For both thick and non-thick chains, we distinguish the
chain (sequence of bars moving in space) from its con-
figuration (a chain in a particular position). A polygonal
chain P in Rd is a sequence of fixed length bars con-
nected at their successive endpoints and moving freely
in a d-dimensional space. The chain has n + 1 vertices
V = 〈v0, . . . , vn〉, and is specified by the fixed edge
lengths di between vi and vi+1, i = 0, . . . , n − 1. We
write P [i, j], i ≤ j, for the polygonal subchain composed
of vertices vi, . . . , vj . The joints correspond to the internal
vertices v1, . . . , vn−1.

A configuration Q = 〈q0, . . . , qn〉 of the chain P is an
embedding of P into Rd, i.e., a mapping of each vertex
vi to a point qi ∈ Rd, satisfying the constraints that the
distance between qi and qi+1 is di. The points qi and qi+1

are connected by a straight line segment ei.
Let Bdλ be the ball in Rd of radius λ centered at the

origin, and let e be a straight line segment in Rd. The thick
bar of thickness λ and of skeleton e is the Minkowski sum
e ⊕ Bdλ between e and Bdλ. A thick chain Pλ in Rd is
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specified by its skeleton P and its thickness λ. It can be
seen as a sequence of thick bars whose end balls coincide.
A configuration Qλ of a thick chain Pλ is the Minkowski
sum between a configuration Q of P and the ball Bdλ. The
corresponding configuration Q of P is called the skeleton
of configuration Qλ. Note that adjacent thick bars of a
thick chain always intersect. We however impose that a
configuration be simple, that is, nonadjacent bars do not
intersect. Furthermore, we require that the thick bar ei−1⊕
Bdλ does not intersect the ball qi+1 ⊕ Bdλ. A motion of a
chain is simple if every configuration during the motion is
simple.

An expansive motion of a chain P is a motion with the
property that the distance between any pair of points on the
chain monotonically increases with time [3]. We say that
the motion of a thick chain is expansive if the motion of its
skeleton is expansive. We can then show the following:

Lemma 1 An expansive motion of a thick chain starting
from a simple configuration, is simple.

3 Thick 4-Chains Cannot Lock

It is known that a nonthick 4-chain cannot be locked [2].
Following an idea similar to that in [4], we use a linear
transformation as a first step toward bringing the skeleton
of the thick chain in 2D. Define the parameterized linear
transformation fτ : R3 → R3 by fτ (x, y, z) := (τx, y, z)
with parameter τ ≥ 1. For a set S ⊆ R3, write fτ (S) =
{fτ (p) : p ∈ S}. Note that linear functions are distributive
over the Minkowski sum: that is, for all sets A and B,

fτ (A⊕B) = fτ (A)⊕ fτ (B). (1)

Further, because τ ≥ 1, we have

B3
λ ⊆ fτ (B3

λ). (2)

Theorem 2 Every simple thick 4-chain can be straight-
ened in 3D.

Proof. Let Cλ = C ⊕ B3
λ be a thick 4-chain of thickness

λ of skeleton C whose vertices are (v0, v1, v2, v3, v4).
Consider the plane K formed by the two middle non-

thick bars of the skeleton, e1 = (v1, v2) and e2 = (v2, v3).
We may choose the coordinate system so that K is the yz
plane. We can also apply small perturbations to v0 and v4
to ensure that they are not in K. Let k1 and k2 be the first
and last (nonthick) bars of C, that is, k1 = (v0, v1) and
k2 = (v3, v4).

Definition the parameterized linear transformation fτ as
above. The two middle bars, e1 and e2, have the same
length in fτ (C) as in C, but the transformation increases
the length of the two end bars, k1 and k2. So we have to
truncate the length of k1 and k2 to preserve their length.
Also, the thick bars of Cλ, which are cylinders with a
sphere at each end, become cylinders with a ellipsoid basis
in fτ (Cλ). In order to obtain a thick chain again, the basis
of this cylinder has to be changed to a disk.

By truncating the length of the end bars, we obtain a
new 4-chain Cτ from fτ (C). Clearly, Cτ ⊆ fτ (C). By
equation (2), B3

λ ⊆ f(B3
λ). So,

Cτλ = Cτ⊕B3
λ ⊆ fτ (C)⊕fτ (B3

λ) = fτ (C⊕B3
λ) = fτ (Cλ).

We want to apply the linear motion fτ for τ ranging
from 1 to ∞. To achieve this motion in finite time, we
define another motion parameterized by t from 0 to 1 that
applies fτ where τ = 1/(1 − t). Throughout the mo-
tion, we truncate the length of the two exterior segments
and the basis of the ellipsoid cylinder. Because the linear
transformations preserve intersection among regions, two
thick bars that do not intersect before the motion do not
intersect during the motion. As t approaches 1, τ grows to
infinity and the exterior thick bars become perpendicular
to the yz plane. Let C ′ be that skeleton of the chain at that
point in time.

