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Abstract

The results of this thesis concern folding of one-dimensional objects in two dimensions: planar
linkages. More precisely, a planar linkage consists of a collection of rigid bars (line segments)
connected at their endpoints. Foldings of such a linkage must preserve the connections at
endpoints, preserve the bar lengths, and (in our context) prevent bars from crossing. The main
result of this thesis is that a planar linkage forming a collection of polygonal arcs and cycles
can be folded so that all outermost arcs (not enclosed by other cycles) become straight and all
outermost cycles become convex. A complementary result of this thesis is that once a cycle
becomes convex, it can be folded into any other convex cycle with the same counterclockwise
sequence of bar lengths. Together, these results show that the configuration space of all possible
foldings of a planar arc or cycle linkage is connected.

These results fall into the broader context of folding and unfolding k-dimensional objects in
n-dimensional space, k ≤ n. Another contribution of this thesis is a survey of research in this
field. The survey revolves around three principal aspects that have received extensive study:
linkages in arbitrary dimensions (folding one-dimensional objects in two or more dimensions,
including protein folding), paper folding (normally, folding two-dimensional objects in three
dimensions), and folding and unfolding polyhedra (two-dimensional objects embedded in three-
dimensional space).
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Chapter 1

Introduction

The area of geometric folding and unfolding is attractive in that problems and even results can
be easily understood with little knowledge of mathematics or computer science, yet the solutions
are difficult and involve many sophisticated techniques. The general form of a folding problem
is to determine how a particular geometric object (e.g., linkage, piece of paper, polyhedron,
or protein) can be reconfigured or folded according to a few constraints, which depend on the
object being folded and the problem of interest. In particular, we are interested in characterizing
the existence of foldings, and efficient algorithms for finding foldings, or in proving that such
algorithms are impossible.

There is a wide range of folding and unfolding problems; some go back several centuries
and are still unsolved, such as unfolding convex polyhedra, while others are more recent, such
as protein folding. In the last few years, there has been tremendous progress on many of the
fundamental problems in folding and unfolding, yet some of the most important questions still
remain open. This leaves the area in an exciting state.

Most folding and unfolding problems are attractive from a pure mathematical standpoint,
for the beauty of the problems themselves. Nonetheless, most of the problems have close con-
nections to important industrial applications. Linkage folding has applications in robotics and
hydraulic tube bending, and has connections to protein folding. Paper folding has applications
in sheet-metal bending, packaging, and air-bag folding. Unfolding polyhedra has applications
in manufacturing, particularly sheet-metal bending.

This thesis consists of three main parts. The first part (Chapter 2) surveys the general
area of folding and unfolding. The next two parts (Chapters 3 and 4) describe in detail two
results on one aspect of folding and unfolding. Together, these results settle one of the major
outstanding problems in linkage folding: can every planar configuration of a polygonal chain
be reached by continuous motions that preserve the vertex connections and edge lengths and
never cause crossings?

More precisely, a linkage is an embedded planar graph whose edges represent rigid bars
and whose vertices represent hinges or joints. In general, linkages are free to fold (i.e., their
embedding is free to change) in any way that preserves the lengths of the bars. Linkages
have been studied extensively throughout history, in mechanics, discrete geometry, knot theory,
molecular biology, polymer physics, and most recently computational geometry. One of the
most famous original applications of linkages is converting circular motion (from a motor)
into linear motion, the topic of Kempe’s well-known 1877 book How to Draw a Straight Line

1



[Kem77].
This thesis is concerned with the connectivity between various configurations of a common

linkage. In general, the space of all configurations of a linkage can be arbitrarily complex in the
topological sense, homeomorphic to an arbitrary compact real algebraic variety with Euclidean
topology [JS99]. However, we are able to show that for a widely studied class of linkages, the
space of configurations is connected. Specifically, if the graph of a linkage is a single path,
the linkage is called a polygonal arc, and if the graph is a single cycle, the linkage is called a
polygonal cycle or polygon; in either case, the linkage is called a polygonal chain.

Because motions can be reversed and concatenated, it suffices to ask whether every polygonal
chain can be unfolded into some canonical configuration. For polygonal arcs, we ask whether
they can be straightened, that is, folded into the configuration in which every vertex angle
is π. For polygonal cycles, we normally ask whether they can be convexified, that is, folded
into a configuration in which every interior vertex angle is at most π. Of course, then it
remains to show that the space of convex configurations of a linkage is connected, that is,
every convex configuration can be folded into any other convex configuration with the same
clockwise/counterclockwise orientation.

The main result of this thesis (Chapter 4) is that, in the plane, every polygonal arc can
be straightened and every polygonal cycle can be convexified.1 A complementary result of this
thesis (Chapter 3) is that once a polygonal cycle is convex, it can be folded into any other
convex configuration.2 Together, these results settle the reachability of all configurations of
planar polygonal chains.

Whether every arc in the plane can be straightened, and whether every polygon in the plane
can be convexified, have been outstanding open questions for at least a quarter of a century.
The problems are natural, so they have arisen independently in a variety of fields, including
topology, pattern recognition, and discrete geometry. In the next few paragraphs we detail
some contexts in which the problem has appeared, although we are probably not aware of all
such contexts.

To our knowledge, the first person to pose the problem of convexifying cycles was Stephen
Schanuel, in designing homework problems for a course in algebraic topology.3 George Bergman
learned of the problem from Schanuel during Bergman’s visit to the State University of New
York at Buffalo in the early 1970’s, and suggested the simpler question of straightening arcs.4

As a consequence of this line of interest, the problems are included in Kirby’s Problems in
Low-Dimensional Topology [Kir97, Problem 5.18].

During the period 1986–1989, Ulf Grenander and the members of the Pattern Theory Group
at Brown University explored various problems involving the probabilistic structure when gen-
erators (e.g., points and line segments) were transformed by diffeomorphisms (e.g., Euclidean
transformations) subject to global constraints (e.g., avoiding intersections).5 For the purposes
of Bayesian image understanding, they were interested in whether the process was ergodic, i.e.,
every configuration could be reached from any other. In particular, they proved this for polyg-
onal cycles in which the roles of angles and lengths are reversed: angles are fixed but lengths

1Joint work with Robert Connelly and Günter Rote.
2Joint work with Oswin Aichholzer, Jeff Erickson, Ferran Hurtado, Mark Overmars, Michael Soss, and God-

fried T. Toussaint.
3Personal communication with Stephen Schanuel, July 2000.
4Personal communication with George Bergman, July 2000.
5Personal communication with Ulf Grenander, June 2000.
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may vary [GCK91, Appendix D, pp. 108–128]. Grenander posed the problems considered here
during a seminar at Indiana University in March 1987 [Gre87], and probably also at earlier
talks.6

In the discrete and computational geometry community, the problems were independently
posed by William Lenhart and Sue Whitesides in March 1991 and by Joseph Mitchell in De-
cember 1992.7 Sue Whitesides first posed this problem in a talk in 1991 [LW91a]. In this
community the problems were first published in a technical report in 1993 [LW93] and in a
journal in 1995 [LW95].

A fairly large group of people was involved in trying to construct and prove or disprove
locked polygonal chains, at various times over the past few years. Some of the initial people
to form this group were Sue Whitesides, William Lenhart, Joseph Mitchell, Robert Connelly,
Sándor Fekete, and Günter Rote. The group grew significantly to include the attendees8 of the
International Workshop onWrapping and Folding organized by Anna Lubiw and SueWhitesides
at the Bellairs Research Institute of McGill University in February 1998.

Typically, someone in the group would distribute an example that s/he constructed or was
given by a colleague. We would try various motions that did not work, and we would often
try proving that the example was locked because it appeared so! For some examples, it took
several months before we found an unlocking motion. The main difficulty was that “simple”
motions that change a few vertex angles at once, while easiest to visualize, seemed to be
insufficient for unlocking complex examples. Amazingly, it also seemed that nevertheless there
was always a global unlocking motion, and furthermore it was felt that there was a driving
principle permitting “blowing up” of the linkage. This notion was formalized by Günter Rote
in June 1999 with the idea that perhaps a polygonal chain could be unfolded via a motion that
did not decrease the distance between any two vertices.

One of the key meetings that started the solution to the problem is the Monte Verità
Conference on Discrete and Computational Geometry in Ascona, Switzerland, organized by
Jacob Goodman, Richard Pollack, and EmoWelzl in June 1999. In particular, I first met Robert
Connelly and Günter Rote at this conference. Our work continued at the 4th Geometry Festival,
an international workshop on Discrete Geometry and Rigidity, in Budapest, Hungary, organized
by András Bezdek, Károly Bezdek, Károly Böröczky, and Robert Connelly, in November 1999.
Our solution, described in Chapter 4, was announced in January 2000.

In contrast, the result that convex polygonal cycles can be folded into any desired convex
configuration was generally assumed by the community, and surprisingly remained unpub-
lished. It surfaced as a hole to be filled during discussions at the 16th Winter Workshop on
Computational Geometry: Geometric and Computational Aspects of Molecular Reconfigura-
tion, organized by Godfried Toussaint at the Bellairs Research Institute of McGill University in
February 2001. At the workshop we also solved the problem, as described in Chapter 3, using
several components from the proof of Cauchy’s 1819 rigidity theorem.

Overview. Each chapter of this thesis is self-contained, so reading one does not depend on
reading another. In particular, the few needed definitions in early chapters are repeated in later

6Personal communication with Allan Edmonds, June 2000.
7Personal communications with Sue Whitesides (March 2000) and Joseph Mitchell (January 2000).
8Therese Biedl, Martin Demaine, Hazel Everett, Sylvain Lazard, Anna Lubiw, Joseph O’Rourke, Mark Over-

mars, Steven Robbins, Ileana Streinu, Godfried Toussaint, Sue Whitesides, and myself.
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chapters. However, to understand the results of Chapters 3 and 4 in the context of other results
in linkage folding, the reader may find it instructive to read the survey up to and including (at
least) Section 2.1.2.1. For closely related linkage-folding problems in two and higher dimensions,
we suggest reading up to and including (at least) Section 2.1.4.
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Chapter 2

Survey

Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500’s
[Dür77], but have not been studied extensively in the mathematical literature until recently.
Over the past few years, there has been a surge of interest in these problems in discrete and
computational geometry. This chapter gives a brief survey of most of the work in this area.
Related surveys are given in [Dem00] and [O’R98].

In general, we are interested in how objects (such as linkages, pieces of paper, and polyhedra)
can be moved or reconfigured (folded) subject to certain constraints depending on the type of
object and the problem of interest. Typically the process of unfolding approaches a more basic
shape, whereas folding complicates the shape. We can also generally define the configuration
space as the set of all configurations or states of the object, with paths in the space corresponding
to motions (foldings) of the object.

The survey in this chapter is subdivided into three sections based on the type of object
being folded: linkages, paper, or polyhedra. Unavoidably, areas with which I am more familiar
are covered in more detail, and some areas may be omitted entirely, but the intent is to be
as complete and balanced as possible. For example, many more problems have been explored
in linkage and paper folding than in polyhedron folding, so the length of the sections differ
appropriately. On the other hand, this thesis cannot do justice to the wealth of research in
protein folding, so only a partial survey appears in Section 2.1.6.

2.1 Linkages

2.1.1 Definitions and Fundamental Questions

A linkage or framework consists of a collection of rigid line segments (bars) joined at their
endpoints (vertices) to form a particular graph. A linkage can be folded by moving the vertices
in Rd in any way that preserves the length of every bar.

Linkages have been studied extensively in the case that bars are allowed to cross; see, for
example, [HJW84, JS99, KM95, Kem76, LW95, Sal73, Whi92b]. Such linkages can be very
complex, even in the plane. In 1876, Kempe [Kem76] showed that a planar linkage can be
built so that a vertex traces an arbitrary polynomial curve. Hopcroft, Joseph, and Whitesides
[HJW84] showed that deciding whether a planar linkage can reach a particular configuration is
PSPACE-complete. Jordan and Steiner [JS99] proved that there is a linkage whose configuration
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space is homeomorphic to an arbitrary compact real algebraic variety with Euclidean topology,
and thus planar linkages are equivalent to the theory of the reals (solving systems of polynomial
inequalities over reals). On the other hand, for a linkage whose graph is just a cycle, all
configurations can be reached in Euclidean space of any dimension greater than 2 by a sequence
of simple motions [LW95, Sal73], and in the plane there is a simple restriction characterizing
which polygons can be inverted in orientation [LW95].

Recently there has been much work on the case that the linkage must remain simple, that
is, never have two bars cross.1 This additional constraint defines the type of linkage folding
considered in the rest of this thesis. Such linkage folding has applications in hydraulic tube
bending [O’R98] and motion planning of robot arms. There are also connections to protein
folding in molecular biology; see Section 2.1.6. See also [CDR00, O’R98, Tou99a] for other
surveys on linkage folding without crossings.

Perhaps the most fundamental question we can ask about folding linkages is whether it is
possible to fold from everywhere to everywhere. That is, is there a folding between any two
simple configurations of the same linkage (with matching graphs, combinatorial embeddings,
and bar lengths) while preserving the bar lengths and not crossing any bars during the folding?
Because folding motions can be reversed and concatenated, this fundamental question is equiv-
alent to whether every simple configuration can be folded into some canonical configuration.
The definition of canonical configuration depends on the type of linkage under consideration.

In the context of linkages whose edges cannot cross, three general types of linkages are
commonly studied, characterized by the structure of their associated graphs (see Figure 2.1): a
polygonal arc or open polygonal chain (a single path); a polygonal cycle, polygon, or closed polyg-
onal chain (a single cycle); and a polygonal tree (a single tree).2 The canonical configuration of
an arc is the straight configuration, all vertex angles equal to 180◦. A canonical configuration
of a cycle is a convex configuration, planar and having all interior vertex angles less than or
equal to 180◦. It is relatively easy to show that convex configurations are indeed “canonical”
in the sense that any one can be folded into any other; the first published proof of this fact is
the topic of Chapter 3. Finally, a canonical configuration of a tree is a flat configuration: all
vertices lie on a horizontal line, and all bars point “rightward” from a common root. Again it
is easy to fold any flat configuration into any other [BDD+01b].

The fundamental questions thus become whether every arc can be straightened, every cycle
can be convexified, and every tree can be flattened. The answers to these questions depend
on the dimension of the space in which the linkage starts, and the dimension of the space in
which the linkage may be folded. Over the past few years, this collection of questions has been
completely resolved. Table 2.1 summarizes the answers to these questions when the dimensions
of the initial configuration and the folding process are equal. The answers in the columns
for arcs and cycles are analogous to the existence of knots tied from one-dimensional string:
nontrivial knots exist only in 3D. In contrast, the column for trees in Table 2.1 presents an
interesting difference in 2D: while trees in the plane are topologically unknotted, they can be
geometrically locked. This observation is some evidence for the belief that the fundamental
problems are most difficult in 2D.

1Typically, bars are allowed to touch, provided they do not properly intersect. However, requiring bars to
touch only at common endpoints does not change the results.

2More general graphs have mostly been studied only in the context of allowing bars to cross. Once the class
of graphs allows something as general as rigid triangulations, the fundamental question of course has a negative
answer.
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Figure 2.1: The three common types of linkages and their associated canonical

configurations. From top to bottom, a polygonal arc
?→ the straight configuration,

a polygonal cycle
?→ a convex configuration, and a polygonal tree

?→ a (nearly)
flat configuration.

Can all arcs Can all cycles Can all trees
Dimension be straightened? be convexified? be flattened?

2 Yes (Chapter 4) Yes (Chapter 4) No [BDD+01b]

3 No [CJ98, BDD+01a] No [CJ98, BDD+01a] No [from arcs]

4 & above Yes [CO99, CO01] Yes [CO99, CO01] Yes [CO01]

Table 2.1: Answers to fundamental questions for linkage folding without cross-
ings.

The next three subsections describe the historical progress of these results and other re-
sults closely related to the fundamental questions, one section per row in Table 2.1. The last
two subsections describe other linkage-folding problems and results not directly connected to
the fundamental questions. Section 2.1.5 describes several extensions of the notion of Erdős
flips arising in the fundamental questions in 3D (Section 2.1.3.1). Section 2.1.6 discusses the
connections between linkage folding and protein folding, and describes the most closely related
results and open problems; a full survey of protein folding is beyond the scope of this thesis.

2.1.2 Fundamental Questions in 2D

Linkage folding in 2D is the topic of the results in this thesis (Chapters 3 and 4). Section 2.1.2.1
describes the development of the theorems for straightening arcs and convexifying cycles in 2D,
the main result of this thesis (Chapter 4). Section 2.1.2.2 explores when the motions from
these theorems can be converted into simpler components. Finally, Section 2.1.2.3 discusses the
contrary result that not all trees can be flattened.
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2.1.2.1 Carpenter’s Rule Problem: Polygonal Chains in 2D

The questions of whether every polygonal arc can be straightened in the plane and whether
every polygonal cycle can be convexified in the plane have arisen in many contexts over the last
quarter-century. In particular, they were posed independently by four groups: Stephen Schanuel
and George Bergman in the early 1970’s, Ulf Grenander in 1987, William Lenhart and Sue
Whitesides in 1991, and Joseph Mitchell in 1992. (Chapter 1 presents a more detailed history.)
In the discrete and computational geometry community, the arc-straightening problem has
become known as the carpenter’s rule problem because a carpenter’s rule folds like a polygonal
arc.

