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Facet Ordering and Crease
Assignment in Uniaxial Bases

Robert J. Lang and Erik D. Demaine

1 Introduction
A renaissance of origami began in the mid-twentieth century as the ex-
posure of the works of Japanese master Akira Yoshizawa inspired a wave
of creation of new design that continues unabated today. Beginning in
the 1960s with the development of box pleating and through the ensuing
decades, the state of complexity and sophistication of origami designs grew
steadily, leading to ever-more challenging subjects as origami artists in-
cluding Elias, Hulme, Engel, and Maekawa developed techniques to design
origami shapes with specified features.

By the 1990s, these techniques began to assume mathematical form.
At roughly the same time, Toshiyuki Meguro in Japan and one of the
authors (Robert Lang) in America devised a set of techniques based on
disk packing that allowed an origami artist to design a basic form, called a
base, with an arbitrary configuration of flaps [8, 9]. These techniques and
their subsequent diffusion through the origami communities on both sides
of the Pacific led to a wave of new origami creation and an “arms race”
(or perhaps a “legs race” is more accurate) of arthropodal invention known
informally as the “Bug Wars.”

While origami artists were not overly concerned with the mathematical
niceties of circle packing so long as it worked in practice, in the mid- to
late 1990s, origami began to receive attention from computational geome-
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190 III. Computational Origami

ters, including the other author (Erik Demaine), who began investigating
origami design issues from a computational perspective, examining ques-
tions of computational complexity, existence, and formal algorithms for the
solution of various folding problems.

The first computational geometric description of the circle packing de-
sign algorithm was provided by Robert Lang in 1996 [9]. We showed that a
broad class of origami structure—called uniaxial bases—could be designed
by solving a nonlinear constrained optimization (NLCO) problem that, un-
der certain conditions, amounted to a disk packing. The construction of
the base occurred in two steps. After describing the desired base by a
weighted tree graph, one constructed an NLCO from the properties of the
tree graph and then solved it for a set of points that ultimately became
key vertices of the desired crease pattern. In the second step, the pattern
of vertices was filled in with a set of creases utilizing patterns known as
molecules (a name and concept coined by Meguro). The resulting crease
pattern was foldable into a base whose flaps possessed the lengths and con-
nections specified by the original tree graph. We called this algorithm tree
theory, and incorporated it into a freely available software tool for origami
design, TreeMaker [11].

A complete description of a flat folded origami shape requires three
things: the locations of the creases; their assignment (mountain or valley);
and the stacking order of the folded layers. in our original analysis, we
noted that the creases could be classified into four families and that the
crease assignments for some of the families were known, and we commented
that the remaining crease assignments could usually be determined by a
bit of experimentation.

However, lack of a complete description of crease assignment (and the
related information of stacking order) has remained a hole in tree theory
for some ten years. It is by no means assured that the solution to either
problem is trivial; in general, finding crease assignment and/or stacking
order for a given crease pattern is NP-complete [3]. On the other hand,
polynomial-time algorithms for crease assignment and stacking order for
closely related problems [2] have been described, giving grounds for hope
for the existence of a general algorithm.

In this work, we describe for the first time a relatively simple algorithm
for crease assignment in a uniaxial base. The method hinges on the con-
struction of an ordering of the facets, expressed as a digraph, that allows
a mountain-valley assignment that satisfies the Justin conditions on layer
ordering [5]. Although we defer the proof of the algorithm to a future work
due to space limitations, we present it here; this algorithm, plus the NLCO
of tree theory, provides a complete computation algorithm for the crease
pattern, crease assignment, and stacking order for an arbitrary uniaxial
origami base.
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Facet Ordering and Crease Assignment in Uniaxial Bases 191

2 Tree Theory

2.1 Optimization

We begin with a brief recapitulation of tree theory and relevant terms and
concepts.

A uniaxial base is a folded shape that can be partitioned into distinct
regions, called flaps, and for which a particular line can be defined, called
the axis. Each flap must be incident to the axis and the perpendicular
projection of the flap onto the axis must be fully contained within each
flap. The connections between flaps are called hinges , and the hinges are
all perpendicular to the axis. Each flap has a defined length, which is simply
the length of its projection upon the axis.