Two possible situations arise: either the vertices v0 and
v4 are on the same side of the yz plane or they lie on oppo-
site sides of the yz plane; see Fig. 1 (a–c) for top and side
views. Let Π1 be the plane containing v0, v1, and v2, and
Π2 be the plane containing v2, v3, and v4. Let ` be the line
at the intersection of Π1 and Π2. Notice that ` intersects
C ′ only at vertex v2. Thus the subchain v0v1v2 is con-
tained in a halfplane of Π1 bounded by ` and the subchain
v2v3v4 is contained in a halfplane of Π2 bounded by `. By
hinging those two halfplanes about `, we obtain an expan-
sive motion of C ′ that makes it planar. By Lemma 1, this
motion is simple for the thick chain.
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Figure 1: 4-chain: Example where we bring back the two
exterior thick bars in the plan yz.

Finally, we straighten the resulting planar 4-chain using
an expansive motion [3]. Again, by Lemma 1, this motion
is simple for the thick chain. �

4 Locked Thick 5-Chains

4.1 Introduction

Consider a 5-chain of thickness λ with end bars (v0, v1)
and (v4, v5) of length s > 1 and middle-bars (v1, v2),
(v2, v3) and (v3, v4) of length 1. Because the chain is sim-
ple, λ < 1/2. We will determine bounds on s so that the
chain can be locked.

Fig. 2 shows the orthogonal projection of two adjacent
thick bars (thickness λ) and one more thick bar perpendic-
ular to the other two. The projection is over to the plane
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formed by the skeleton of the two adjacent thick bars. We
first bound the distance between the points C and v0 de-
pending on the angle α between the two adjacent thick
bars and on the thickness λ.

Lemma 3 Consider in 2D two adjacent thick bars (v0, v1)
and (v0, v2) of thickness λ, consider a circle of radius λ
centered at the point C which is in the interior of the angle
α formed by the two adjacent thick bars and which does
not intersect any of these two thick bars (see Fig. 2). Let d
be the distance between v0 and C. Then

d ≥ 2 · λ
sin(α/2)

.

Figure 2: Lemma 3.

Lemma 4 Let Pλ be a 5-chain of thickness λ (see Fig.
3) which is the Minkowski Sum of a non-thick 5-chain P
of vertices (v0, v1, v2, v3, v4, v5) with the ball B3

λ. If the
three middle bars are of length one, and the central pro-
jection from v4 on the plane v1v2v3 is as in Fig. 4, then
the distance s between the middle point of the three mid-
dle thick bars of P and the vertex v1 (or the vertex v4) is
smaller than

1
2

√
9− 8 ·

(
λ

1− λ

)2

.

Proof. Consider the central projection of Pλ from v4 on
plane K containing v1, v2, and v3 (see Fig. 4). The thick
bar v4v5 intersects K in an ellipsoid centered at the point
D. This ellipsoid contains a circle of radius λ centered at
D. Thus replacing the ellipsoid by a circle centered at D
is a weaker constraint on the motion. Applying Lemma 3,
we bound the distance d between v1 and D:

d ≥ 2 · λ
sin(α/2)

v0
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v2v3

v4

v5

Figure 3: Thick 5-chain.
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Figure 4: Central projection of the thick 5-chain from v4
on the plane K containing v1, v2, and v3. The thick bars
v1v2, v2v3 and v0v1 are shown, as well as the ellipsoid
formed by the thick bar v4v5 as it intersects plane K.

Because the projection is on K, the length of thick bars
v1v2 and v2v3 are preserved and their thickness can only
be larger. Let v′0 be the projection of v0 onK and C be the
intersection in the projection between v′0v1 and v2v3. By
assumption, this intersection always exists. Consider the
triangle v1v2C. Since |v2v3| = 1, |v2C| ≤ 1 − 2λ. Also
|v1v2| = 1 and by the triangle inequality, d = |v1C| ≤
2− 2λ.

Because the central projection is from v4 over K,
|v′0v1| > |v0v1|.

2− 2 · λ > d ≥ 2 · λ
sin(α/2)

(3)

We have to bound the angle α by the equation (3):

2− 2 · λ >
2 · λ

sin(α/2)

sin(α/2) >
λ

1− λ
α

2
> arcsin

λ

1− λ

α > 2 arcsin
λ

1− λ

Because, in every triangle, the sum of angles is equal to
π, we have β to β < π − α.

With the angles α lower-bounded and β upper-bounded,
we have enough information to bound the distance be-
tween the middle point of the three middle thick bars of
P and the point A (the vertex v1).