Many people have devoted time to these two problems in the past decade. Most people’s
initial intuition is that the answers are yes, but describing a precise general motion was diffi-
cult. Several people proposed examples of polygonal arcs and cycles that might be “locked”
(unstraightenable and unconvexifiable), but eventually every proposed example was unlocked
by hand. It was not until early in the year 2000 that the problems were solved by Connelly,
Demaine, and Rote [CDR00], with an answer of yes. This result is the topic of Chapter 4.

More generally, the result in Chapter 4 shows that a collection of nonintersecting polygonal
arcs and cycles in the plane may be simultaneously folded so that the outermost arcs are
straightened and the outermost cycles are convexified. The “outermost” proviso is necessary
because arcs and cycles cannot always be straightened and convexified when they are contained
in other cycles. The key idea for the solution, introduced by Günter Rote, is to look for expansive
motions in which no vertex-to-vertex distance decreases. Bars cannot cross before getting closer,
so expansiveness allows us to ignore the difficult nonlocal constraint that bars must not cross.
Expansiveness brings the problem into the areas of rigidity theory and tensegrity theory, which
study frameworks of rigid bars, unshrinkable struts, and unexpandable cables. Tools from
these areas helped show that, infinitesimally, arcs and cycles can be folded expansively. These
infinitesimal motions are combined by flowing along a vector field defined implicitly by an
optimization problem. As a result, the motion is piecewise-differentiable (C1). In addition,
any symmetries present in the initial configuration of the linkage are preserved throughout
the motion. Similar techniques show that the area of each cycle increases by this motion and
furthermore by any expansive motion. Again, see Chapter 4 for details.

Ileana Streinu [Str00] has demonstrated another expansive motion for straightening arcs and
convexifying polygons that is piecewise-algebraic, composed of a sequence of O(n2) mechanisms
each with one degree of freedom. Using the half of our proof in Chapter 4 about infinitesimal
flexibility (Section 4.3), Streinu proved that each mechanism follows an expansive motion.
Because the motion of each mechanism is defined by an algebraic curve, the entire motion can
be computed in principle. On the other hand, an approximation to the motion in Chapter 4 is
easy to implement, and has resulted in animations such as the one in Figure 2.2. Our motion
also has the advantage of being canonical, thereby preserving symmetries in the linkage and
proving contractibility of the configuration space. See Section 4.4.4 for a more detailed technical
comparison of the two methods.

The pursuit of the arc and cycle problems in 2D inspired research on several related prob-
lems, described in the remainder of Section 2.1.
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Figure 2.2: Two views of convexifying a “doubled tree” linkage. The top snap-
shots are all scaled the same, and the bottom snapshots are scaled differently
to improve visibility. See http://db.uwaterloo.ca/~eddemain/linkage/ for
more animations.

2.1.2.2 Simple Motions and Special Polygons in 2D

The motions in the previous section are complicated, either involving the solution of a dif-
ferential equation defined implicitly by an optimization problem (Chapter 4) or a high-degree
algebraic curve [Str00]. Sándor Fekete (personal communication, 2000) observed that these ex-
pansive motions can be converted into a finite sequence of “simple moves” that avoid crossings
but are not expansive. We call a move (motion) simple if it changes only O(1) vertex angles.
A polygonal arc can be moved while changing only one joint angle, whereas a polygonal cycle
in the plane requires changing at least four joint angles at once [BDL+99], because otherwise
the joints define a virtual triangle which remains rigid. (In three and higher dimensions, only
two joints of a polygonal cycle must rotate at once.)

Fekete observes that an expansive motion can be viewed as a path in the configuration
space surrounded by a “tube” of separation that grows in width. More precisely, a funnel is a
union of a continuum of spheres centered at each point along the curve, and the radii of these
spheres increase along the curve. The funnel is a subset of the configuration space, that is,
any point within the funnel defines a configuration without crossings. The initial width of the
funnel is defined by the initial separation in the linkage, that is, the minimum distance between
two nonincident edges. This separation grows during the motion because of expansiveness.
Thus, the motion can be replaced by a “staircase” of many small moves, each parallel to a
coordinate axis in the configuration space, without violating simplicity. By an appropriate
parameterization of configuration space, each such move corresponds to the simplest type of
move (in terms of the number of simultaneous joint rotations) for the linkage at hand (1 and 4
for arcs and cycles in 2D).

Unfortunately, the number of simple moves resulting from this argument can be large,
depending on the initial separation of the linkage and not just the number of vertices. This
seems necessary in general: we conjecture that the number of simple moves to straighten an
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arc cannot be bounded in terms of its number of vertices.3 It remains open to obtain a general
bound in terms of the encoding size of the input linkage when the coordinates of the vertices
are encoded in binary.

In 1999 (before the general arc-and-cycle result), Biedl, Demaine, Lazard, Robbins, and
Soss [BDL+99] proved that O(n2) simple moves suffice to convexify a special class of polygons.
Specifically, a polygon is called monotone if every vertical line crosses at most two bars. Each
of the resulting O(n2) moves rotates the minimum number 4 of joints at once, and the moves
can be computed in O(n2) time on a real RAM [BDL+99].

In 1998, Everett, Lazard, Robbins, Schröder, and Whitesides [ELR+98] proved that star-
shaped polygons, polygons whose boundary is visible from a single interior point, can be con-
vexified by a particularly natural motion. Although the motion does not satisfy the definition
of “simple” above, it is easy to compute, and matches the intuition of expanding a starshaped
polygon from its center. Specifically, the main motion involves moving every second vertex
of the polygon at a constant speed along a ray from the point of visibility, and moving each
remaining vertex as forced by the constraints imposed by the two incident bars. At certain
times this motion is interrupted and a simple motion is applied in order to maintain certain
preconditions necessary for the main motion.

2.1.2.3 Trees in 2D

In 1998, Biedl et al. [BDD+01b] showed that not all trees can be flattened in the plane. Their
example, shown in Figure 2.3, consists of at least 5 petals connected at a central high-degree
vertex. Each petal is an arc of three bars, the last of which is “wedged” into the center vertex.

6→

Figure 2.3: The locked tree on the left, from [BDD+01b], cannot be reconfigured
into the nearly flat configuration on the right. (Figure 1 of [BDD+01b].)

Intuitively, the argument that the tree is locked is as follows. No petal can be straightened
unless enough angular room has been made. But no petal can be reduced to occupy less angular
space by more than a small positive number unless the petal has already been straightened.
This circular dependence implies that no petal can be straightened, so the tree is locked. The

3Personal communication with John Iacono, October 2000.
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details of this argument, in particular obtaining suitable tolerances for closeness, are much more
involved [BDD+01b]. The key is that each petal occupies a wedge of space whose angle is less
than 90◦, and thus at least 5 petals are required.

This tree remains locked if we replace the central degree-5 (or higher) vertex with multiple
degree-3 vertices connected by very short bars [BDD+01b, full version]. Recently, Connelly,
Demaine, and Rote [CDR01] have shown that even a tree with a single degree-3 vertex and
the remaining vertices having degrees 1 and 2 can be locked, so the arc-and-cycle result in
Chapter 4 is tight. In [CDR01], they also present an extension to rigidity/tensegrity theory
that allows proving many planar linkages (e.g., trees) to be locked via linear programming. In
particular, they use this method to give short proofs that the tree in Figure 2.3 and the tree
with one degree-3 vertex are strongly locked, in the sense that sufficiently small perturbations
of the vertex positions and bar lengths result in a tree that cannot be moved more than ε in
the configuration space for any ε > 0.

2.1.3 Fundamental Questions in 3D

Linkage folding in 3D was initiated earlier, by Paul Erdős in 1935 [Erd35]. His problem and its
solution are described in Section 2.1.3.1. Both Sections 2.1.3.1 and 2.1.3.2 deal with linkages
that start in the plane. The more general situation, a linkage starting arbitrarily in 3D, is
addressed in Section 2.1.3.3. As this problem proves unsolvable in general, additional special
cases are addressed in Sections 2.1.3.4 and 2.1.3.5.

2.1.3.1 Flips for Planar Polygons in 3D

Erdős [Erd35] asked whether a particular “flipping” algorithm for folding a planar polygon
through three dimensions (preserving bar lengths and simplicity) would convexify the polygon
in a finite number of steps. Specifically, a flip rotates by 180◦ a subchain of the polygon called
a pocket, a region bounded by polygon edges and an edge of the convex hull, the latter defining
the axis of rotation. Thus, during the motion, the pocket flips out of the plane, and afterwards
the polygon returns to the plane. See Figure 2.4.

Erdős proposed flipping every pocket of the polygon in parallel, but Nagy [Nag39] observed
that this can lead to nonsimple polygons; see Figure 2.5. However, by flipping only one pocket
at a time, Nagy [Nag39] proved in 1939 that a finite number of flips suffice to convexify any
polygon. This problem and result have been rediscovered several times; see [Tou99b, Grü95]
for the long history. This problem has also inspired several other problems; we defer details to
Section 2.1.5.

Unfortunately, the number of required flips can be arbitrarily large in terms of the number
of vertices, even for a quadrangle. This fact was originally proved by Joss and Shannon (1973);
see [Grü95, Tou99b, BDD+01a]. Figure 2.6 shows the construction. By making the vertical
edge of the quadrangle very short and even closer to the horizontal edge, the angles after the
first flip approach the mirror image of the original quadrangle, and hence the number of required
flips approaches infinity.

Mark Overmars (February 1998) posed the still-open problem of bounding the number of
flips in terms of natural measures of geometric closeness such as the diameter (maximum dis-
tance between two vertices), sharpest angle, and the minimum feature size (minimum distance
between two nonincident edges).
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Figure 2.4: Flipping a polygon until it is convex. Pockets are shaded.

Figure 2.5: Flipping multiple pockets simultaneously can lead to crossings
[Nag39].

Another open problem is to determine the complexity of finding the shortest or longest
sequence of flips to convexify a given polygon. Weak NP-hardness has been established for the
related problem of finding the longest sequence of flipturns; see Section 2.1.5.4.

2.1.3.2 Efficient Algorithms for Planar Linkages in 3D

Motivated by the inefficiency of the flip algorithm, two algorithms were developed in 1999 to
convexify planar polygons by motions in 3D using a linear number of simple moves [BDD+01a,
AGP99]. The basis of these algorithms is to lift the polygon, bar by bar, at all times maintaining
a convex chain (or arch) lying in a plane orthogonal to the plane containing the polygon; see
Figure 2.7. The algorithms differ in the invariant on the form of the arch, how additional bars
are added to the arch, and how the invariant is restored. In both cases, the details of the
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Figure 2.6: Quadrangles can require arbitrarily many flips to convexify [Grü95,
Tou99b, BDD+01a].

algorithm are significantly more involved than the overarching idea.

Figure 2.7: A planar polygon partially lifted into a convex arch lying in a
vertical plane (shaded). Based on Figure 6 of [BDD+01a].

In contrast, it is relatively easy to straighten a polygonal arc in the plane by motions in
3D [BDD+01a]. The algorithm lifts each bar in turn, from one end of the arc to the other, at
all times maintaining a prefix of the arc in a vertical line orthogonal to the plane containing
the arc; see Figure 2.8. Each lifting motion causes two joint angles to rotate, so that the lifted
vertical line remains vertical, while the rest of the chain remains in its original plane.

Both of these results involve reconfiguring planar linkages by motions in 3D. The initial
motivation for this study was the pursuit of the analogous problems involving motions in 2D.
Ignoring the complexity of the motions, these results have been superseded by the 2D results in
Section 2.1.2.1. However, the motions arising from the algorithms in this section are significantly
simpler than those in Section 2.1.2.1, and hence the results of this section remain of interest.

Furthermore, these results can be extended to results impossible in general with planar mo-
tions. We observe that an analogous algorithm to the one in [BDD+01a] for lifting a polygonal
arc into a vertical line (Figure 2.8) can be used to flatten every planar tree by motions through
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Figure 2.8: A planar arc partially lifted into a vertical line.

3D, working from the leaves of the tree inward. See Section 2.1.3.4 for other generalizations.

2.1.3.3 Almost Knots

What if the linkage starts in an arbitrary position in 3D instead of in a plane? In general, a
polygonal arc or an unknotted polygonal cycle in 3D cannot always be straightened or convex-
ified [CJ98, Tou01, BDD+01a]. See Figure 2.9 for an example of a locked arc in 3D. Provided
each of the two end bars is longer than the sum s of the middle three bar lengths, the ends
of the chain cannot get close enough to the middle bars to untangle the chain. More precisely
[BDD+01a], because the ends of the chain remain outside a sphere with radius s and centered at
one of the middle vertices, we can connect the ends of the chain with an unknotted flexible cord
outside the sphere, and any straightening motion unties the resulting knot, which is impossible
without crossings.

Figure 2.9: A locked polygonal arc in 3D with 5 bars [CJ98, BDD+01a].

It remains open to determine the complexity of deciding whether a polygonal arc or un-
knotted polygonal cycle can be straightened or convexified. The only known upper bound
is an algorithm in PSPACE, via Canny’s roadmap algorithm for general motion planning
[Can87, Can88].
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The next two sections describe special cases of 3D chains, more general than planar chains,
that can be straightened and convexified.

2.1.3.4 Chains on Polyhedra

In [BDD+01a], the algorithm for lifting a planar arc into a vertical line, described in Sec-
tion 2.1.3.2, is generalized to straighten any polygonal arc lying on the surface of a convex
polyhedron. The modified invariant is to maintain at all times a prefix of the chain along a ray
normal to one of the facets of the polyhedron. Similar to Section 2.1.3.2, we observe that this
algorithm can be generalized to polygonal trees lying on the surface of a convex polyhedron.

It remains open whether analogous results can be shown for polygonal cycles, or for more
general polyhedra. The case of polyhedral terrains is settled in the next section.

2.1.3.5 Simple Projection

The “almost knottedness” of the example in Section 2.1.3.3 suggests that polygonal chains
having simple orthogonal projections can always be straightened or convexified. This fact
is established by two papers [BDD+01a, CKM+01]. In addition, there is a polynomial-time
algorithm to decide whether a polygonal chain has a simple projection, and if so find a suitable
plane for projection [BGRT99].

For a polygonal arc with a simple orthogonal projection, the straightening method is rel-
atively straightforward [BDD+01a]. The basic idea is to process the arc from one end to the
other, accumulating bars into a compact “accordion” (x-monotone chain) lying in a plane or-
thogonal to the projection plane, in which each bar is nearly vertical. Once this accumulation
is complete, the planar accordion is unfolded joint-by-joint into a straight arc. We observe that
a similar algorithm can be used to fold a polygonal tree with a simple orthogonal projection
into a generalized accordion, which can then be folded into a flat configuration.

For a polygonal cycle with a simple orthogonal projection, the convexification method is
based on two steps [CKM+01]. First, the projection of the polygon is convexified via the results
described in Section 2.1.2.1, by folding the 3D polygon to track the shadow, keeping constant the
ascent of each bar. Second, Calvo, Krizanc, Morin, Soss, and Toussaint [CKM+01] develop an
algorithm for convexifying a polygon with convex projection. The basic idea is to reconfigure
the convex projection into a triangle, and stretch each accordion formed by an edge in the
projection. In linear time they show how to compute a motion for the second step that consists
of O(n) simple moves each changing at most seven vertex angles. Recently, this motion has
been improved [ABB+01] to consist of O(n) simple moves each changing at most four vertex
angles, which can be implemented by a larger number of moves each changing just two vertex
angles.

2.1.4 Fundamental Questions in 4D and Higher Dimensions

In all dimensions higher than 3, it is known that all knots are trivial; analogously, all polygonal
arcs can be straightened, all polygonal cycles can be convexified, and all polygonal trees can be
flattened [CO99, CO01]. Intuitively, this result holds because the number of degrees of freedom
of any vertex is at least two higher than the dimensionality of the obstacles imposed by any
bar. This property allows Cocan and O’Rourke [CO99, CO01] to establish, for example, that
the last bar of a polygonal arc can be folded by itself to any target position that is simple.
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Cocan and O’Rourke [CO01] show how to straighten an arc usingO(n) simple moves that can
be computed in O(n2) time and O(n) space. On the other hand, their method for convexifying
a polygon requires O(n6) simple moves and O(n6 log n) time to compute.

An interesting direction for further research is to scale the dimension of the object to be
folded together with the dimension of the space in which it is folded. For example, how can
solid polygons hinged together at their edges (to form, e.g., an open chain) be folded in 3D (or
dimensions higher than 2)? Unlike linkages in 3D, this problem is a generalization of linkages
in 2D: linkages in 3D permit additional motions, whereas hinged polygons can be forced to fold
like a planar linkage by extruding the linkage orthogonal to the plane. See Figure 2.10.