The lengths and connections between flaps in a uniaxial base can be
described by an edge-weighted graph in which edges represent flaps, edge
weights are the flap lengths, and the nodes of the graph represent con-
nections between flaps. Since the paper is simply connected, any shape
folded from the paper must be simply connected, and therefore its graph
must be as well. We call such a graph the tree graph of the base. Given
a uniaxial base, constructing its tree graph is simple and straightforward.
(See Figure 1.)

Many of the classic bases of origami, and many modern bases of great
complexity, are uniaxial bases (although of course many are not). The
property of uniaxiality permits a solution of the inverse problem: given a
tree graph and a sheet of paper, construct a uniaxial base with the given
tree graph (or one that differs by only a proportionality constant), using
an algorithm which we call the TreeMaker algorithm.

We will present examples in which the sheet of paper is a square, but
the algorithm is applicable to any convex polygon P . We first classify nodes
and edges within the tree graph: a node of degree 1 is a leaf node; all others
are branch nodes . Similarly, any edge incident to a leaf node is a leaf edge;
all others are branch edges . With each leaf node ni, we associate a vertex
of the crease pattern vi, which we call a leaf node vertex. (Branch nodes
do not have unique associated vertices.) The first step of the TreeMaker
algorithm is to solve for the positions of the leaf node vertices within the
paper P .

Since the tree graph is simply connected, there is a unique shortest
path between any two nodes ni and nj , called a tree path, consisting of an
ordered list of nodes and edges. With each such tree path, we associate a
tree length lij , which is the sum of the lengths of the edges of the tree path.
In our prior work [9], we showed that for any uniaxial base, a necessary
condition on the crease pattern was that
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192 III. Computational Origami

axis

(a) (b) (c)

Figure 1. (a) Crease pattern of a uniaxial base. (b) Folded form of the same base,
with axis highlighted. (c) Its tree graph. Note that one flap is hidden inside the
folded form.

|vi − vj | ≥ lij (1)

for all possible pairs of leaf node vertices.
For an arbitrary tree graph, there is no guarantee that a solution to

Equation (1) exists. We therefore introduce a scaling factor m, which is the
ratio between the length of an edge of the tree graph and the length of the
corresponding flap in the folded form. With this introduction, Equation (1)
becomes

|vi − vj | ≥ mlij (2)

for all possible pairs of leaf node vertices.
The scale is a measure of the efficiency of the folded base; a base with

a large scale will have a folded form that is relatively large compared to
the starting paper. The largest potential base is therefore given by the
extremum of the following nonlinear constrained optimization problem:

maximize m over {vi} subject to |vi − vj | ≥ mlij , vi ∈ P. (3)

A straight line between any two vertices vi, vj in the crease pattern is
also called a path (not to be confused with tree paths, which are defined
on the tree graph rather than on the crease pattern). For every tree path
between leaf nodes, there is a corresponding path between leaf node vertices
on the crease pattern, which we call a leaf path. The length of any path
in the crease pattern is the Euclidean distance between its endpoints. If
the length of a leaf path is equal to its scaled length on the tree graph,
corresponding to equality in Equation (2), the path is said to be an active
path, because its associated constraint in the NLCO is in the active set of
constraints. A path that is not active is inactive.
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Facet Ordering and Crease Assignment in Uniaxial Bases 193

A leaf path is a polygon path if it is either (a) an active path, or (b) on
the convex hull of the leaf node vertices, in which case it is called a hull
path. If a chain of polygon paths closes on itself, forms a convex polygon,
and contains no leaf node vertices in its interior, the enclosed region and
boundary is said to be an active polygon.

A set of leaf node vertices in a polygon P with convex hull PH is said
to be well-formed with respect to a tree graph if it satisfies the following
properties:

1. Every point within the convex hull lies within some active polygon.

2. Every active polygon contains at most one inactive hull path.

There is no guarantee that a solution to Equation (3) satisfies these
two conditions; it is not uncommon to find a solution with active paths
all around the boundary and one or more unconstrained leaf vertices “rat-
tling around” in the interior of the polygon. However, it is usually possible
to either add additional edges to the tree graph or to selectively lengthen
certain edges of the tree graph to attain the well-formed state—and impor-
tantly, this is accomplished without reducing the size of the original graph;
the solution to Equation (3) remains an optimum.

2.2 Molecules

Given a well-formed vertex set, we can now construct the crease pattern
itself. We first note that any paper outside of the convex hull of the leaf
vertices is effectively unused. In practice, it can be folded underneath and
the resulting polygon treated as a single sheet of paper; in the interest of
brevity, we will ignore it going forward and will assume that the paper P
and the convex hull of the leaf node vertices PH are one and the same.

