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Abstract

We prove that the classic falling-block video game Tetris remains NP-complete even when re-
stricted to 8 columns, settling an open problem posed over 15 years ago [BDH+04]. Our reduction
is from 3-Partition, similar to the previous reduction for unrestricted board sizes [BDH+04], but
with a better packing of buckets.

In the (perfect-information) Tetris problem [BDH+04], we are given an initial board state of filled
squares and a sequence of pieces that will arrive, and the goal is to place the pieces in sequence to
either survive (not go above the top row) or clear the entire board. This problem was proved NP-hard
for arbitrary board sizes in 2002 [BDH+04], and more recently for other polyomino pieces [DDE+17].
The variant we consider here is the c-column Tetris problem (abbreviated cC-Tetris), which is the
Tetris problem restricted to boards with exactly c columns. The original Tetris paper [BDH+04] asked
specifically about the complexity of cC-Tetris for c = O(1), motivated by real-world Tetris where
c = 10. Our main result is the following:

Theorem 1. It is NP-complete to survive or clear the board in cC-Tetris for any c ≥ 8.

Membership in NP follows from the same result for general Tetris [BDH+04, Lemma 2.1]. Like
[BDH+04], we reduce from the strongly NP-hard 3-Partition problem: given a multiset of nonnegative
integers {a1, . . . , a3s} and a nonnegative integer T satisfying the constraints

∑3s
i=1 ai = sT and T

2 < ai <
T
4 for all 1 ≤ i ≤ 3s, determine whether {a1, . . . , a3s} can be partitioned into s (disjoint) triples, each
of which sum to exactly T . For the reduction, we exhibit a mapping from 3-Partition instances to
8C-Tetris instances so that the following is satisfied:

Lemma 2 (Tetris ⇐⇒ 3-Partition). For a “yes” instance of 3-Partition, there is a way to drop
the pieces that clears the entire board without triggering a loss. Conversely, if the board can be cleared,
then the 3-Partition instance has a solution.

Proof sketch. The initial board, illustrated in Figure 1(a) (where filled cells are grey and the rest of the
cells are unfilled), will have 8 columns and 12sT + 48s+ 26 rows. The reduction is polynomial size.

The piece sequence is as follows. First, for each ai, we send the following ai sequence (see Figures 1(i–
m)): 〈 , 〈 , , 〉ai , , 〉. After all these pieces, we send the following clearing sequence
(see Figures 1(n) and (b–h)): 〈〈 , , 〉s, , 〈 〉6sT+24s+6, , 〈 〉3sT+12s+4〉.

Figures 1(b–n) illustrate that a solution to 3-Partition will clear the board. To show the other direc-
tion, we progressively constrain any 8C-Tetris solution to a form that directly encodes a 3-Partition
solution. Because the area of the pieces sent is exactly equal to 8(12sT + 48s + 26), no square can be
left empty. We enumerate all possible cases to show that this goal is impossible to meet (some square
must be left empty) if there is no 3-Partition solution. Figures 1(o–w) show some of the cases.
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Figure 1: (a) shows the initial board. (b–d) demonstrate filling and clearing the board in the final
clearing sequence. (i–m) show a valid sequence of moves for ai = 5. (n) shows our bucket terminator.
(o–w) show invalid possibilities for various pieces in the bucket.
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