Figure 2.10: Extruding a linkage into an equivalent collection of polygons (rect-
angles) hinged together at their edges.

On the other hand, not all hinged collections of polygons in 3D have connected configuration
spaces. To see this fact, suppose we replace each bar in a 3D open chain (say, the chain in
Figure 2.9) by an appropriate thin polygon to build a hinged collection of polygons whose edges
include the original chain (as in Figure 2.11). The resulting hinged chain of polygons is only
more restrictive in motion than the original 3D open chain, and thus not all hinged chains of
polygons have connected configuration spaces. Even stronger, Biedl, Lubiw, and Sun [BLS99,
Sun99] showed that even hinged chains of rectangles do not have connected configuration spaces,
by considering an orthogonal version of Figure 2.9.

Figure 2.11: Converting the chain in Figure 2.9 into a more-restrictive hinged
chain of polygons.

We suggest some problems involving such hinged collections of polygons in the context of
polyhedra in Section 2.3.4.

2.1.5 Flips, Deflations, and Flipturns

Erdős’s notion of flips described in Section 2.1.3.1 has inspired several directions of research. In
Section 2.1.3.2 we described one such direction [BDD+01a, AGP99], connected to the pursuit
of the fundamental question for planar polygons in 3D, and reducing the number of moves
required. Other directions, without the same connection, are described in this section. See also
[Tou99b] for a more detailed survey of this area, including proofs of several results mentioned
here. Unless otherwise specified, in this section a polygon refers to a polygon in a plane.
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2.1.5.1 Flips in Nonsimple Polygons

Flips can be generalized to apply to nonsimple polygons: consider two vertices adjacent along
the convex hull of the polygon, splitting the polygon into two chains, and rotate one (either)
chain by 180◦ with respect to the other chain about the axis through the two vertices. Simplic-
ity may not be preserved throughout the motion, just as it may not hold in the initial or final
configuration. The obvious question is whether every nonsimple polygon can be convexified by
a finite sequence of such flips. Grünbaum and Zaks [GZ98] proved that if at each step we choose
the flip that maximizes the resulting sum of distances between all pairs of vertices, then this
metric increases per flip, and the polygon becomes convex after finitely many flips. Without
sophisticated data structures, computing these flips requires Ω(n2) time per flip. Toussaint
[Tou99b] proved that a different sequence of flips convexifies a nonsimple polygon, and this
sequence can be computed in O(n) time per flip. Recently, Biedl and Demaine [BD01] estab-
lished that every sequence of flips convexifies a nonsimple polygon. We expect that each flip
can be executed in polynomial amortized time using dynamic convex-hull data structures as in
[ACD+00].4

2.1.5.2 Deflations

A deflation [FHM+01, Weg93, Tou99b] is the reverse of a flip. More precisely, a deflation of a
polygon should result in a simple polygon that can be flipped into the original polygon. In other
words, a deflation is a rotation by 180◦ about a line meeting the polygon at two vertices and
nowhere else, thus separating the chain into two subchains, such that the rotation does not cause
any intersections. Hence, after the deflation, this line becomes a line of support (a line extending
a convex-hull edge). Wegner [Weg93] proposed the notion of deflations, and their striking
similarity to flips led him to conjecture that every polygon can be deflated only a finite number
of times. Surprisingly, this is not true: Fevens, Hernandez, Mesa, Soss, and Toussaint [FHM+01]
characterized a class of quadrangles whose unique deflation leads to another quadrangle in the
class, thus repeating ad infinitum.

2.1.5.3 Pivots

Pivots [ADE+01, Tou99b, Mil94, MS93, MS88, JW90] are a natural generalization of flips to
allow rotation by an arbitrary angle about the line connecting any two vertices of the polygon.
This is the simplest kind of motion of a linkage in three or higher dimensions. In this context, the
polygon need not lie in a plane, and self-intersection is permitted during the motion. Millett
[Mil94] gave an algorithm to bring any equilateral polygon to any other, in particular for
convexifying an equilateral polygon and for bringing any convex configuration to another other,
via a sequence of pivots. The first part (convexification) has a flaw; a replacement algorithm is
given by Toussaint [Tou99b] and also applies to nonequilateral polygons in any dimension more
than two. Aichholzer, Demaine, Erickson, Hurtado, Overmars, Soss, and Toussaint [ADE+01]
proved that the second part, moving between two convex configurations, is also possible for
nonequilateral polygons via a sequence of pivots.

Pivots without allowing self-intersection seem for the most part unexplored, although of
course then we could not hope to reconfigure arbitrarily. Using an approach similar to Fekete’s

4Personal communication with Jeff Erickson.
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observation described in Section 2.1.2.2, and using the results above to characterize the config-
uration space, we expect that any motion of a 3D chain in which two nonincident edges never
touch can be simulated by a sequence of pivots.

2.1.5.4 Flipturns

Joss and Shannon (1973) were the first to observe that a number of flips unbounded in terms of
the number of vertices can be required to convexify a polygon (Figure 2.6). Sadly, their work
was never published; see [Grü95] for the story. Joss and Shannon also proposed the operation
of a flipturn [ACD+00, ABC+00, Grü95], which rotates by 180◦ a pocket of the polygon, not in
3D about the convex-hull edge, but in 2D around the midpoint of the convex-hull edge. Unlike
flips, flipturns are not standard linkage motions because they change the ordering of the edges.
However, flipturns have the advantage that they preserve the set of angles and orientations of
the edges: each flipturn corresponds to reversing a subsequence of edge angles. Thus flipturns
can only result in a permutation of the edge angles (which determines the polygon), and each
cyclic permutation can be reached only once because flipturns increase the polygon’s area, and
therefore at most (n− 1)!− 1 flipturns can be made before a polygon becomes convex.

This simple (n− 1)! bound is an immediate benefit over flips, and surprisingly it remained
the best known upper bound on the number of flipturns for a quarter of a century. In 1973, Joss
and Shannon conjectured that just n2/4 flipturns sufficed to convexify a polygon. In 1999, Biedl
[Bie00] proved a matching lower bound, up to an additive constant, on the length of the longest
flipturn sequence. In 2000, Ahn, Bose, Czyzowicz, Hanusse, Kranakis, and Morin [ABC+00]
made significant progress: for a modified definition of flipturn that allows ignoring degenerate
cases, they prove an upper bound of n2/4−O(1) on the length of the longest flipturn sequence.
Furthermore, if there are at most s distinct slopes in the polygon, they prove an upper bound
of ns/4 − O(1). This bound does not hold for normal flipturns, showing the importance of
degenerate flipturns. Using additional analysis of a structure called brackets, Aichholzer et al.
[ACD+00] proved an upper bound of ns−O(n) ≤ n2−O(n) on the length of the longest flipturn
sequence in both natural interpretations of degenerate cases.

Aichholzer et al. [ACD+00] have also proved various tighter bounds for orthogonal poly-
gons, for both the shortest and longest sequence, and for three different definitions of flipturns
handling degeneracies in different ways. Some of these bounds are tight in the worst case,
while others have a constant-factor gap; we omit the details here. Algorithmically, finding
the longest flipturn sequence in an orthogonal polygon is weakly NP-hard [ACD+00], while
the analogous problem for the shortest flipturn sequence remains open. Aichholzer et al. also
develop data structures for maintaining the convex hull subject to flipturns pocket, allowing
flipturn sequences to be executed in polylogarithmic time per operation.

The main open problem involving flipturns is whether Ω(n2) flipturns are necessary to
convexify a polygon if the flipturns are chosen wisely. The best known lower bound is linear.

2.1.6 Protein Folding

Protein folding [CD93, Hay98, ML94] is an important problem in molecular biology because it
is generally believed that the folded structure of a protein (the fundamental building block of
life) determines its function and behavior.
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2.1.6.1 Related Pure Linkage Problems

A protein can be modeled by a linkage in which the vertices represent amino acids and the bars
represent bonds connecting them. The bars representing bonds are typically close in length,
within a factor less than two. Depending on the level of detail, the protein can be modeled as
a tree (more precise) or as a chain (less precise).

An amazing property of proteins is that they fold quickly and consistently to a minimum-
energy configuration. Understanding this motion has immediate connections to linkage folding
in 3D. One open theoretical question [BDD+01a] arising in this context is whether every equi-
lateral polygonal arc in 3D can be straightened. Cantarella and Johnston [CJ98] have proved
that this is true for arcs of at most 5 bars. More generally, can every equilateral polygonal tree
in 3D be flattened?

Such questions ask whether what nature does is feasible, in general, without resorting to
temporarily disconnecting some bonds. According to some theories, such disconnections do
occur; these mathematical questions may shed light on these theories. Another approach in
this direction is an open problem of Anna Lubiw [DO99] asking for the minimum number of cuts
required to straighten a general n-bar polygonal arc in 3D. The answer is between n/4 +O(1)
and n/2 +O(1); see [DLO01] for these and related results.

A more accurate mathematical model of foldings of proteins is not by “normal” linkages
whose vertices are universal joints, but rather by revolute linkages5 whose vertices each form
a fixed angle. This angular constraint roughly halves the number of degrees of freedom in
the linkage; the basic motion is rotating a portion of the linkage around a bar of the linkage.
Foldings of such linkages have been explored extensively by Soss and Toussaint [ST00, Sos01].
For example, they prove in [ST00] that it is NP-complete to decide whether a revolute polygonal
arc can be flattened (folded into a plane), and in [Sos01] that it is NP-complete to decide whether
a revolute polygonal arc can be folded into its mirror image. More positive results analyze the
polynomial complexity of determining the maximum extent of a rotation around a bar: Soss
and Toussaint [ST00, Sos01] prove an O(n2) upper bound, and Soss, Erickson, and Overmars
[Sos01, SEO01] give a 3SUM-hardness reduction, suggesting an Ω(n2) lower bound. The simpler
case of revolute chains with a constant number of vertices is studied in [DLO01].

2.1.6.2 H-P Model

So far in this section we have not considered the forces involved in protein folding in nature.
There are several models of these forces.

One of the most popular models of protein folding is the hydrophobic-hydrophilic (H-P)
model [CD93, Dil90, Hay98], which defines both a geometry and a quality metric of foldings.
Basically, proteins are chains of amino acids distinguished into two categories, hydrophobic (H)
and hydrophilic (P). A protein folding is an embedding along edges of the square lattice in 2D
or the cubic lattice in 3D without self-intersection. The optimum or minimum-energy folding
maximizes the number of hydrophobic (H) nodes that are adjacent in the lattice. Intuitively,
this metric causes hydrophobic amino acids to avoid the surrounding water.

This combinatorial model is attractive in its simplicity, and already seems to capture several
essential features of protein folding such as the tendency for the hydrophobic components to
fold to the center of a globular protein [CD93]. While the H-P model is most intuitively defined

5This terminology was introduced in [DLO01].
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in 3D to match the physical world, in fact it is more realistic as a 2D model for computationally
feasible problem sizes. The basic reason for this is that the perimeter-to-area ratio of a short 2D
chain is a close approximation to the surface-to-volume ratio of a long 3D chain [CD93, Hay98].

Much work has been done on the H-P model [BL98, CD91, CD90, CGP+98, HI95, LD89,
LD90, LW91b, UM93a, UM93b, UM93c]. Recently, on the computational side, Berger and
Leighton [BL98] proved NP-completeness of finding the optimal folding in 3D, and Crescenzi
et al. [CGP+98] proved NP-completeness in 2D. Hart and Istrail [HI95] have developed a 3/8-
approximation in 3D and a 1/4-approximation in 2D for maximizing the number of hydrophobic-
hydrophobic adjacencies.

Aichholzer, Bremner, Demaine, Meijer, Sacristan, and Soss [ABD+01a] have begun explor-
ing an important yet potentially more tractable aspect of protein folding: can we design a
protein that folds stably into a desired configuration? In the H-P model, a protein folds stably
if it has a unique minimum-energy configuration. So far, Aichholzer et al. [ABD+01a] have
proved the existence of stably folding proteins of all lengths divisible by 4, and for closed chains
of all possible (even) lengths. The next problem is to characterize these proteins and their
foldings.

2.2 Paper

Paper folding (origami) has led to several interesting mathematical and computational questions
over the past fifteen years or so. A piece of paper, normally a (solid) polygon such as a square
or rectangle, can be folded by any continuous motion that preserves the distances on the surface
and does not cause the paper to properly self-intersect. Informally, paper cannot tear, stretch,
or cross itself, but may otherwise bend freely. Formally, a folding is a continuum of isometric
embeddings of the piece of paper in R3. However, the use of the term “embedding” is weak:
paper is permitted to touch itself provided it does not properly cross itself. In particular, a flat
folding folds the piece of paper back into the plane, and so the paper must necessarily touch
itself. We frequently ignore the continuous motion of a folding and instead concentrate on the
final folded state of the paper; in the case of a flat folding, the flat folded state is called a flat
origami.

Some of the pioneering work in origami mathematics (see Section 2.2.3.1) studies the crease
pattern that results from unfolding a flat origami, that is, the graph of edges on the paper
that fold to edges of a flat origami. Stated in reverse, what crease patterns have flat foldings?
Various necessary conditions are known [Hul94, Jus94, Kaw89], but there is little hope for a
polynomial characterization: Bern and Hayes [BH96] have shown that this decision problem is
NP-hard.

A more recent trend, as in [BH96], is to explore computational origami, the algorithmic
aspects of paper folding. This field essentially began with Robert Lang’s work on algorithmic
origami design [Lan96], starting around 1993. Since then, the field of computational origami
has grown significantly, in particular in the past two years by applying computational geometry
techniques. This section surveys the majority of this work.

This survey is joint work with Martin Demaine. A version will appear in the Proceedings
of the 3rd International Meeting of Origami Science, Mathematics, and Education [DD01].
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2.2.1 Categorization

Most results in computational origami fit into at least one of three categories: universality
results, efficient decision algorithms, and computational intractability results. This categoriza-
tion applies more generally to folding and unfolding, but is particularly useful for results in
computational origami.

A universality result shows that, subject to a certain model of folding, everything is pos-
sible. For example, any tree-shaped origami base (Section 2.2.2.1), any polygonal silhouette
(Section 2.2.2.3), and any polyhedral surface (Section 2.2.2.3) can be folded out of a large-
enough piece of paper. Universality results often come with efficient algorithms for finding the
foldings; pure existence results are rare.

When universality results are impossible (some objects cannot be folded), the next-best
result is an efficient decision algorithm to determine whether a given object is foldable. Here
“efficient” normally means “polynomial time.” For example, there is a polynomial-time algo-
rithm to decide whether a “map” (grid of creases marked mountain and valley) can be folded
by a sequence of simple folds (Section 2.2.3.4).

Not all paper-folding problems have efficient algorithms, and this can be proved by a compu-
tational intractability result. For example, it is NP-hard to tell whether a given crease pattern
folds into any flat origami (Section 2.2.3.2), even when folds are restricted to simple folds
(Section 2.2.3.4). These results mean that there are no polynomial-time algorithms for these
problems, unless some of the hardest computational problems can also be solved in polynomial
time, which is generally deemed unlikely.

We further distinguish computational origami results as addressing either origami design
or origami foldability. Basically, in origami design, some aspects of the target configuration
are specified, and the goal is to design a suitable target that can be folded out of paper. In
origami foldability, the target configuration is unspecified and arbitrary, and rather the initial
configuration is specified, specifically the crease pattern possibly marked with mountains and
valleys, and the goal is to fold something (anything) using precisely those creases. While at
first it may seem that understanding origami foldability is a necessary component for origami
design, the results indicate that in fact origami design is easier to solve than origami foldability
which is usually intractable.

Our survey of computational origami is partitioned accordingly into Section 2.2.2 (origami
design) and Section 2.2.3 (origami foldability). In addition, Section 2.2.4 discusses paper folding
one dimension down, which has connections to linkage folding.

2.2.2 Origami Design

We define origami design loosely as, given a piece of paper, fold it into an object with certain
desired properties, e.g., a particular shape. Most closely related to “traditional” origami design
is Lang’s TreeMaker work (Section 2.2.2.1), which has brought modern origami design to a new
level of complexity. Related to this work is the problem of folding a piece of paper to align a
prescribed graph (Section 2.2.2.2), which can be used for a magic trick involving folding and one
complete straight cut. Another approach is to design an origami with a specific silhouette or
three-dimensional shape (Section 2.2.2.3), although the algorithms developed so far do not lead
to practical foldings. A recent specific type of origami is an origami tessellation (Section 2.2.2.4),
which “folds” a tiling of the plane. A nonstandard form of origami is to start with a piece of
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paper that is not flat, but rather the surface of a polyhedron, and the goal is to flatten that
surface; this topic will be deferred to Section 2.3 on polyhedra, specifically Section 2.3.5.