We now introduce a coordinate system in the folded form: for any point
p in the crease pattern, its perpendicular distance from the axis is called
the elevation e, and its distance along the axis from some fixed reference
point (to be defined presently) is called the depth d.

The leaf node vertices, by definition, lie on the axis of the base in the
folded form, and so have elevation zero. It can be shown that any active
path must have constant elevation along its length; thus, every point along
an active path between two leaf node vertices has elevation zero and lies
on the axis in the folded form. We call such a path an axial path. Since
all points in the immediate neighborhood of an axial path lie at higher
elevation than the axial path, there must be a gradient discontinuity along
an axial path in the mapping from the crease pattern to the folded form—
in other words, every axial path is folded. We can therefore construct
creases along all axial paths in a well-formed vertex set; said creases are
axial creases . (See Figure 2.)
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Figure 2. (a) A tree graph. (b) A well-formed vertex set for this tree graph with
active and inactive polygon paths highlighted.

We now construct the crease pattern inside of each active polygon.
They can be treated independently at this point; we call the crease pattern
for any axial-boundary polygon a molecule. Inactive polygon paths (which
exist only on the boundary of the convex hull) are not forced to be axial
paths but we will choose them to be so. Thus, every active polygon has
elevation zero on its boundary and, as it turns out, elevation greater than
zero everywhere in its interior. The boundary paths of each active polygon
are all lines of constant elevation and run parallel to the axis in the folded
form. If we inset the boundary by some constant distance h, the resulting
smaller polygon must also have a boundary that has constant elevation,
but that elevation is now given by h. (See Figure 3.)

The corners of the inset polygon are gradient discontinuities in the
mapping from the crease pattern to the folded form, and therefore must
be folded points. In other words, there must be creases radiating inward
from the corners of the active polygons. We call such creases ridge creases.
If we denote the vertices of the active polygon by {vi} and the vertices of
the inset polygon by {v′i}, the inset vertices must obey a set of conditions
analogous to the tree conditions, which are

|v′i − v′j | ≥ mlij − h(cotαi + cotαj) (4)

for all possible pairs of inset vertices, where αi and αj are, respectively,
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Figure 3. Insetting the boundary of an active polygon produces a polygon with a
constant-elevation boundary at higher elevation.

half of the vertex angles at vi and vj . The path from v′i to v′j is called a
reduced active path.

As the inset distance h is increased, one of two things happens. Either
two inset vertices merge—in which case the polygon degree is reduced—or
one (or more) of the reduced active paths becomes active, i.e., the inequal-
ity in Equation (4) reaches equality. When this happens, the situation is
analogous to an axial path; the reduced path must be a line of constant
elevation, the paper on either side of the path lies at higher elevation, and
therefore, the path must be a (folded) crease, called a gusset crease. The
gusset crease(s) divide the reduced polygon into two (or more) separate
reduced polygons, each of which has degree lower than the original poly-
gon, and the insetting process continues. Eventually, the ridge creases and
vertices merge at a point, and the polygon is filled by a network of ridge
and gusset creases, all of which are folded. (See Figure 4.)

These are not the only creases in the crease pattern, however. For a
given uniaxial base, the flaps can be positioned in multiple arrangements.
As noted earlier, the boundaries between flaps are called hinges; in the
crease pattern, hinges are represented by hinge creases. A hinge crease can
be folded or unfolded, depending on the relative positions of the flaps to
either side.

While the tree graph is a discrete structure, we can expand it into
a metric space in which a point can be defined anywhere along an edge
and characterized by its distance along the edge. We call this space the
metric tree. If we do this, then along any axial path in the crease pat-
tern, there is a one-to-one mapping between any point on the path and
a unique point on the metric tree. In particular, we can identify points
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Figure 4. (a) The tree graph. (b) The universal molecule, showing ridge, gusset,
folded and unfolded hinge, and pseudohinge creases. (c) The folded form, showing
the folded positions of each crease.

on the crease pattern that map to branch nodes on the metric tree. Such
points must be incident to hinge creases. And since hinge creases are
lines of constant depth (just as axial and gusset creases were lines of
constant elevation), we can identify vertices along the axial creases that
correspond to the branch nodes along the tree, and then by propagat-
ing hinge creases out from them (and reflecting the hinge creases when
they hit ridge creases), we can construct all of the hinge creases in the
crease pattern (though not, as yet, determine whether they are folded
or unfolded).