Let be L = l2 + l3 + l4 = 3 the total length of the
three middle thick bars andE the middle point of the three
middle thick bars: the distance between E and the vertices
v4 and v1 is equal to 3/2. By the length attributed to the
three middle thick bars, the point E is at the center of the
thick bar v2v3 (see Fig. 4).

Consider the triangle EBA (obtained by considering
the point E in Fig. 4) to find the distance between the
points E and A.

In this new triangle, we know : the angle β (β < π−α),
the length |AB| (by the definition of P , |AB| = 1) and the
length |EB| (by the definition of P and the middle point
E, |EB| = 1

2 ).
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By the Al-Kashi’s theorem, we have |EA| =√
|AB|2 + |EB|2 − 2 · |AB| · |EB| cosβ. |EA| corre-

sponds to the distance between the middle point E of
the three thick bars of P and the vertex v1 so |EA| =√

1 + 1
4 − 2 · 1 · 1

2 cosβ. This distance is the same if we
consider the vertex v4 instead of the vertex v1 because the
three middle thick bars have length one.

So s = |EA| =
√

1.25− cosβ :

As β < π − α
So cos(β) > cos(π − α) = − cosα
And so s <

√
1.25 + cosα

As α > 2 arcsin λ
1−λ

Then cosα < cos(2 arcsin λ
1−λ )

But cos(2 arcsin λ
1−λ ) = cos2 arcsin λ

1−λ − sin2 arcsin λ
1−λ

= 1− 2 sin2 arcsin λ
1−λ

= 1− 2
(

λ
1−λ

)2

Then cosα < 1− 2( λ
1−λ )2

And so s <

√
1.25 + 1− 2

(
λ

1−λ
)2

<
√

2.25− 2( λ
1−λ )2

�

This lemma bounds distances from the middle point E of
the three middle bars of the thick 5-chain. We will re-use
the demonstration of [5] but with this distances as radius
of the centered sphere.

Theorem 5 LetK be a 5-chain of thickness λ (see Fig. 3),
result of the Minkowski Sum between a non-thick 5-chain
of vertices (v0, v1, v2, v3, v4, v5) and the ball B3

λ. If the
length of each of the three middle thick bars is set to one

and the end bars are of length greater than
√

9− 8( λ
1−λ )2

then K is locked.

Proof. Let D = 1
2

√
9− 8 · ( λ

1−λ )2 be the upper-bound
on the distance between the middle point E of the three
middle thick bars of K and the vertex v1 (or v4) given by
the lemma 4. Let r = D+ε, for ε > 0 small and the sphere
F of radius r centered at E. By construction, the vertices
{v1, v2, v3, v4} are in F for all reconfiguration of K.

We fix l1 and l5 to at least 2 · r + ε = 2 ·D + 3 · ε.
Because l1 and l5 are greater than the diameter of F , the

vertices v0 et v5 are not in F for all reconfiguration of K.
We first claim that unless v0 or v5 enter F , the projec-

tion from v4 on the plane through v1v2v3 is as in Fig. 4,
that is, the projection of v0v1 intersects v2v3. Symmetri-
cally, we claim that in the projection from v1 on the plane
containing v2v3v4, the projection of v4v5 intersects v2v3.
Suppose that the former claim gets violated first during the
motion. In that case, the projection of v0 has to lie on v2v3
but in that case, v0 is inside the triangle v2v3v4 which itself
is inside F , a contradiction.

Assume by contradiction that there is an unlocking mo-
tion for K.

If we close K by adding a string along the surface of F
between its two free ends, then we obtain a trefoil knot.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Thickness (lambda)

Bo
un

d 
on

 m
in

im
al

 le
ng

th
 o

f t
he

 tw
o 

en
d 

fa
t−

ba
rs

 to
 lo

ck
 th

e 
5−

ch
ai

n

Figure 5: Bounds from Theorem 5

Because F separates (by its boundary) the two sets
{v0, v5} and {v1, v2, v3, v4}, we can attach a sufficiently
long unknotted string s from v0 to v5 exterior to F . We
obtain a trefoil knot.

By our assumption, we can, by an existing motion, un-
lock K (note that the topology of a knot does not change
during a motion), at the end of this motion, we obtain a
unlocked knot (the trivial knot). This result is in contra-
diction with the fact that K ∪ s is a trefoil knot when we
add to it a string s, then K cannot be unlock by any mo-
tion. �

We have first bound on the minimal length of the two end
bars needed to lock a thick 5-chain of thickness λ. A first
plot may be drawn using this formula (see Fig. 5). In this
plot, the x axis represent the thickness (λ) and the y axis
our bound on the minimal length to assign to the two end
bars of the thick 5-chain.

Interestingly, if we put the thickness parameter λ to zero
(we are so in the case of a non-thick 5-chain) then we ob-
tain the same result than [5].
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