2.2.2.1 TreeMaker

TreeMaker is a computer program by Robert Lang that implements the tree method for origami
design. Some components of this method, such as special cases of the constituent molecules and
the idea of disk packing, as well as other methods for origami design, have been explored in the
Japanese technical origami community, in particular by Jun Maekawa, Fumiaki Kawahata, and
Toshiyuki Meguro. This work has led to several successful designs, but a full survey is beyond
the scope of this thesis; see [Lan98]. Here we concentrate on Lang’s work [Lan94a, Lan94b,
Lan96, Lan98, Lan01]; over the past several years, he has developed the tree method to the
point where an algorithm and computer program have been explicitly defined and implemented.

The tree method allows one to design an origami base in the shape of a specified tree
with desired edge lengths, which can then be folded and shaped into an origami model. See
Figure 2.12 for an example. More precisely, the tree method designs a uniaxial base [Lan96],
which must have the following properties: the base lies above the xy plane, all faces of paper
are perpendicular to the xy plane, the projection of the base to the xy plane is precisely where
the base comes in contact with the xy plane, and this projection is a tree. The theorem is that
every geometric tree (unrooted tree with cyclicly ordered children and prescribed edge lengths)
is the projection of a uniaxial base that can be folded from e.g. a square.
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Figure 2.12: Lang’s TreeMaker applied to an 8-vertex tree to produce a lizard
base. (Figure 2.1.11 of [Lan98].)

The crease pattern for such a base can be found efficiently, certainly in O(N polylogN)
time where N is the number of creases (the output size). It is unclear whether the number
of creases required is bounded in terms of the combinatorial complexity of the input, i.e., the
number of vertices in the input tree. Optimizing the base to make maximal use of the paper is
a difficult nonlinear constrained optimization problem, but the TreeMaker software has shown
the viability of existing methods for finding good local optima. Indeed, additional practical
constraints can be imposed, such as symmetry in the crease pattern, or that angles of creases
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are integer multiples of some value (e.g., 22.5◦) subject to some flexibility in the edge lengths.
TreeMaker finds a crease pattern that results in the desired uniaxial base. Work on a related

problem (see the next section) by Bern, Demaine, Eppstein, and Hayes [BDEH01] suggests a
method for finding an appropriate mountain-valley assignment for the crease pattern, and
possibly also the resulting folded state.

2.2.2.2 One Complete Straight Cut

Take a piece of paper, fold it flat, make one complete straight cut, and unfold the pieces. What
shapes can result? This fold-and-cut problem was first formally stated by Martin Gardner in
1960 [Gar95b]. The problem has a much longer history, going back to 1721 in a Japanese puzzle
book [Sen21], Betsy Ross in 1777 [Har73], and Houdini in 1922 [Hou22]. See [DDL98] for a
more detailed history.

More formally, given a planar graph drawn with straight edges on a piece of paper, can
the paper be folded flat so as to map the entire graph to a common line, and map nothing
else to that line? The surprising answer is that this is always possible, for any collection of
line segments in the plane, forming nonconvex polygons, adjoining polygons, nested polygons,
etc. There are two solutions to the problem. The first (partial) solution [DDL98, DDL99b] is
based on a structure called the straight skeleton, which captures the symmetries of the graph,
thereby exploiting a more global structure to the problem. This solution applies to a large class
of instances which we do not describe in detail here. The second (complete) solution [BDEH01]
is based on disk packing to make the problem more local, and achieves efficient bounds on the
number of creases. See Figures 2.13 and 2.14 for examples of the two methods.

Figure 2.13: Crease patterns for folding a rectangle of paper flat so that one
complete straight cut makes a butterfly (left) or a swan (right), based on [DDL98,
DDL99b].

While this problem may not seem directly connected to pure paper folding because of the
one cut, the equivalent problem of folding a piece of paper to line up a given collection of
edges is in fact closely connected to origami design. Specifically, one subproblem that arises in
TreeMaker (Section 2.2.2.1) is that the piece of paper is decomposed into convex polygons, and
the paper must be folded flat so as to line up all the edges of the convex polygons, and place the
interior of these polygons above this line. The fold-and-cut problem is a generalization of this
situation to arbitrary graphs: nonconvex polygons, nested polygons, etc. In TreeMaker, there
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Figure 2.14: Crease pattern for folding a rectangle of paper flat so that one
complete straight cut makes a fish (drawn with thick grey segments), based on
the method described in [BDEH01]. (Figure 8 of [BDEH01].)

are important additional constraints in how the edges can be lined up, called path constraints,
which are necessary to enforce the desired geometric tree. These constraints lead to additional
components in the solution called gussets.

2.2.2.3 Silhouettes and Polyhedra

A more direct approach to origami design is to impose the exact final shape that the pa-
per should take. More precisely, suppose we specify a particular flat silhouette, or a three-
dimensional polyhedral surface, and desire a folding of a sufficiently large square of paper into
precisely this object, allowing coverage by multiple layers of paper. For what polyhedral shapes
(shapes made up of flat sides) is this possible? This problem is implicit throughout origami
design, and was first formally posed by Bern and Hayes in 1996 [BH96]. The surprising answer
is “always,” as established by Demaine, Demaine, and Mitchell in 1999 [DDM99, DDM00].

The basic idea of the approach is to fold the piece of paper into a thin strip of paper, and then
wrap this strip around the desired shape. This wrapping can be done particularly efficiently
using methods in computational geometry. Specifically, three algorithms are described in
[DDM00] for this process. One algorithm optimizes paper usage; the amount of paper required
can be made arbitrarily close to the surface area of the shape, which is optimal. Another
algorithm maximizes the width of the strip subject to some constraints. A third algorithm
places the visible seams of the paper in any desired pattern forming a decomposition of the
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sides into convex polygons. In particular, the number and total length of seams can be optimized
in polynomial time in most cases [DDM00].

All of these algorithms allow an additional twist: the paper may be colored differently on
both sides, and the shape may be two-colored according to which side should be showing. In
principle, this allows the design of two-color models similar to the models in Montroll’s Origami
Inside-Out [Mon93]. An example is shown in Figure 2.15.

Figure 2.15: A flat folding of a square of paper, black on one side and white on
the other side, designed by John Montroll [Mon91, pp. 94–103]. (Figure 1(b) of
[DDM00].)

Of course, because of the use on thin strips, none of these methods lead to practical foldings,
except for small examples or when the initial piece of paper is a thin strip. Nonetheless, the
universality results of [DDM00] open the door to many new problems. For example, how small
a square can be folded into a desired object, e.g., a k×k chessboard? This optimization problem
remains open even in this special case, as do many other problems about finding efficient foldings
of silhouettes, two-color patterns, and polyhedra.

2.2.2.4 Origami Tessellations

Roughly, an origami tessellation is a flat folding of a piece of paper based on a tessellation
or tiling of the plane [GS87]. One way to make this notion more precise [KY89, Ver98] is to
consider the whole plane as the piece of paper and define a symmetric origami tessellation to
be a flat folding of the plane whose symmetry group is one of the 17 crystallographic groups.
To avoid the symmetry restriction and allow aperiodic tilings, one way to define an origami
tessellation is as any flat folding of the infinite plane in which no bounded region of the plane
contains all of the vertices of the crease pattern. In such a folding, the crease pattern (at least)
will necessarily form some kind of tiling.

An origami tessellation can be related to a tiling in various ways. Typically, there are large
faces in the flat folded state that remain uncreased, and these faces are precisely the tiles of a
tiling. One method for specifying creases around these faces is based on shrinking the tiles and
introducing the dual tiling in the resulting gaps, using the notion of a hinged primal-dual tiling
(see, e.g., [Wel91]). Bateman [Bat01] has formalized this method to the point of a computer
implementation, called Tess.

Some of the key people working on origami tessellations include Alex Bateman [Bat01], Paulo
Barreto [Bar94, Pal], S. Fujimoto [Fuj82], Thomas Hull (unpublished), Toshikazu Kawasaki
[KY89], Robert Lang (unpublished), Chris Palmer [Pal, Pal94], and Helena Verrill [Ver98].
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Unfortunately, much of the work on origami tessellations has not been written formally, so the
exact computational results are unclear. Certainly a wide range of origami tessellations have
been designed, many using precise algorithms. One of the simplest class of examples are the 11
Archimedian tilings. A characterization of which tilings lead to origami tessellations remains
an intriguing open problem.

2.2.3 Origami Foldability

We distinguish origami design from origami foldability in which the starting point is a given
crease pattern and the goal is to fold an origami that uses precisely these creases. (Arguably, this
is a special case of our generic definition of origami design, but we find it a useful distinction.)
The most common case studied is when the resulting origami should be flat, i.e., lie in a plane.

2.2.3.1 Local Foldability

For crease patterns with a single vertex, it is relatively easy to characterize flat foldability.
Without specified crease directions, a single-vertex crease pattern is flat-foldable precisely if the
alternate angles around the vertex sum to 180◦; see Figure 2.16. This is known as Kawasaki’s
theorem [BH96, Hul94, Jus94, Kaw89]. When the angle condition is satisfied, a characterization
of valid mountain-valley assignments and flat foldings can be found in linear time [BH96, Jus94],
using Maekawa’s theorem [BH96, Hul94, Jus94] and another theorem of Kawasaki [BH96, Hul94,
Kaw89] about constraints on mountains and valleys. In particular, Hull has shown that the
number of distinct mountain-valley assignments of a vertex can be computed in linear time
[Hul01].
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Figure 2.16: A locally flat-foldable vertex: θ1+ θ3+ · · · = θ2+ θ4+ · · · = 180◦.

A crease pattern is called locally foldable if there is a mountain-valley assignment so that each
vertex locally folds flat, i.e., a small disk around each vertex folds flat. Testing local foldability
is nontrivial because each vertex has flexibility in its assignment, and these assignments must be
chosen consistently: no crease should be assigned both mountain and valley by the two incident
vertices. Bern and Hayes [BH96] proved that consistency can be resolved efficiently when it is
possible: local foldability can be tested in linear time.
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2.2.3.2 Existence of Folded States

Given a crease pattern, does it have a flat folded state? Bern and Hayes [BH96] have proved
that this decision problem is NP-hard, and thus computationally intractable. Because local
foldability is easy to test, the only difficult part is global foldability, or more precisely, computing
a valid overlap order of the crease faces that fold to a common portion of the plane. Indeed,
Bern and Hayes [BH96] prove that, given a crease pattern and a mountain-valley assignment
that definitely folds flat, finding the overlap order of a flat folded state is NP-hard.

2.2.3.3 Equivalence to Continuous Folding Process

In the previous section we have alluded to the difference between two models of folding: the final
folded state (specified by a crease pattern, mountain-valley or angle assignment, and overlap
order) and a continuous motion to bring the paper to that folded state. Basically all results, in
particular those described so far, have focused on the former model: proving that a folded state
exists with the desired properties. Intuitively, by appropriately flexing the paper, any folded
state can be reached by a continuous motion, so the two models should be equivalent. Only
recently has this been proved, by Demaine and Mitchell [DM01], and so far only for rectangular
pieces of paper. During their motion, the number of creases is finite at any moment in time,
but the overall the number of creases is uncountably infinite. An interesting open problem is
whether a finite crease pattern suffices.

The only other paper of which we are aware that proves the existence of continuous folding
processes is [DD97]. This paper proves that every convex polygon can be folded into a uniaxial
base via Lang’s universal molecule [Lan01] without gussets. Furthermore, unlike [DM01], no
additional creases are introduced during the motion, and each crease face remains flat. This
result can be used to animate the folding process.

2.2.3.4 Map Folding: Sequence of Simple Folds

In contrast to the complex origami folds arising from reaching folded states [DD97, DM01], we
can consider the less complex model of simple folds. A simple fold (or book fold) is a fold by
±180◦ along a single line. Examples are shown in Figure 2.17. This model is closely related to
“pureland origami” introduced by Smith [Smi76, Smi93].

We can ask the same foldability questions for a sequence of simple folds. Given a crease
pattern, can it be folded flat via a sequence of simple folds? What if a particular mountain-valley
assignment is imposed?

An interesting special case of these problems is map folding (see Figure 2.17): given a
rectangle of paper with horizontal and vertical creases, each marked mountain or valley, can it
be folded flat via a sequence of simple folds? Traditionally, map folding has been studied from
a combinatorial point of view; see, e.g., [Lun68, Lun71]. Arkin, Bender, Demaine, Demaine,
Mitchell, Sethia, and Skiena [ABD+01b] have shown that deciding foldability of a map by
simple folds can be solved in polynomial time. If the simple folds are required to fold all layers
at once, the running time is at most O(n log n), and otherwise the running time is linear.

Surprisingly, slight generalizations of map folding are (weakly) NP-complete [ABD+01b].
Deciding whether a rectangle with horizontal, vertical, and diagonal (±45◦) creases can be
folded via a sequence of simple folds is NP-complete. Alternatively, if the piece of paper is
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Figure 2.17: Folding a 2× 4 map via a sequence of 3 simple folds.

more general, a polygon with horizontal and vertical sides, and the creases are only horizontal
and vertical, the same problem becomes NP-complete.

These hardness results are weak in the sense that they leave open the existence of a
pseudopolynomial-time algorithm, whose running time is polynomial in the total length of
creases. Another intriguing open problem, posed by Jack Edmonds, is the complexity of decid-
ing whether a map has a flat folded state, as opposed to a folding by a sequence of simple folds.
Examples of maps in which these two notions of foldability differ are shown in Figure 2.18.
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2 1 7

65

9 8 9 8

5 4 6

2 3 7

1

Figure 2.18: Two maps that cannot be folded by simple folds, but can be folded
flat. (These are challenging puzzles.) The numbering indicates the overlap order
of faces. (Figure 9 of the June 2001 full version of [ABD+01b].)

2.2.4 One-Dimensional Origami

Consider a one-dimensional piece of paper, a line segment, marked at certain points with creases.
It is most natural to fold such a piece of paper in the plane; a flat folding ends with the paper
back on a line. Every one-dimensional piece of paper has a flat folded state, by alternating
the creases between mountain and valley. If the mountain-valley assignment is prescribed,
the crease pattern may not be flat-foldable, but this can be tested in linear time [ABD+01b].
Indeed, it is proved in [ABD+01b] that, in one dimension, the existence of a flat folded state is
equivalent to foldability via a sequence of simple folds. In particular, any flat folded state can
be reached by a continuous folding motion.

A nonflat folded state (at no point touching itself) of a one-dimensional piece of paper can
also be reached by a continuous motion while preserving length and avoiding self-intersection.
An easy way to prove this [DD97] is by introducing several extra creases, repeatedly “rolling” the
folded state into a “cinnamon bun,” then unrolling it into a straight line. No self-intersection
will occur provided we introduce creases at intervals of length less than the minimum feature
size of the folded state (the minimum distance between two nonincident edges). While this
approach applies very generally, e.g., also for trees [DD97], the extra creases are unnecessary
for a linear piece of paper. In this case, reaching a folded state is precisely the carpenter’s rule
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problem discussed in Section 2.1.

2.3 Polyhedra

A standard method for building a model of a polyhedron is to cut out a flat net or unfolding,
fold it up, and glue the edges together so as to make precisely the desired surface. Given the
polyhedron of interest, a natural problem is to find a suitable unfolding. On the other hand,
given a polygonal piece of paper, we might ask whether it can be folded and its edges can
be glued together so as to form a convex polyhedron. These two questions are addressed in
Sections 2.3.1 and 2.3.2, respectively. Section 2.3.3 extends different forms of the latter question
to nonconvex polyhedra. Section 2.3.4 connects these problems to linkage folding. Section 2.3.5
discusses a different problem related to paper folding.

2.3.1 Unfolding Polyhedra

A classic open problem is whether (the surface of) every convex polyhedron can be cut along
some of its edges and unfolded into one flat piece without overlap [She75, O’R98]. Such edge-
unfoldings go back to Dürer [Dür77], and have important practical applications in manufactur-
ing, such as sheet-metal bending [O’R98, Wan97]. It is widely conjectured that the answer to
this question is yes, but all attempts at a solution have so far failed. Experiments by Schevon
[Sch89, O’R98] suggest that a random edge-unfolding of a random polytope overlaps with prob-
ability 1. Of course, such a result would not preclude, for every polytope, the existence of at
least one nonoverlapping edge-unfolding, or even that a large but subconstant fraction of the
polytope’s edge-unfoldings do not overlap.

Instead of answering this difficult question directly, we can examine to what extent it can be
generalized. In particular, define a polyhedron to be topologically convex if its 1-skeleton (graph)
is the 1-skeleton of a convex polyhedron. Does every topologically convex polyhedron have an
edge-unfolding? In particular, every polyhedron made up of convex faces and homeomorphic
to a sphere is topologically convex; can they all be edge-unfolded? This problem was posed by
Schevon [Sch87].

Bern, Demaine, Eppstein, Kuo, Mantler, and Snoeyink [BDE+01] have shown that the
answer to both these questions is no: there is a polyhedron made up of triangles and homeo-
morphic to a sphere that has no (one-piece, nonoverlapping) edge-unfolding. The polyhedron
is shown in Figure 2.19. It consists of four “hats” glued to the faces of a regular tetrahedron,
such that only the peaks of the hats have positive curvature, that is, have less than 360◦ of
incident material. This property limits the unfoldings significantly, because (1) any set of cuts
must avoid cycles in order to create a one-piece unfolding, and (2) a leaf in a forest of cuts can
only lie at a positive-curvature vertex of the polyhedron: a leaf at a negative-curvature vertex
(more than 360◦ of incident material) would cause local overlap.