There is one more type of crease to construct. From every hull path in
the crease pattern, there is a chain of ridge creases—called a ridgeline—
connecting its endpoints. The intermediate vertices along this chain are
incident to hinge creases that connect the ridgeline to the hull path, for
the most part. However, if the hull path is inactive, there will be at least
one vertex formed in the insetting process that is not incident to a hinge
crease connecting it to the hull. We drop a new crease from each such
vertex to the hull path, and call such creases pseudohinge creases. Like
hinge creases, pseudohinge creases are creases of constant depth. Unlike
hinge creases, pseudohinge creases are always folded and do not map to
branch nodes on the metric tree.

Thus, the crease pattern is composed of creases and vertices that par-
tition each active polygon into regions called facets . Each facet is part of
a flap that corresponds to an edge of the tree graph; that edge is called
the projection of the facet. If we take the projection of all of the facets in
a molecule, we get a set of tree graph edges that is a subset of the edges
of the entire tree graph. This set of edges and their incident nodes form a
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Facet Ordering and Crease Assignment in Uniaxial Bases 197

subgraph of the tree graph, which is called the subtree of the tree graph. A
facet that is incident to the boundary of a molecule (and which therefore
is incident to an axial crease) is an axial facet . A facet that is incident to
a pseudohinge crease is a pseudohinge facet . Since all pseudohinge creases
are incident to axial creases, all pseudohinge facets are also axial facets. A
corridor is a connected set of facets that belong to the same flap in the
folded form. A corridor can (and typically does) extend across multiple
molecules.

This completes the construction of the crease pattern. Most of this
algorithm has been previously described in [9, 10], although we had not
previously made the distinction between hinge and pseudohinge creases.
The crease pattern within each polygon is called the universal molecule,
and the algorithm to construct it, the universal molecule algorithm. This
algorithm provides all of the folds necessary to create the folded form. How-
ever, it does not give the crease assignments, nor even fully specify which
of the hinge creases are folded, and it says nothing about the stacking or-
der of the layers. It is well known that given a stacking order, the crease
assignment is trivially deduced, while even given a full crease assignment,
determining a valid stacking order can be NP-complete. Fortunately, de-
termination of the stacking order and crease assignment in uniaxial bases
is not NP-complete, as we will show in the next section.

3 Facet Ordering

3.1 Ordering Conditions

For an origami crease pattern to be flat foldable, it must satisfy three sets
of conditions. The most famous of these are Maekawa’s Theorem on crease
directions at a vertex (|M −V | = 2) [4] and Kawasaki’s Theorem on angles
between creases around a vertex (

∑
i odd φi =

∑
i even φi = 180◦) [6,7]. Less

known are the layer ordering conditions formulated by Jacques Justin [5],
which govern the stacking order of overlapping facets in the folded form.
In fact, it is these conditions that lead to the computational complexity of
many folding problems.

Our crease pattern satisfies Kawasaki’s Theorem by design, and Mae-
kawa’s Theorem follows automatically if Justin’s conditions are satisfied;
thus, our focus on determining crease assignment is in fact an attempt to
satisfy Justin’s conditions. In his original formulation, Justin considered
that all creases would be folded. In our crease pattern, we allow for unfolded
creases, which necessitates a slight modification of the descriptions of the
Justin conditions, of which there are four. (See Figure 5.)
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Figure 5. The four Justin conditions, illustrated schematically (edge views of the
creases). Both valid and invalid configurations are illustrated.
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(a) (b) (c)

Figure 6. (a) A complete ordering graph. (b) An equivalent ROG. (c) The folded
form.

The Justin conditions affect layer ordering among overlapping facets; we
therefore must define an ordering relation for any two facets that overlap
in the folded form. Such a relationship can readily be described by a
directed graph, called an ordering graph, or OG, where the nodes of the
graph represent the facets of the crease pattern and the directed edges
represent order. An edge (Fi, Fj) is in the ordering graph if and only if
facet Fi overlaps facet Fj . For convenience, one can draw an embedding
of the ordering graph by positioning the nodes at the centroids of their
corresponding facets, as shown in Figure 6.