The complexity of deciding whether a given topologically convex polyhedron can be edge-
unfolded remains open.

Another intriguing open problem in this area is whether every polyhedron homeomorphic to
a sphere has some one-piece unfolding, not necessarily using cuts along edges. It is known that
every convex polyhedron has an unfolding in this model, allowing cuts across the faces of the
polytope. Specifically, the star unfolding [AAOS97, AO92] is the set of shortest paths from a
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common source point to each vertex of the polytope, and the source unfolding [MMP87] is the
set of points with more than one shortest path to a common source. Both of these unfoldings
avoid overlap, the star unfolding being the more difficult case to establish [AO92].

But many nonconvex polyhedra also have such unfoldings. For example, Figure 2.19 illus-
trates one for the polyhedron described above. Biedl, Demaine, Demaine, Lubiw, Overmars,
O’Rourke, Robbins, and Whitesides [BDD+98] have shown how to unfold many orthogonal
polyhedra, even with holes and knotted topology, although it remains open whether all orthog-
onal polyhedra can be unfolded. The only known scenario that prevents unfolding altogether
[BDE+01] is a polyhedron with a single vertex of negative curvature (see Figure 2.20), but this
requires the polyhedron to have boundary (edges incident to only one face).

Figure 2.19: (Left) Simplicial polyhedron with no edge-unfolding. (Right) An
unfolding when cuts are allowed across faces.

v

Figure 2.20: A polyhedron with boundary that has no one-piece unfolding even
when cuts are allowed across faces. Vertex v has negative curvature, that is, more
than 360◦ of incident material.

A recent approach to both edge-unfoldings of convex polyhedra and general unfoldings of
nonconvex polyhedra is the notion of “vertex-unfolding” [DEE+01]; see Figure 2.21. Specifi-
cally, a vertex-unfolding may only cut along edges of the polyhedron (like an edge-unfolding)
but permits the facets to remain connected only at their vertices (instead of at edges as in
edge-unfolding). Thus, a vertex-unfolding is connected, but its interior may be disconnected,
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“pinching” at a vertex.
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Figure 2.21: Vertex-unfoldings of random convex polyhedra with varying num-
bers of triangles. (Figure 3 of [DEE+01].)

Demaine, Eppstein, Erickson, Hart, and O’Rourke [DEE+01] have proved that every simpli-
cial manifold (including triangulated polyhedra possibly with boundary, and more generally in
any dimension) has a nonoverlapping vertex-unfolding. It remains open to what extent vertex-
unfoldings exist for polyhedra with nontriangular faces; for example, does every topologically
convex polyhedron have a vertex-unfolding?

2.3.2 Folding Polygons into Convex Polyhedra

In addition to unfolding polyhedra into simple planar polygons, we can consider the reverse
problem of folding polygons into polyhedra. More precisely, when can a polygon have its
boundary glued together, with each portion gluing to portions of matching length, and the
resulting topological object be folded into a convex polyhedron? (There is almost too much
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flexibility with nonconvex polyhedra for this problem, but see Section 2.3.3 for related problems
of interest in this context.) A particular kind of gluing is an edge-to-edge gluing, in which each
entire edge of the polygon is glued to precisely one other edge of the polygon. The existence of
such a gluing requires a perfect pairing of edges with matching lengths.

2.3.2.1 Edge-to-Edge Gluings

Introducing and pioneering this area, Lubiw and O’Rourke [LO96] showed how to test in poly-
nomial time whether a polygon has an edge-to-edge gluing that can be folded into a convex
polyhedron, and how to list all such edge-to-edge gluings in exponential time. A key tool in
their work is a theorem of the famous Russian geometer A. D. Aleksandrov [Ale50]. The the-
orem states that a topological gluing can be realized geometrically by a convex polyhedron
precisely if the gluing is topologically a sphere, and at most 360◦ of material is glued to any
one point—that is, every point should have nonnegative curvature.

Based on this tool, Lubiw and O’Rourke use dynamic programming to develop their algo-
rithms. There are Ω(n2) subproblems corresponding to gluing subchains of the polygon, assum-
ing that the two ends of the subchain have already been glued together. These subproblems
are additionally parameterized by how much angle of material remains at the point to which
the two ends of the chain glue in order to remain positive curvature. It is this parameterization
that causes enumerating all gluings to take exponential time. But for the decision problem of
the existence of any gluing, the remaining angle at the ends only needs to be bounded, and
only polynomially many subproblems need to be considered.

A particularly surprising discovery from this work [LO96] is that the well-known cross
unfolding of the cube can be folded into exactly five convex polyhedra by edge-to-edge gluing:
a doubly covered (flat) quadrangle, an (irregular) tetrahedron, a pentahedron, the cube, and
an (irregular) octahedron. See Figure 2.22 for crease patterns and gluing instructions. These
foldings are the subject of a video [DDL+99a].
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Figure 2.22: The five edge-to-edge gluings of the Latin cross [LO96].
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2.3.2.2 Non-Edge-to-Edge Gluings

More recently, Demaine, Demaine, Lubiw, and O’Rourke [DDLO00b, DDLO] have extended
this work in various directions, in particular to non-edge-to-edge gluings.

In contrast to edge-to-edge gluings, any convex polygon can be glued into a continuum of
distinct convex polyhedra, making it more difficult for an algorithm to enumerate all gluings of
a given polygon. Fortunately, there are only finitely many combinatorially distinct gluings of
any polygon. For convex polygons, there are only polynomially many combinatorially distinct
gluings, and they can be enumerated for a given convex polygon in polynomial time. This result
generalizes to any polygon in which there is a constant bound on the sharpest angle. For general
nonconvex polygons, there can be exponentially many (2Θ(n)) combinatorially distinct gluings,
but only that many. Again this corresponds to an algorithm running in 2O(n) time. Because
of the exponential worst-case lower bound on the number of combinatorially distinct gluings,
we are justified both here and in the enumeration algorithm of [LO96] to spend exponential
time. It remains open whether there is an output-sensitive algorithm, whose running time is
polynomial in the number of resulting gluings, or in the number of gluings desired by the user.
For non-edge-to-edge gluings, it even remains open whether we can solve in polynomial time
the decision question of whether a gluing exists.
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Figure 2.23: A continuum of tetrahedra obtained by gluing a square. (Figure 3
of [DDLO].)

The algorithms for enumerating all non-edge-to-edge gluings have been implemented in-
dependently by Anna Lubiw (July 2000) and by Koichi Hirata [Hir00] (June 2000). These
programs have been applied to the example of the Latin cross. The surprising result is that
there are many more non-edge-to-edge gluings: a total of 85 distinct gluings (43 modulo sym-
metry) resulting in 21 distinct polyhedra. See [DDLO00a].

2.3.2.3 Constructing Polyhedra

Another intriguing open problem in this area [DDLO] remains relatively unexplored: Aleksan-
drov’s theorem implies that any valid gluing (homeomorphic to a sphere and having nonnegative
curvature everywhere) can be folded into a unique convex polyhedron, but how efficiently can
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this polyhedron be constructed? The key difficulty here is to determine the dihedral angles of
the polyhedron, that is, by how much each crease is folded. Finding a (superset of) the creases
is straightforward (personal communication with Boris Aronov, June 1998): every edge of the
polyhedron is a shortest path between two positive-curvature vertices, so compute all-pairs
shortest paths in the polyhedral metric defined by the gluing [CH96, KO00, Kap99].

Recently, Sabitov [Sab00] presented a finite algorithm for this reconstruction problem, with
a conjectured running time of around Θ(2n

2
). The algorithm is based on the Connelly-Sabitov-

Walz Bellows Theorem [CSW97] which characterizes the volume of a polyhedron in terms of
the geometry of its surface, independent of how that geometry is embedded in 3-space.

2.3.3 Folding Nets into Nonconvex Polyhedra

Define a net to be a connected edge-to-edge gluing of polygons to form a tree structure, the
edges shared by polygons denoting creases. An open problem mentioned in Section 2.3.2.3
is deciding whether a given net can be folded into a convex polyhedron using only the given
creases. More generally, we can ask whether a given net folds into a nonconvex polyhedron.
Now Aleksandrov’s theorem and Cauchy’s rigidity theorem do not apply, so for a given gluing
we are no longer easily guaranteed existence or uniqueness.

Given the dihedral angles associated with creases in the net, it is easy to decide foldability
in polynomial time [BLS99, Sun99]: we only need to check that edges match up and no two
faces cross. Without the dihedral angles, when does a given net fold into any polyhedron?
Biedl, Lubiw, and Sun [BLS99, Sun99] have proved a closely related problem to be weakly
NP-complete: does a given orthogonal net (each face is an orthogonal polygon) fold into an
orthogonal polyhedron? The difference with this problem is that it constrains each dihedral
angle to be ±90◦.

2.3.4 Continuously Unfolding Polyhedra

In the context of paper folding, specifically Section 2.2.3.3, the results in the previous section are
essentially about folded states, and not about the continuous process of reaching such states.
Assuming the results described in Section 2.2.3.3 [DM01] hold for nonrectangular pieces of
paper, a continuous folding process can be obtained, but they will introduce additional creases.
In manufacturing applications, it is natural to ask for a folding process of a polygon into a
polyhedron (possibly nonconvex), or a continuous unfolding of a polyhedron into a polygon,
that keeps the faces rigid and avoids crossings. Does such a motion always exist?

As mentioned in Section 2.1.4, these problems are generalizations of linkage-folding prob-
lems. In particular, as shown in Figure 2.10, a hinged collection of rigid polygons in space can
be made to act exactly like a linkage in 2D. By closing the arc into a cycle, adding a top and
bottom face to the extrusion, and enforcing a particular (strip) unfolding, this hinged collec-
tion can be turned into a nonconvex polyhedron, homeomorphic to a sphere, whose continuous
unfolding is equivalent to straightening a polygonal arc in the plane (Section 2.1.2.1).

An interesting open special case is all edge-unfoldings (nets) of convex polyhedra. Such mo-
tions were implemented in the video showing the 5 edge-to-edge gluings of the cross [DDL+99a]
in an obvious manner: affinely interpolate all dihedral angles from flat (180◦) to the target
angle, so that each angle changes at a constant speed and all angles reach their targets at the
same time. This method appears to avoid self-intersection in the examples encountered, but
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presumably this method does not avoid self-intersection for all unfoldings of all convex polyhe-
dra. When does it work? For example, does this approach work on a large class of unfoldings
such as star unfoldings or source unfoldings of convex polyhedra?

Figure 2.24: Folding the Latin cross into an octahedron, according to the crease
pattern in Figure 2.22(e), by affinely interpolating all dihedral angles. (Figure 2
of [DDL+99a].)

One special case that has been explored is orthogonal polyhedra. Specifically, Biedl, Lubiw,
and Sun [BLS99, Sun99] have proved that there is an edge-unfolding of an orthogonal polyhe-
dron (which is an orthogonal net) that cannot be folded into the orthogonal polyhedron by a
continuous motion that keeps the faces rigid and avoids self-intersection. The basis for their
example is the locked polygonal arc in 3D (Figure 2.9), converted into an orthogonal locked
polygonal arc in 3D, and then “thickened” into an orthogonal tube. A single chain of faces in
the unfolding is what prevents the continuous foldability.

One would expect, analogous to the results described in Section 2.2.3.3 [DM01], that col-
lections of polygons hinged together into a tree can be folded into all possible configurations if
we allow additional creases during the motion. However, this extension (equivalent to a polyg-
onal piece of paper) remains open. A particularly interesting version of this question, posed in
[BLS99], is whether a finite number of additional creases suffice.

2.3.5 Flattening Polyhedra

Suppose instead of allowing cuts to a polyhedral surface in order to fold it, we treat it as a piece
of paper and fold as in origami. We run into the same dichotomy as in Section 2.2.3.2: do we
want a continuous motion of the polyhedron, or does a description of the final folded state suf-
fice? If we start with a convex polyhedron, and each face of the crease pattern must remain rigid
during the folding, then Connelly’s extension [Con80] of Cauchy’s rigidity theorem from 1813
[Cau13, Cro97] says that the polyhedron cannot fold at all. Even if we start with a nonconvex
polyhedron and keep each face of the crease pattern rigid, the Bellows Theorem [CSW97] says
that the volume of the polyhedron cannot change, so foldings are limited. However, if we allow
the paper to curve (e.g., introduce new creases) during the motion, as in origami, then folding
becomes surprisingly flexible. For example, a cone can be inverted [Con93]; see Figure 2.25.

A natural question [DDL00] is whether every polyhedron can be flattened : folded into a
flat origami. Intuitively, this can be achieved by applying force to the polyhedral model, but
in practice this can easily lead to tearing. There is an interesting connection of this problem
to a higher-dimensional version of the fold-and-cut problem from Section 2.2.2.2. Given any
polyhedral complex, can R3 be folded (through R4) “flat” into R3 so that the surface of the
polyhedral complex maps to a common plane, and nothing else maps to that plane? While the
applicability of four dimensions is difficult to imagine, the problem’s restriction to the surface
of the complex is quite practical, e.g. in packaging: flatten the polyhedral complex into a flat
folded state, without cutting or stretching the paper.
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Figure 2.25: Inverting a tetrahedral cone by a continuous isometric motion.
Based on Figure 2.5 of [Con93].

The flattening problem remains open if we desire a continuous folding process into the flat
state. If we instead focus on the existence of a flat folded state of a polyhedron, then much
more is known. Demaine, Demaine, and Lubiw [DDL00] have shown how to flatten several
classes of polyhedra, including convex polyhedra and orthogonal polyhedra. See Figure 2.26
for an example. Recently (March 2001), together with Barry Hayes, we have shown that all
polyhedra have flat folded states. We conjecture further that every polyhedral complex can be
flattened.

Figure 2.26: Flattening a tetrahedron, from left to right. Note that the faces
are not flat in the middle picture.

A natural question is whether the methods of Demaine and Mitchell [DM01] described in
Section 2.2.3.3 can be generalized to show that these folded states induce continuous folding
motions as in Figure 2.25.
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Chapter 3

Reconfiguring Convex Polygons

This chapter proves that there is a motion from any convex polygon to any convex polygon
having the same counterclockwise sequence of edge lengths, that preserves the lengths of the
edges and keeps the polygon convex at all times. Furthermore, the motion is “direct” (avoiding
any intermediate canonical configuration like a subdivided triangle) in the sense that each angle
changes monotonically throughout the motion. In contrast, we show that it is impossible to
achieve such a result with each vertex-to-vertex distance changing monotonically.

This chapter is joint work with Oswin Aichholzer, Jeff Erickson, Ferran Hurtado, Mark
Overmars, Michael Soss, and Godfried T. Toussaint. Versions appear in the 12th Canadian
Conference on Computational Geometry [ADE+00] and Computational Geometry: Theory and
Applications [ADE+01].

3.1 Introduction

First we briefly review the relevant components of Chapter 2. This chapter is concerned with
linkages modeled by polygons, primarily in the plane, whose vertices represent hinges and whose
edges represent rigid bars. A fundamental question about such linkages is whether it is possible
to reach every polygon with the same sequence of edge lengths by motions that preserve the
edge lengths. Several papers have shown that the answer to this question is yes for various
types of polygons; we call this a universality result. If edges are allowed to cross each other,
then this is true in every dimension [LW95, Sal73]. If edges are not allowed to cross, universality
does not hold in general for polygons in 3D [CJ98, BDD+01a], but has been shown for polygons
in the plane and motions in 3D [AGP99, BDD+01a], for polygons and motions in the plane
(Chapter 4), for polygons in 3D with simple projections [CKM+01], and for all polygons in 4D
and higher dimensions [CO99].

All of these papers show universality by proving that every polygon can be convexified,
that is, moved to a convex (planar) polygon while preserving edge lengths. Convex polygons
are used as an intermediate state; because motions can be reversed and concatenated, all that
remains is to show that a convex polygon can be moved to every other convex polygon with the
same counterclockwise sequence of edge lengths. This fact is established in [LW95] when edges
are allowed to cross, and before our work no proof had been published for the case in which
edges cannot cross. Although the method in [LW95] may not actually cause edges to cross, this
property has not been established, and we instead opt for a simpler solution.
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The basic idea in the proof in [LW95] of universality of convex polygons is to show how
to reconfigure every convex polygon into another intermediate state, a “canonical triangle.”
In this chapter, we show that this intermediate state can be avoided. Specifically, a convex
polygon can be moved to any other convex polygon with the same counterclockwise sequence of
edge lengths in such a way that each vertex angle varies monotonically with time (either never
increasing or never decreasing). In this sense, the motion goes directly from the source to the
destination. Our motion is also of the simplest type possible [BDL+99]: it can be decomposed
into a linear number of moves, each of which changes only four joint angles. In contrast, the
motion in [LW95] changes up to five joint angles at once.

This chapter is organized as follows. In Section 3.2 we introduce some basic notation that we
will use throughout the chapter. Section 3.3 proves the theorem about angle-monotone motions
in the plane, using an old lemma of Cauchy and Steinitz. Section 3.4 shows an example in which
a different type of monotonicity cannot be achieved.

3.2 Notation

For a polygon P , we denote its vertices by v1, . . . , vn in counterclockwise order, its edges by
ei = (vi, vi+1), and its edge lengths by `i = |ei| = |vi − vi+1|. Throughout, index arithmetic is
modulo n.

A convex configuration of edge lengths (positive real numbers) `1, . . . , `n is a convex poly-
gon with those edge lengths in counterclockwise order. The convex polygon is allowed to have
“straight” vertices with angle π, and edges are allowed to overlap. (These assumptions simplify
the statement of Lemma 3.1, but are not necessary for our purposes: if the desired configu-
rations avoid straight angles and/or overlap, then so will our motions.) A well-known result
characterizes the edge lengths for which convex configurations exist:

Lemma 3.1 (Lemma 3.1 of [LW95]) The edge lengths `1, . . . , `n admit a convex configura-
tion precisely if `i ≤

∑

j 6=i `j for all i.

A motion or reconfiguration is a continuous function from the unit interval [0, 1] (represent-
ing time) to a configuration, where each configuration is a polygon with the same counterclock-
wise sequence of edge lengths. An angle-monotone motion is a motion in which each vertex
angle is a monotone function in time.

3.3 Angle-Monotone Motions

Consider two convex configurations C and C ′ of the same sequence of edge lengths. We think
of C as the source configuration and C ′ as the destination configuration. Label each angle of C
by + if it needs to get bigger in order to match the corresponding angle in C ′, by − if it needs
to get smaller, or by 0 if they already match.

This set up is exactly what arises in the proof of Cauchy’s theorem about the rigidity of
convex polyhedra [Cau13, Cro97], except that in Cauchy’s application the polygon is on the
sphere. We also need his key lemma about sign alternations: transitions from + to − or from
− to + among consecutive vertices along the polygon boundary. Cauchy’s original proof of this
lemma (in 1813) had an error, noticed and corrected over a century later by Steinitz in 1934
[SR34].
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Lemma 3.2 (Cauchy-Steinitz Lemma [SR34, Cro97, SZ67]) In a +,−, 0 labeling that
comes from two distinct convex configurations, there are at least four sign alternations.

See [SR34] for Steinitz’s original (complicated) proof, [Cro97] for a simpler proof due to Isaac
J. Schoenberg, or [SZ67] for another elementary proof. Here we present the main argument:
Proof (Sketch): Because the configurations are distinct, not all labels are 0. By circularity,
the number of alternations between + and − (ignoring 0’s) is even. It cannot be zero, because
there is no motion of any polygon that increases or decreases all angles. It cannot be two,
because then there is a chain of increasing angles and a chain of decreasing angles; the former
chain specifies that the ends of the chain should get farther apart, whereas the latter chain
specifies the opposite. It is this last part of the argument that needs careful analysis. 2

Thus we obtain vertices vi, vj , vk, vl, in cyclic order around the polygon, whose angles are
labeled +,−,+,− in that order; see Figure 3.1. Now we treat the convex polygon as the
quadrangle vi, vj , vk, vl, holding rigid the subchains of the convex polygon connecting those
four vertices: [vi, vj ], [vj , vk], [vk, vl], and [vl, vi]. We flex the quadrangle according to the
+,−,+,− angular labels, stopping once one angle matches the desired value in C ′, i.e., a label
changes from + or − to 0.

vj

vi

vk

vl −

+

−

+

Figure 3.1: Applying a quadrangle motion to a convex polygon by taking ver-
tices labeled +,−,+,− in that order.

To do this we need a lemma about reconfiguring convex quadrangles:

Lemma 3.3 Given a convex quadrangle v1, v2, v3, v4, there is a motion that decreases the angles
at v1 and v3, and increases the angles at v2 and v4. The motion can continue until one of the
decreasing angles reaches 0 or one of the increasing angles reaches π.
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Proof: We consider the following viewpoint: v1 is pinned to the plane, and v3 moves along
the directed line from v1 to v3 (see Figure 3.2). The motions of v2 and v4 are determined
by maintaining their distances to v1 and v3. Applying Euclid’s Proposition I.251 [Hea56] to
triangle v1, v2, v3, because |v1− v3| is increasing, so is the angle at v2. Similarly, the angle at v4
is increasing throughout the motion. Because no angle goes past 0 or π, we maintain a convex
quadrangle throughout the motion, so by the Cauchy-Steinitz lemma (Lemma 3.2), there must
be at least four sign alternations when compared to any future quadrangle we will visit. This
proves that the angles at v1 and v3 decrease throughout the motion. 2

v1

v2

v4

v4

v2

v1

v3

v3

Figure 3.2: Moving a convex quadrangle as in Lemma 3.3.

We are now in the position to prove the main theorem of this chapter:

Theorem 3.4 Given two convex configurations C,C ′ of the same edge lengths `1, . . . , `n, there
is an angle-monotone motion from C to C ′ that involves O(n) moves, each of which changes
only four vertex angles.

Proof: Consider the +,−, 0 labeling of C to reach C ′. By Lemma 3.2, we can find vertices
vi, vj , vk, vl in cyclic order around the polygon, whose angles are labeled +,−,+,− in that
order; see Figure 3.1. By specifying the subchains between these vertices to move rigidly, we
obtain a convex quadrangle. Move this quadrangle according to Lemma 3.3 until one of the
four angles matches the angle in C ′. (Because of our stopping condition, no angle will go past
0 or π.) Repeat this process until all angles match. The result is a sequence of motions from
C to C ′. There are at most n moves, because each motion changes the label of an angle from
+ or − to 0, and that label persists. 2

Note that if the configurations C,C ′ have no overlapping edges, then they have no zero
angles, so by angle-monotonicity, the motion never creates a zero angle, and hence avoids
overlapping edges throughout.

1“If two triangles have the two sides equal to two sides respectively, but have the base greater than the base,
they will also have the one of the angles contained by the equal straight lines greater than the other.” [Hea56,
p. 297]
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Next we prove analogous algorithmic results to Lemma 3.3 and Thereom 3.4:

Proposition 3.5 On a machine supporting basic arithmetic and roots, any snapshot of the
motion in Lemma 3.3 can be computed in constant time, as can the time at which a specified
angle reaches desired values in sine and cosine.

Proof: We can implement the motion as described in the proof of Lemma 3.3, in which v1 is
pinned and v3 moves along the line through v1 and v3. Thus v3’s motion can be described as v3+
t(v3−v1). Given a particular time t and hence a particular position for v3, the remaining vertices
v2 and v4 are each defined by the intersection of two known circles. This circle-intersection
predicate involves basic arithmetic and solving a quadratic polynomial, which can be done
with basic arithmetic and a square root. The desired root of the quadratic polynomial can be
determined by ensuring that v2 and v4 stay on the correct side of the line through v1 and v3.
This concludes the construction of any snapshot of the motion.

Next we describe how to compute when an angle reaches a particular value. By the law of
cosines, the cosine of the angle at v2 is equal to

|p1 − p3|2 − |p1 − p2|2 − |p2 − p3|2
−2|p1 − p2||p2 − p3|

.

Only the |p1 − p3| distance is not a constant, and it is of the form a + tb for constants a and
b. Thus, solving for the time at which the cosine of the angle at v2 becomes a given value only
requires solving a quadratic polynomial. The same approach works for v4.

For v1 and v3, we split each angle into two by cutting along the line through v1 and v3,
and write these angles in terms of the angles at v2 and v3 using the law of sines. For example,
the sine of the angle at v1 on the v2 side is equal to |v2 − v3|/|v1 − v3| times the sine of the
angle at v2. Solving for the time at which this sine equals a particular value also leads to a
quadratic polynomial. Now we combine the two angles at each of v1 and v3 using the sum
formula sin(a+ b) = sin a cos b+sin b cos a. This multiplication of terms causes the polynomials
to blow up to quartic (degree 4), which can still be solved using basic arithmetic, square roots,
and cube roots. 2

Proposition 3.5 and its proof are similar to Lemma 7 in [BDL+99] about motions of a
nonconvex quadrangle.

Proposition 3.6 All O(n) moves of the motion in Theorem 3.4 can be computed (in the sense
of implicitly encoding each quadrangle motion so that Proposition 3.5 can be applied) in O(n)
time on a pointer machine supporting basic arithmetic and roots.

Proof: The first part of the algorithm is keep track of four vertices, vi, vj , vk, vl, suitable for
a quadrangle motion, i.e., labeled +,−,+,−. In fact we maintain additional structure: four
consecutive maximal blocks I, J,K,L for which all vertices in I and K are labeled either + or
0, and all vertices in J and L are labeled either − or 0. More precisely, we keep track of the
first and last vertex not labeled 0 in each block. This structure can be determined initially in
linear time by scanning along the polygon’s vertices in order. The desired vertices vi, vj , vk, vl
are each defined to be the first vertex not labeled 0 in the corresponding block. When the label
of one of them switches to 0, the vertex and the block’s first vertex are set to the next vertex
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not labeled 0 in the block. If no such vertex exists (the block is now empty), we make the
following modifications. If I becomes empty, we set it to the block of +’s after L. Similarly, if
L becomes empty, we set it to the block of −’s before I. If K becomes empty, we set it to the
block after L, we merge the blocks J and L to produce a new block J , and set L to the block
of −’s after K. The case of J becoming empty is symmetric.

The second part of the algorithm is to apply the quadrangle motions from Lemma 3.3.
This involves computing the time at which the quadrangle motion stops, and then updating
the coordinates. We apply Proposition 3.5 four times to determine when each of the angles
would reach its desired value, and take the minimum of these times. A fifth application of
Proposition 3.5 computes the result of this motion and updates the vertex coordinates. 2

3.4 Distance-Monotone Motions

We have shown that an angle-monotone motion between any two convex configurations of a
common sequence of edge lengths can be computed in linear time. On the other hand, we prove
that a distance-monotone motion, in which every distance between a pair of vertices varies
monotonically with time, is impossible in general. (This is in direct contrast to convexification
of a polygon (Chapter 4), where all distances can be made to increase.) Consider the left
and right configurations in Figure 3.3. Because the dotted lines are the same length in both
configurations, these distances must be preserved throughout the motion; in other words, the
chains v1, v2, v3 and v4, v5, v6 must move rigidly. The problem is thus reduced to moving a
quadrangle v1, v3, v4, v6, which can be moved in only two different ways. Only one motion
decreases |v1 − v4| and increases |v3 − v6| as desired, but then the distance |v2 − v5| increases
and later decreases. Specifically, the distance in the middle configuration is more than 0.6%
larger than the (equal) distances in the left and right configurations.

v5

v2

v1 v3

v4

v6

v2

v1 v3

v4

v5

v6

v1

v2

v3

v5

v6

v4

Figure 3.3: (Left and right) An example for which a distance-monotone motion
is impossible. (Middle) The transition between |v2−v5| increasing and decreasing.
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Chapter 4

Straightening Polygonal Arcs and

Convexifying Polygonal Cycles

Consider a planar linkage, consisting of disjoint polygonal arcs and cycles of rigid bars joined
at incident endpoints (polygonal chains), with the property that no cycle surrounds another
arc or cycle. This chapter proves that the linkage can be continuously moved so that the arcs
become straight, the cycles become convex, and no bars cross while preserving the bar lengths.
Furthermore, our motion is piecewise-differentiable, does not decrease the distance between any
pair of vertices, and preserves any symmetry present in the initial configuration. In particular,
this result settles the well-studied carpenter’s rule conjecture.

This chapter is joint work with Robert Connelly and Günter Rote. A short version appeared
in the 41st Symposium on Foundations of Computer Science [CDR00].

4.1 Introduction

First we briefly review and detail a few notions from Chapters 1 and 2. A planar polygonal arc
is a collection of line segments in the plane connected in a path.1 A planar polygonal cycle is a
polygonal simple closed curve in the plane. We say an arc is straightened by a motion if at the
end of the motion it lies on a straight line. We say a polygonal cycle is convexified by a motion
if at the end of the motion it is a convex closed curve. All motions must be proper in the sense
that no self-intersections are created, and each edge length is kept fixed.

It seems intuitively easy to straighten an entangled chain: just grab the ends and pull them
apart. Similarly, a cycle might be opened by blowing air into it until it expands. But these
methods have the difficulty that they might introduce singularities, where the arc or cycle
intersects itself. Our approach is to use an expansive motion in which all distances between
two vertices increase. We also show that the area of a polygon increases in such an expansive
motion.

We consider the more general situation, which we call an arc-and-cycle set A, consisting of
a finite number of polygonal arcs and polygonal cycles in the plane, with none of the arcs or
cycles intersecting each other or having self-intersections. We say that A is in an outer-convex

1More formally, an arc is a homeomorphic image of the closed interval [0, 1] in the plane, and we are interested
in finite embedded polygonal arcs.
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configuration if each component of A that is not contained in any cycle of A is either straight
(when it is an arc) or convex (when it is a cycle). The best we can hope for, in general, is to
bring an arc-and-cycle set to an outer-convex configuration, because components nested within
cycles cannot always be straightened or convexified; see Figure 4.1(a).

(b)(a)

Figure 4.1: (a) The nested arc cannot be straightened because there is in-
sufficient space in the containing cycle. (b) Once the containing cycle becomes
convex, any expansive motion must move the arc and the cycle rigidly in unison.

We say that a motion of an arc-and-cycle set A is expansive if for every pair of vertices
of A the distance is monotonically nondecreasing over time, at all times either increasing or
staying the same. Note that once a cycle becomes convex, the cycle and any components it
contains become a single rigid object in any expansive motion; see Figure 4.1(b). (This fact is
a consequence of Cauchy’s Lemma 3.2.) Also, once two incident bars become collinear, they
will remain so throughout any expansive motion, effectively acting as a single bar. We say
that a motion is strictly expansive if the distance is constant between two vertices connected
by a bar or straight chain of bars, and between two vertices on the boundary of or interior
to a common convex cycle, but the distance between all other pairs of vertices monotonically
strictly increases over time.

We say that the arc-and-cycle set A has separated if there is a line L in the plane such that
L is disjoint from A and at least one component of A lies on each side of L. Our main result is
the following:

Theorem 4.1 Every arc-and-cycle set has a piecewise-differentiable proper motion to an outer-
convex configuration. Moreover, the motion is strictly expansive until the arc-and-cycle set
becomes separated.

We can also extend this result to insist that the motion be strictly expansive during the
entire motion. The definition of this motion is actually even simpler than the one we use
for Theorem 4.1, but unfortunately the proof is a great deal more complex. Thus we first
prove Theorem 4.1, and then in Section 4.6 prove the extension. Note that when there is just
one component in the arc-and-cycle set, there is no difference between Theorem 4.1 and the
extension in Section 4.6.
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The tools that are applied here for the first time come from the theory of mechanisms and
rigid frameworks. Arcs and cycles can be regarded as frameworks. See [AR78, AR79, Con80,
Con82, Con93, CW96, CW93, CW82, CW94, GSS93, RW81, Whi84a, Whi84b, Whi87, Whi88,
Whi92a] for relevant information about this theory.

Our approach is to prove that for any configuration there is an infinitesimal motion that
increases all distances. Because of the nature of the arc-and-cycle set, this implies that there
is a motion that works at least for a small expansive perturbation. We then combine these
local motions into one complete motion. These notions are described in the rest of this chap-
ter. Section 4.3 proves the existence of infinitesimal motions using the nonexistence of certain
stresses, a notion dual to infinitesimal motions for the underlying framework. The analysis of
these stresses uses a lifting theorem from the theory of rigidity that was known to James Clerk
Maxwell and Luigi Cremona [CW82, CW93, Whi82] in the nineteenth century. Section 4.4
shows how to maneuver through the space of local motions to find a global motion with the
desired properties.

4.2 Basics

A linkage or bar framework G(p) is a finite graph G = (V,E) without loops or multiple edges,
together with a corresponding configuration p = (p1, . . . ,pn) of n points in the plane, where
pi corresponds to vertex i ∈ V . (For convenience we assume V = {1, . . . , n}.) The edges of G
constitute the set E and correspond to the bars in the framework, i.e., the links of a linkage.
Arc-and-cycle sets are a particular kind of bar framework in which the graph G is a disjoint
union of paths and cycles.

A flex or motion of G(p) is a set of continuous functions p(t) = (p1(t), . . . ,pn(t)), defined
for 0 ≤ t ≤ 1, such that p(0) = p and ‖pi(t)− pj(t)‖ is constant for each {i, j} ∈ E.2 We are
interested in finding a motion of the arc-and-cycle set with the additional property that it is
strictly expansive.