An ordering graph can be fairly complex; for N facets, it can have as
many as N(N − 1)/2 edges (see, e.g., the stamp-folding problem). The
Justin conditions apply to edges of the ordering graph that relate facets on
either side of creases that overlap in the folded form. The ordering graph
is directed, but it need not be simply connected, acyclic, or possessed of
any other particular property. However, if an ordering graph is acyclic, it
can be described by a simpler structure, which we call a reduced ordering
graph, or ROG. Specifically, one can derived the OG from an ROG; the
edge (Fi, Fj) is in an OG if and only if Fi overlaps Fj and there exists a
directed path (Fi, ..., Fj) in the ROG.

An ROG can be much simpler—having many fewer edges—than an
OG, since in an ROG both edges and paths imply ordering relationships
between facets. However, an ROG must necessarily be directed acyclic,
leading to a directed acyclic ordering graph, and so not all OGs can be
described by an ROG. On the other hand, since ROGs are DAGs (directed
acyclic graphs), they are sortable; it is possible to assign an index to every
facet such that the ordering relationship between the facets can be inferred
simply by comparing the values of the two facet indices.
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200 III. Computational Origami

3.2 Rooted Embedding

As already noted, for a given crease pattern, there are usually several differ-
ent folded forms with the same tree graph, depending on the arrangement
of flaps. In particular, any given flap can be “flipped” about its hinge to
point in either the positive or negative depth direction. Not all arrange-
ments are possible, however. For some bases, there are flap directions for
which no valid facet ordering exists (or put differently, for which the flaps
must intersect one another).

To avoid this problem, we choose a particular flap arrangement that
avoids such problems, by assigning depth in a particular way. We pick one
node of the tree graph, which we call the root node, and assign it a discrete
depth of zero. We then move out from the root node and assign each node
a discrete depth, incrementing the discrete depth counter as we cross each
edge. Thus, at the end, every node has a discrete depth that is simply its
distance (in hops) from the root node.

We can now assign true depth to every vertex of the base, by setting
the difference in depth between any two hinges to be the length of the
edge between them, and choosing the sign of the difference in depth from
the sign of the difference in their discrete depths. In a physical analogy,
this algorithm is equivalent to “picking up the base” by its root node and
letting all of the flaps dangle under the force of gravity.

Once the true depth of all hinges and hinge vertices has been assigned,
there is sufficient information to assign both depth and elevation to every
point in the folded form. This information then allows one to determine
which hinge creases are folded; if the depth mapping is smooth across the
hinge crease, it is unfolded; if it is gradient discontinuous, the hinge crease
is folded.

Within the full tree graph, there is exactly one root node, which has
the lowest possible discrete depth, i.e., zero. Each molecule has a subtree
associated with it; within each subtree, there is one (or more) nodes with
the lowest discrete depth, which may be greater than zero. These nodes are
called the local root nodes of the subtree associated with the molecule. (To
further distinguish the local root node of a subtree from the root node of
the tree, we will sometimes call the latter the global root node.) The hinge
creases associated with the local root nodes are the local root hinges of the
molecule. The vertices incident to local root hinges are local root vertices
of the molecule.

3.3 Reduced Ordering Graphs

We are now in a position to construct the ROG for the crease pattern.
We begin by constructing directed graphs on each molecule. Each graph is
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Facet Ordering and Crease Assignment in Uniaxial Bases 201

composed of a set of directed paths, called chains , of which there are two
types.

A corridor chain connects facets in the same corridor and is constructed
as follows. It begins from an axial facet. We repeatedly add directed
edges from the current facet to the next facet; the next facet in the chain
is the facet that lies on the other side of either (a) the highest-elevation
ridge crease, (b) the gusset crease, or (c) the pseudohinge crease of the
current facet (other than the crease just crossed). Repeatedly following
this rule gives a connected chain of facets, all within the same corridor,
that eventually terminates on another axial facet. Each of the directed
edges created in this fashion is a corridor link .

The axial chain connects facets in distinct corridors and is constructed
as follows. We begin with an axial facet positioned immediately CCW
from a local root hinge. if this facet is not an in-link of an existing corridor
chain, we launch a new corridor chain from this facet and propagate it
until it terminates (on some other axial facet). We then look for the next
CCW axial facet that is not a pseudohinge facet. If the two facets are in
different corridors, we add a directed edge from the current facet to this
new facet (skipping over any pseudohinge facets between them) and repeat
the process until we have reconnected with the first facet with which we
started. Each of the directed edges created in this fashion is an axial link .