4.2.1 Expansiveness

We begin with some basic properties of expansive motions. Namely, we will show that if a
motion expands the distance between all pairs of vertices, it also expands the distance between
all pairs of points on the arc-and-cycle framework. One consequence of this property is a key
reason why we use expansive motions: they automatically avoid self-intersection. To prove the
property, we need the following known basic geometric tool, which will also be useful later on:

Lemma 4.2 In the plane, suppose that a point c is contained in the closed triangle formed by
three points p1,p2,p3, and suppose that another point q3 is chosen farther than p3 is from p1
and p2, i.e.,

‖q3 − p2‖ ≥ ‖p3 − p2‖ and ‖q3 − p1‖ ≥ ‖p3 − p1‖. (4.1)

Then q3 is also farther than p3 is from c, i.e., ‖q3 − c‖ ≥ ‖p3 − c‖, with equality precisely if
both inequalities of (4.1) are equalities.

2Throughout, ‖x‖ denotes the Euclidean length (L2 norm) of a vector x in R2.
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Proof: Observe that condition (4.1) implies that q3 is outside the triangle. Now refer to
Figure 4.2. We claim that the circular disk C0 centered at c and of radius ‖p3−c‖ is contained
in the union U of the circular disks C1 centered at p1 and of radius ‖p3−p1‖, and C2 centered
at p2 and of radius ‖p3 − p2‖. This claim implies the result because q3 must be outside both
C1 and C2.

First observe that the circles C0, C1, and C2 all pass through p3, and that C0 has smaller
radius than C1 and C2. If we orient the diagram as in Figure 4.2 so that C0 is centered above
the line p1p2, then the portion of the interior of C0 that is below p1p2 is contained in the
reflection of C0 through p1p2. Thus, by symmetry, we can restrict attention to the portion
of the diagram that is above the line p1p2. Circle C0 does not penetrate the boundary of U
formed by C2 because it has smaller radius and because its center is on the opposite side of
p2p3. Similarly, C0 does not penetrate the boundary of U formed by C1, concluding the proof.
See also [Con82] for a proof in terms of tensegrities. 2

p1 p2

C2

C1

q3

C0

c

p3

Figure 4.2: Illustration of Lemma 4.2.

Corollary 4.3 Any expansive motion of an arc-and-cycle set only increases the distance be-
tween two points on the arc-and-cycle set (each either a vertex or on a bar). In particular, there
can be no self-intersections.

Proof: Refer to Figure 4.3. First, the result is obvious if the two points are both vertices of
the arc-and-cycle set, by definition of expansiveness. Second, consider the distance between
a vertex p3 of the arc-and-cycle set and a point c on a bar p1p2 of the arc-and-cycle set.
Expansiveness implies that p3 only gets farther from p1 and p2, so by Lemma 4.2, p3 only gets
farther from c. Third, consider the distance between c (again on the bar p1p2) and another
point c′ on a bar p′1p

′
2 of the arc-and-cycle set. Substituting p′1 and p′2 as options for p3 in

the previous argument, we know that p′1 and p
′
2 only get farther from c. Applying Lemma 4.2

with c playing the role of p3, we obtain that c can only get farther from c′. 2
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p2p1 c

p′
1

p′
2

c′

p2p1

p2 p3

p1 c

Figure 4.3: Illustration of the three cases of Corollary 4.3: (left) two vertices
p1,p2; (middle) one vertex p3 and one point c on a bar p1p2; (right) one point c
on a bar p1p2 and another point c′ on a bar p′1p

′
2. Bold edges denote bars, and

arrows denote expansion; dashed arrows are derived from solid arrows.

Mod. 3

Mod. 2

Mod. 1

(a) (b)

(c) (d)

Figure 4.4: (a) Original arc-and-cycle framework. (b) With straight vertices
removed. (c) With convex cycles rigidified. (d) With components nested within
convex cycles removed.

4.2.2 The Framework GA(p)

Given an arc-and-cycle set A that we would like to move to an outer-convex configuration, we
make four modifications to A. The first three modifications simplify the problem by removing
a few special cases that are easy to deal with; see Figure 4.4. The fourth modification will bring
the problem of finding a strictly expansive motion into the area of tensegrity theory. In the
end we will have defined a new framework, GA(p), which we will use throughout the rest of the
proof.
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Modification 1: Remove straight vertices. First we show that our arc-and-cycle set can
be assumed to have no straight vertices, i.e., vertices with angle π. Furthermore, if during
an expansive motion of the arc-and-cycle set we find that a vertex becomes straight, we can
proceed by induction. For once the arc-and-cycle set has a straight subarc of more than one
bar, we can coalesce this subarc into a single bar, thereby preserving the straightness of the
subarc throughout the motion once it becomes straight. This reduces the number of bars and
the number of vertices in the framework. By induction, this reduced framework has a motion
according to Theorem 4.1, and such a motion extends directly to the original framework. The
resulting motion is also strictly expansive by Corollary 4.3.

Modification 2: Rigidify convex polygons. Once a cycle becomes convex, we no longer
have to expand it, and in fact it is impossible to expand it, so we hold it rigid from that point
on. Of course, we allow a convex cycle to translate or rotate in the plane, but its vertex angles
are not allowed to change. This can be directly modeled in the bar framework by introducing
bars in addition to the arc-and-set cycle. Specifically, we add the edges of a triangulation of
a cycle once that cycle becomes convex. We deal with the contents of the cycle in the next
modification.

Modification 3: Remove components nested within convex cycles. The previous
modification did not address the fact that components can be nested within cycles. Once a cycle
becomes convex, not only can we rigidify it, but we can also rigidify any nested components,
and treat them as moving in synchrony with the convex cycle. We do this by removing from
the framework any components nested within a convex cycle. Assuming there were some nested
components to deal with, this results in a framework with fewer vertices and fewer bars. By
induction, this reduced framework has a motion according to Theorem 4.1. This motion can be
extended to apply to the original framework by defining nested components to follow the rigid
motion of the containing convex cycle (rigid by Modification 2). By the following consequence
of Lemma 4.2, the resulting motion is also strictly expansive.

Lemma 4.4 Extending a motion to apply to components nested within convex cycles preserves
strict expansiveness.

Proof: Consider some vertex c on a component inside some convex cycle, and a vertex p3
outside the cycle. We first consider the case that p3 does not lie inside another convex cycle.
Extend the ray from p3c beyond c, and let p1p2 be the edge through which this ray exits
the cycle. Thus, c is in the triangle p1,p2,p3, so Lemma 4.2 applies, and the distance p3c
increases.

For two points c1 and c2 in two different cycles C1 and C2, we extend the ray c1c2 to identify
the edge p1p2 on C2 where the ray leaves C2. From the first part of the proof we conclude that
c1p1 and c1p2 increase, and by Lemma 4.2, the distance c1c2 increases. 2

Modification 4: Add struts. In order to model the expansive property we need, we apply
the theory of tensegrity frameworks, in which frameworks can consist of both bars and “struts.”
In contrast to a bar, which must stay the same length throughout a motion, a strut is permitted
to increase in length, or stay the same length, but cannot shorten. The last modification adds a
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strut between nearly every pair of vertices in the framework. The exceptions are those vertices
already connected by a bar, and vertices on a common convex cycle, because in both cases we
cannot hope to strictly increase the distance.

Final framework: GA(p). The above modifications define a tensegrity (bar-and-strut) frame-
work GA(p) in terms of the arc-and-cycle set A. Specifically, assume that A has no straight
vertices (Modification 1) and no components nested within convex cycles (Modification 3). We
call such an arc-and-cycle set reduced. We define the set of bars, B, to consist of the bars from
the arc-and-cycle set together with the bars forming the rigidifying triangulation of each convex
cycle (Modification 2). The set S of struts consists of all vertex pairs that are not connected
by a bar in B and which do not belong to a common convex cycle (Modification 4). See Fig-
ure 4.5 for an example of A and the resulting bar-and-strut framework GA(p). (The rightmost
framework G′

A(p
′) will be defined later.)

A GA(p) G′
A(p

′)

Figure 4.5: Construction of the frameworks GA(p) and G′
A(p

′). Solid lines
denote bars, and dashed lines denote struts.

Our goal in the proof of Theorem 4.1 is to find a motion such that all bars maintain their
length, while all struts strictly increase in length, in other words, a motion of GA(p) that is
strict on all struts.

Thus, we want to find a motion p(t) for 0 ≤ t ≤ 1 such that p(0) = p and

d
dt‖pj(t)− pi(t)‖ = 0 for {i, j} ∈ B,
d
dt‖pj(t)− pi(t)‖ > 0 for {i, j} ∈ S.

Differentiating the squared distances ‖pj(t) − pi(t)‖2 = (pj(t) − pi(t)) · (pj(t) − pi(t)) and
denoting the velocity vectors by vi(t) :=

d
dtpi(t), we obtain the following equivalent conditions.

(vj(t)− vi(t)) · (pj(t)− pi(t)) = 0 for {i, j} ∈ B,
(vj(t)− vi(t)) · (pj(t)− pi(t)) > 0 for {i, j} ∈ S.

Intuitively, the first-order change in the distance between vertex i and j is modeled by projecting
the velocity vectors onto the line segment between the two vertices; see Figure 4.6.

4.2.3 Infinitesimal Motions

A strict infinitesimal motion or strict infinitesimal flex v = (v1, . . . ,vn) specifies the first
derivative of a strictly expansive motion at time 0. In other words, it assigns a velocity vector
vi to each vertex i so that it preserves the length of the bars to the first order, and strictly
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vi · (pj − pi) vj · (pj − pi)

pj − pi

vi

pjpi

vj

Figure 4.6: The dot product (vj(t)−vi(t)) ·(pj(t)−pi(t)) is zero if the distance
between pi and pj stays the same to the first order, positive if the distance
increases, and negative if the distance decreases.

increases the length of struts to the first order. More precisely, a strict infinitesimal motion
must satisfy

(vj − vi) · (pj − pi) = 0 for {i, j} ∈ B,
(vj − vi) · (pj − pi) > 0 for {i, j} ∈ S,

(4.2)

where pi denotes the initial position of vertex i.
In the next section, we prove that such a strict infinitesimal motion always exists. In

Section 4.4 we show how this leads to motions for small amounts of time. These motions are
then shown to continue globally until the configuration reaches an outer-convex configuration.

4.3 Local Motion

Recall that an arc-and-cycle set is called reduced if adjacent collinear bars have been coalesced,
and components nested within convex cycles have been removed. In this section, we prove the
following:

Theorem 4.5 For any reduced arc-and-cycle set A there is an infinitesimal motion v of the
corresponding bar-and-strut framework GA(p) satisfying (4.2).

4.3.1 Equilibrium Stresses

The equations and inequalities in (4.2) form a linear feasibility problem that is common for
tensegrity frameworks. In order to solve this problem it is helpful to apply linear-programming
duality and consider the equivalent dual problem. We discuss the duality first in terms of
equilibrium stresses in tensegrity frameworks, and later reconnect it to linear-programming
duality.

A stress in a framework G(p) is an assignment of a scalar ωi,j = ωj,i to each edge {i, j}
of G (a bar or strut). Intuitively, a positive scalar means that the edge is pushing on its two
endpoints by an equal amount, a negative scalar means that the edge is pulling on its endpoints
by an equal amount, and a zero scalar means that the edge induces no force. The whole stress
is denoted by ω = (. . . , ωi,j, . . . ). We say that the stress ω is an equilibrium stress if each vertex
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i of G is in equilibrium, i.e., stationary subject to the the forces from the incident edges:
∑

j : {i,j}∈B∪S

ωij(pj − pi) = 0 (4.3)

We say that the stress ω is proper if furthermore, for all struts {i, j}, ωi,j ≥ 0. That is, struts
can carry only zero or positive stress. There is no sign condition for bars: they can carry zero,
positive, or negative stress. Thus, only bars can carry negative stress. (Terminology and sign
conditions are not uniform in the literature. An equilibrium stress is also called a self-stress or
simply a stress. All stresses that we deal with are equilibrium stresses.)

A trivial example of an equilibrium stress is the zero stress in which every edge is assigned a
scalar of zero. All other stresses are called nonzero. To prove Theorem 4.5, we use the following
duality principle connecting nonzero equilibrium stresses and infinitesimal motions:

Lemma 4.6 If the only proper equilibrium stress in a bar-and-strut framework is the zero stress,
then the framework has an infinitesimal motion.

This equivalence is a standard technique in the theory of rigidity. See [CW96, Theorem 2.3.2] for
a similar statement. For completeness, we give a brief proof here based on linear programming
duality:

Proof: To make it easier to take the dual of the linear feasibility problem defined by (4.2), we
write a linear program in standard form. First we add an otherwise pointless objective function
of 0 = 0 · v. Then we rescale the velocities v in (4.2) to obtain the following equivalent linear
program:

minimize 0 · v
subject to (vj − vi) · (pj − pi) = 0 for {i, j} ∈ B,

(vj − vi) · (pj − pi) ≥ 1 for {i, j} ∈ S,
(4.4)

We wish to show that the framework has an infinitesimal motion, which is equivalent to this
linear program having a feasible solution, that is, an optimal solution of value 0. By linear-
programming duality (the Farkas lemma), it suffices to show that the dual linear program

maximize
∑

{i,j}∈S

ωi,j

subject to
∑

j:{i,j}∈B∪S

ωi,j(pj − pi) = 0 for i ∈ V,

ωi,j = ωj,i for {i, j} ∈ B ∪ S,
ωi,j ≥ 0 for {i, j} ∈ S,

(4.5)

has an optimal solution of value 0. This linear program specifies precisely the constraints of
a proper equilibrium stress. Thus, it suffices to show that every proper equilibrium stress has
ωi,j = 0 for all {i, j} ∈ S. In particular, it suffices to show that every proper equilibrium stress
is identically zero. 2

The important consequence of this lemma is that, in order to prove the desired Theorem 4.5,
it suffices to prove the following:

Theorem 4.7 The framework GA(p) corresponding to a reduced arc-and-cycle set A has only
the zero proper equilibrium stress.
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4.3.2 Planarization

To prove that only the zero equilibrium stress exists (i.e., to prove Theorem 4.7), we use another
tool in rigidity called the Maxwell-Cremona theorem. Before we can apply this tool, we need
to transform the framework GA(p) into a planar framework G′

A(p
′). (Refer to the framework

on the right of Figure 4.5.) We introduce new vertices at all intersection points between edges
of GA(p), and subdivide the bars and struts accordingly. Any multiple edges resulting from
this operation are merged. We define the resulting framework G′

A(p
′) to have bars precisely

covering the bars of GA(p). All the other edges of G′
A(p

′) are struts. G′
A(p

′) is planar in the
sense that two edges (bars or struts) intersect only at a common endpoint.

A natural concern is that the added vertices in this modification introduce additional free-
dom in finding infinitesimal motions, so they may not transfer directly to infinitesimal motions
in the original framework. Nonetheless, the planar framework G′

A(p
′) is effectively equivalent

to the original framework GA(p) in the sense of equilibrium stresses. Indeed, the following
stronger statement holds. We call a stress outer-zero if the only edges that carry a nonzero
stress are edges of convex cycles and edges interior to convex cycles. Otherwise, an edge exterior
to all convex cycles carries a nonzero stress, and we call the stress outer-nonzero.

Lemma 4.8 If GA(p) has a nonzero proper equilibrium stress ω, then G′
A(p

′) has an outer-
nonzero proper equilibrium stress ω ′.

Proof: During the modifications to GA(p) that made G′
A(p

′), we modify ω to make ω′ as
follows. When we subdivide an edge {i, j} with stress ωi,j, each edge {k, l} of the subdivision
gets the stress ωi,j‖pi−pj‖/‖pk−pl‖. (The ratio of lengths is necessary because ωi,j is a weight,
and the actual force comes from scaling by the length of the edge {i, j}; see Equation (4.3).)
When merging several edges, we add the corresponding stresses. The resulting stress is in
equilibrium because edges meet in opposing pairs at the added vertices, and because summation
preserves force. The stress is also proper because a strut in G′

A(p
′) is made up only of struts

from GA(p), and the sum of nonnegative numbers is nonnegative. It only remains to check that
positive and negative stresses do not completely cancel during the merging process, and that
the stress is furthermore outer-nonzero.

First we prove that some strut {i, j} of GA(p) carries a positive stress. In other words,
GA(p) cannot be stressed only on its bars; in particular, a framework consisting exclusively of
arcs, cycles, and triangulated convex cycles cannot carry a nonzero stress. This follows because,
in any such bar framework, there is a vertex v with degree at most two; in particular, every
triangulated convex cycle has a degree-two vertex (an ear). Because the framework is reduced,
the two bars incident to v are not parallel, so these two bars cannot carry stress while satisfying
equilibrium at v. Removing them and proceeding inductively with the rest of the framework,
we conclude that the stress is zero on the whole bar framework. Hence, the bars alone cannot
carry a nonzero stress, so some strut {i, j} ∈ GA(p) must have a nonzero stress.