When this process is completed, the resulting graph, called a molecular
ordering graph (MOG), will be connected. It may not (yet) be an ROG,
because it may contain a cycle (if the local root node was a branch node
of the subtree). In this latter case, if you delete any single axial link that
crosses a local root hinge crease, the graph becomes an ROG and (while it
is beyond the scope of this paper to prove) it is a valid facet ordering for
the molecule. (See Figure 7.)

However, we must find a valid ROG for the entire crease pattern. We
construct the MOG for each molecule—each of which may contain a cycle.
We then merge the MOGs into a single directed graph. Two MOGS can
merge at any common vertex that is a local root hinge vertex for one of
the molecules. To merge two MOGs at a vertex, we delete the axial links
on either side of the vertex and add two links connecting the “cut ends” to
each other. In this fashion, we merge all molecules into a single directed
graph.

At this point, if the global root node is a leaf node of the tree, the
resulting graph is acyclic, constitutes an ROG, and produces a valid facet
ordering (again, the proof is beyond the scope of this paper). If the global
root node is not a leaf node, then this graph contains a cycle; breaking the
cycle by deleting an axial link crossing a hinge crease incident to a global
root vertex. The resulting graph is then acyclic, is an ROG, and produces
a valid facet ordering.
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Figure 7. (a) The molecular ordering graph for a single molecule. (b) Deleting the
edge crossing the ridge crease incident to node 1 transforms it into a valid ROG.

3.4 Crease Assignment

Once the ROG has been constructed, crease assignment is straightforward.
Since the ROG is sortable, each facet can be assigned an index, beginning
with the (sole) source facet, such that the relative ordering of the facets
implied by the ROG can be deduced by comparing the indices of the two
facets. We then two-color the facets as “white-up” (W ) and “color-up”
(C) so that the facets on either side of every folded crease are of opposite
color. (See Figure 8.) Mountain/valley (M/V ) assignment of every folded
crease can be computed from the two-coloring and the relative ordering of
the facets on each side of the crease:

1. (W → C) =⇒ M .

2. (C → M) =⇒ V .

Of course, the opposite assignment is equally valid, being equivalent to the
interchange of M and V creases. This completes the crease assignment
algorithm. (See Figure 9.)

3.5 TreeMaker 5

We have implemented this algorithm in a revised version of our TreeMaker
program, in which the optimization, crease construction, and crease assign-
ment algorithms encompass roughly 27,500 lines of code. We have tested
the algorithm on a wide range of tree graphs, all producing facet orderings
and crease assignments that yield valid folded forms (both mathematically
and physically). TreeMaker 5 is cross-platform (Mac, GNU/Linux, and
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Figure 8. The completed ordering graph and two-coloring.

Figure 9. The completed M/V assignment.
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204 III. Computational Origami

Windows), open-source (GPL), and can be downloaded from http://www.
langorigami.com.

4 Discussion
This algorithm completes the plan laid out in [9]. Given an arbitrary tree
graph, it is now possible to construct the crease pattern, including crease
assignment, for a valid base whose projection is the given tree graph. We
note that the technique of incrementally constructing ordering graphs and
merging them into a single graph is conceptually similar to the technique
used in [1]—as is the concept of rooting the folded form. The explicit
construction of an ordering graph as we have done here leads to a relatively
straightforward computer implementation of the ordering algorithm. It also
emphasizes the primacy of the ordering relationship, rather than the crease
assignment, as the fundamental mathematical description.

Of course, we have not proven that the ROG satisfies the Justin condi-
tions. To do so requires first, a transformation of the Justin conditions on
facets into required properties of the graph, and second, a proof that the
constructed graph has those properties. A complete derivation and proof is
the subject of ongoing work. We do note, however, that we have tested the
algorithm on many individual cases, including intentionally pathological
test structures, with success, and so feel that the algorithm may be use-
fully employed even now. We believe that this approach could be adapted
to provide crease assignment and facet ordering for other related folding
problems, such as polyhedron flattening (the airbag problem), among oth-
ers.

Acknowledgment. Both authors would like to acknowledge fruitful discus-
sions with Martin L. Demaine in the course of working on this problem.
Robert Lang would like to thank the Massachusetts Institute of Technology
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