The conditions of Theorem 4.5 enforce that no angles at vertices of the arc-and-cycle set are
π or 0: an angle of π would create a straight subarc of two bars (contradicting the assumption
that the framework is reduced), and an angle of 0 would violate simplicity. Thus, no strut of
GA(p) is completely covered by bars. Therefore, for the strut {i, j} of GA(p) that carries a
positive stress, some portion of it in G′

A(p
′) will also have a positive stress, because a positive

stress can only be canceled by a stress on a bar. In particular, ω ′ must be nonzero.
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Furthermore, if the strut {i, j} is exterior to all convex cycles in A, we have that ω ′ is outer-
nonzero. Now suppose that {i, j} is partially interior to convex cycles in A (by construction, the
strut cannot be entirely within convex cycles of A). Then there is a portion of {i, j} with the
property that it is incident to a convex cycle and exterior to all convex cycles in A. This portion
must be uncovered by bars, because no bar in A has this property, and the only additional bars
in GA(p) are interior to convex cycles. Hence, the corresponding strut in G′

A(p) carries a
positive stress, so ω′ is outer-nonzero in all cases. 2

Thus, to prove that the original framework GA(p) has only the zero proper equilibrium
stress, it suffices to prove that the planar framework G′

A(p
′) has only outer-zero proper equi-

librium stresses.

4.3.3 Maxwell-Cremona Theorem

To prove that only outer-zero equilibrium stresses exist, we employ the Maxwell-Cremona corre-
spondence between equilibrium stresses in planar frameworks and three-dimensional polyhedral
graphs that project onto these frameworks. More precisely, a polyhedral graph or polyhedral ter-
rain Γ comes from lifting a planar framework into three dimensions—that is, assigning a z
coordinate (positive or negative) to each vertex in the framework—such that the vertices of
each face of the framework (including the exterior face) remain coplanar. Thus, each face of
the framework lifts to a planar polygon in 3-space. The polyhedral surface Γ is then the graph
of a piecewise-linear continuous function of two variables that is linear on the faces determined
by G′

A(p
′).

Consider an edge {i, j} in a planar framework, separating faces F and F ′. We distinguish
whether this edge lifts in Γ to a “valley,” “mountain,” or “flat” edge according to its dihedral
angles; see Figure 4.7. More formally, let z(p) = a · p + b and z(p) = a′ · p + b′ be the two
linear functions specifying the graph Γ on F and F ′, respectively. Thus, a and a′ are vectors
in (the dual space of) R2, and b and b′ are real numbers. A straightforward calculation reveals
that the vector a′ − a in R2 must be perpendicular to the edge {i, j}:

a′ − a = ωi,je
⊥
i,j (4.6)

where e⊥i,j is a vector in R2 of the same length as the vector pj − pi, perpendicular to it, and
pointing from F towards F ′. We call the edge {i, j} a valley if ωi,j > 0, a mountain if ωi,j < 0,
and flat if ωi,j = 0.

These definitions are illustrated in Figure 4.7. In particular, if two sides of an edge both
“go up” in z, as in Figure 4.7(a), then the edge is a valley; however, the converse does not hold
(so a valley might not carry water), as shown in Figure 4.7(b). Similarly, if the two sides of
an edge both “go down” in z (Figure 4.7(c)), then the edge must be a mountain, but not all
mountains have this property (Figure 4.7(d)).

Theorem 4.9 (Maxwell-Cremona Theorem) (i) For every polyhedral graph Γ that projects
to a planar bar framework G(p), the stress ω defined by (4.6) forms an equilibrium stress on
G(p).

(ii) For every proper equilibrium stress ω in a planar framework G(p), G(p) can be lifted to
a polyhedral graph Γ such that (4.6) holds for all edges. In particular, edges with positive stress
lift to valleys, edges with negative stress lift to mountains, and edges with no stress lift to flat
edges. Furthermore, Γ is unique up to addition of affine-linear functions.
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Figure 4.7: Definition of valley and mountain in a polyhedral terrain Γ. The
thick edges indicate the xz projection.

A proof of this result can be found in [CW94, HK92, Whi82], which follows the idea suggested
above. Another point of view [Glu74] is that the stresses are a scaling of the angular momentum
vectors of the function that lifts from the plane to the graph.

4.3.4 Main Argument

The zero equilibrium stress corresponds to a trivial polyhedral graph in which all faces are
coplanar (i.e., defined by a single linear function). More generally, an outer-zero equilibrium
stress corresponds to an outer-flat polyhedral graph that is flat on every edge exterior to
all convex cycles. Therefore, to prove that all equilibrium stresses of the planar framework
are outer-zero, and hence prove Theorem 4.7, it suffices to show that all polyhedral graphs
projecting to the planar framework are outer-flat.

More precisely, consider any polyhedral graph Γ that projects to the planar framework
G′

A(p
′) with the property that all struts are lifted to valleys or flat edges (because struts can

carry only positive or zero stress), and bars are lifted to valleys, mountains, or flat edges. We
need to show that nonflat edges can only appear within or on the boundary of convex cycles.
Because we may add an arbitrary affine-linear function, we may conveniently assume that the
exterior face of Γ is on the xy-plane. Thus the problem is to show that Γ does not lift off the
xy-plane any vertex of G′

A(p
′) except possibly vertices interior to convex cycles of A.

One simple fact that we will need is the following:

Lemma 4.10 Any mountain in the polyhedral graph Γ projects to a bar in the planar framework
G′

A(p
′).

Proof: A strut can only carry nonnegative stress, so by Theorem 4.9 it can only lift to a valley
or a flat edge. 2

We now come to the heart of our proof, the proof of Theorem 4.11. It is here that we finally
show that the stress must be outer-zero, by looking at the maximum of any Maxwell-Cremona
lift. The following statement immediately implies Theorem 4.7 and hence Theorem 4.5:

Theorem 4.11 Let M denote the region in the xy-plane where the z value attains its maximum
in the polyhedral graph Γ. Then M contains every face of the planar framework G ′

A(p
′) that is

exterior to all convex cycles.

M is a nonempty union of faces, edges, and vertices of the planar framework G ′
A(p

′).
Consider the boundary ∂M , which may be empty if M fills the whole plane. Because points in
M lift to maximum height, all edges of ∂M must lift to mountains. Thus by Lemma 4.10, all
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Figure 4.8: Hypothetical connected components of ∂M and their relation to
M . Solid lines are edges of ∂M ; white regions are absent from M ; and shaded
regions are present in M . (a) An isolated vertex. (b) A straight subarc. (c) A
nonstraight subarc. (d) A nonconvex cycle. (e) A nonconvex cycle and its local
interior. (f) A nonconvex cycle and its local exterior. (g–k) Various situations
with a convex cycle. (`) The only possible case: A convex cycle, its local exterior,
and possibly some of its interior.

edges of ∂M must be bars in the framework. Hence, ∂M consists of disjoint vertices, paths of
edges, and complete cycles of the arc-and-cycle set, together with a subset of the triangulations
of the convex components. Figure 4.8 shows typical cases of all possibilities. We will show that
the only case in Figure 4.8 that can actually occur is (`), in which ∂M includes a convex cycle
and M includes the local exterior of that cycle (and possibly some of its interior).

Our main technique for arriving at a contradiction in all cases except (`) is that of slicing
the polyhedral graph. Consider a plane Π that is parallel to the xy-plane and just below the
maximum z coordinate of Γ. (By “just below” we mean that Π is above all vertices of Γ not
at the maximum z coordinate.) Now take the intersection of Π with the surface Γ, and project
this intersection to the xy-plane. The resulting set X is shown in Figure 4.9 for the various
cases.

The set X captures several properties of the polyhedral graph Γ. First note that because X
is the boundary of a small neighborhood of M in the plane, it is a disjoint union of cycles. It is
also polygonal. Each edge of X corresponds to a face of Γ, and each vertex of X corresponds
to an edge of Γ. The angle at a vertex of X (on the side interior to M) determines the type
of edge corresponding to that vertex: the angle is π (straight) if the edge is flat, less than π
(convex) if the edge is a mountain, and more than π (reflex) if the edge is a valley.

The basic idea is to show that X has “many” convex angles, and apply Lemma 4.10 to
prove that the framework has “too many” bars. The key fact underlying the proof is that the
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Figure 4.9: Slicing the polyhedral graph Γ just below the maximum z coordi-
nate, in each case corresponding to those in Figure 4.8. Thick lines denote the
slice intersection X, and thick dotted lines denote the corresponding edges in the
polyhedral graph Γ.

original arc-and-cycle set has maximum bar-degree two: every vertex is incident to at most two
bars. In the planar framework G′

A(p
′), only vertices v of convex cycles can have bar-degrees

greater than two, and these bars are contained in a convex wedge from v.
Our proof deals with all cases at once. To illustrate the essence of the proof, we first describe

it for a subcase of case (a) in which one component of ∂M is a single vertex v that does not
belong to a convex cycle. In this case, one component of X is a planar polygonal cycle P that is
star-shaped around v, that is, every point on the boundary of P is visible from v. In particular,
P is a planar polygon with positive area and no self-intersections. Every such polygon has at
least three convex vertices. (To see this, define the turn angle at a vertex to be π minus the
interior angle, so it is positive for convex angles and negative for reflex angles, and always
strictly between −π and π. Because the turn angles of a planar polygon sum to 2π, and the
maximum turn angle of a vertex is < π, every polygon has at least three vertices with positive
turn angles.) These three convex vertices correspond to three mountains in Γ, all incident to
a common vertex v. By Lemma 4.10, there are three bars incident to v, contradicting the
maximum-degree-two property for vertices not on convex cycles. Therefore, this subcase of
case (a) cannot exist.

The general reason that cases (a–k) cannot exist is the following:

Lemma 4.12 Let v be a vertex on the boundary of M , and let b1, . . . , bk be the bars incident
to v in cyclic order. Consider a small disk D around v.

(1) If there is an angle of at least π at v between two consecutive bars, say bi and bi+1, then
the pie wedge P of D bounded by bi and bi+1 belongs to M (see Figure 4.10).
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(2) If there are no bars or only one bar incident to v, i.e., k ≤ 1, then the entire disk D
belongs to M . (This can be viewed as a special case of (1).)

v v

P

c

r

c

b3b2 b2 b3

b1b1

Figure 4.10: (Left) Illustration of Lemma 4.12: solid lines are bars, dotted
lines are struts, and the shaded pie wedge P must be contained in M . (Right)
Illustration of the proof; the thick lines form the portion of X inside P , and the
symbols c and r denote convex and reflex vertices, respectively.

Proof: (1) Because there are no bars in the pie wedge P , and hence no edges of ∂M in P , P
must be completely contained in or disjoint from M . Assume to the contrary that P is disjoint
from M . Then the intersection of the slice X with the pie wedge P is a star-shaped polygonal
arc around v starting from a point on bi and ending at a point on bi+1. By the properties of
X, convex vertices on this arc correspond to mountains emanating from v, and reflex vertices
correspond to valleys emanating from v. Because the angle of the pie wedge P is at least π,
the arc must have at least one convex vertex in P . (The turn angles along the arc must sum
to a positive number, so some vertex must have a positive turn angle.) By Lemma 4.10, there
must be a bar in P , a contradiction.

(2) If k = 1, the bars bi and bi+1 coincide, and the same proof applies. The star-shaped
polygonal arc becomes a star-shaped polygonal cycle, which must have at least two convex
vertices not on bi = bi+1. If k = 0, X also has a star-shaped polygonal cycle around v, which
must have at least three convex vertices, yet v has no incident bars. 2

Note that this lemma applies to every vertex in our planar framework G′
A(p

′), because every
vertex either has bar-degree at most two or is a vertex of a convex cycle, and in either case
there is a nonconvex angle between two consecutive bars.

One can immediately verify that the examples shown in Figure 4.9(a–k) contradict Lemma 4.12.
For example, applying the lemma to any vertex of ∂M shows that M should contain a positive
two-dimensional area incident to that vertex. This immediately rules out cases (a–d), (g), (j),
and (k).

A general proof is also easy with Lemma 4.12 in hand:

Proof (Theorem 4.11): Consider first a degree-0 or degree-1 vertex v in ∂M . (Such a
point would appear when M has a component that is an isolated point or an arc of bars.)
Because Lemma 4.12 applies to every vertex of the framework, we know that some positive
two-dimensional area in the vicinity of v belongs to M , contradicting that v has degree 0 or 1
in ∂M . This rules out cases (a–c) and (j–k).

It follows that ∂M is a union of cycles. A component of ∂M can be of two kinds:
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(1) If it is formed from the edges of a convex cycle and its triangulation, Lemma 4.12 applies to
any vertex in it, and we conclude that M contains the face of the framework immediately
exterior to the cycle. This rules out cases (g–i).

(2) If it consists of a complete nonconvex cycle, we can apply Lemma 4.12 to some convex
vertex and to some reflex vertex (they must both exist), and we conclude that M contains
both the face of the framework immediately interior and the face immediately exterior to
the cycle. This rules out cases (d–f).

In the end, the only faces of the framework that can be missing from M are those interior
to convex cycles (case (`)). This completes the proof of Theorem 4.11 and of Theorems 4.7
and 4.5. 2

4.4 Global Motion

In this section, we combine the infinitesimal motions into a global motion, thereby proving
Theorem 4.1, the main theorem. In overview, Theorem 4.5 establishes the existence of some
direction of motion v. We select a unique vector v = f(p) for each configuration p as the
solution of a convex optimization problem (4.7–4.9). We then set up the differential equation

d

dt
p(t) = f(p(t)).

The solution of this differential equation moves the linkage to a configuration where an angle
between two bars becomes straight. At this point we merge the two bars and continue with the
reduced framework that has one vertex less. This procedure is iterated until the framework is
outer-convex and no further expansive motion is possible.

It is convenient for the proof of Theorem 4.1 to effectively pin an edge in the configuration.
Choose any edge, say {p1,p2}, that is a bar. During the motion we will arrange matters so
that this bar is stationary.

We now go into the details of the proof. We use the following nonlinear minimization
problem to define a unique direction v for every configuration p of a reduced arc-and-cycle set.

minimize
∑

i∈V

‖vi‖2 +
∑

{i,j}∈S

1

(vi − vj) · (pi − pj)− ‖pj − pi‖
(4.7)

subject to (vj − vi) · (pj − pi) > ‖pj − pi‖, for {i, j} ∈ S (4.8)

(vj − vi) · (pj − pi) = 0, for {i, j} ∈ B (4.9)

v1 = v2 = 0 (4.10)

The restrictions (4.8) place a uniform constraint on the growth of the struts S: the derivative
of the length of each strut must be larger than 1. Since the system (4.2) is homogeneous, the
system (4.8–4.9) is feasible for any choice of right-hand sides in (4.8). This particular right-hand
side has been chosen for convenience in the proof.

The objective function (4.7) includes the norm of v as a quadratic term, plus a barrier-type
penalty term that keeps the solution away from the boundary (4.8) of the feasible region. This
penalty term is necessary to achieve a smooth dependence of the solution on the data. The
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objective function is strictly convex because it is a sum of strictly convex functions, of the form
x2 for a variable x, and convex functions, of the form 1/f(x1, x2, x3, x4) where f is an affine
function in four variables that is guaranteed to be positive. Because the objective function is
strictly convex, and it goes to infinity if v increases to infinity or approaches the boundary of
condition (4.8), there is a unique solution v for every p; we denote this solution by f(p).

The function f(p) is defined on an open set U ⊂ R2n that is characterized by the conditions
of Theorem 4.5: no angles are 0◦ or 180◦, no vertex touches a bar, and at least one cycle is
nonconvex or at least one open arc is not straight.

4.4.1 Smoothness

We will show that f is differentiable in the domain U . This follows from the stability theory of
convex programming under equality constraints, as applied to parametric optimization problems
of the type

min{ g(p, x) : x ∈ Ω(p) ⊆ Rn, A(p)x = b(p) } (4.11)

where A(p) is an m× n matrix and b(p) is an m-vector. The objective function g, the domain
Ω(p), and the linear constraints (A, b) depend on a parameter p that ranges over an open region
U ⊆ Rk.

For such an optimization problem, the following lemma establishes the smooth dependence
of the solution vector on the problem-definition data A(p) and b(p). Recall that the Hessian

Hg of a function g(x1, . . . , xm) is the m ×m matrix whose (i, j)th element is ∂2g
∂xi∂xj

, and the

gradient ∇g is the m-element vector whose ith element is ∂g
∂xi

.

Lemma 4.13 Suppose that the following conditions are satisfied in the optimization prob-
lem (4.11).

(a) The objective function g(p, x) is twice continuously differentiable and strictly convex as a
function of x ∈ Ω(p), with a positive definite Hessian Hg, for every p ∈ U .

(b) The domain Ω(p) is an open set, for every p ∈ U .

(c) The rows of the constraint matrix A(p) are linearly independent, for every p ∈ U .

(d) The problem-definition data A(p) and b(p) and the gradient ∇g of g with respect to x are
continuously differentiable in p, for p ∈ U .

(e) The optimum point x∗(p) of the problem (4.11) exists for every p ∈ U (and is unique,
by (a)).

Then x∗(p) is continuously differentiable in U .

Proof: The proof is based on the implicit function theorem and follows the standard lines
of the proof in this area; cf. [BS74, in particular Section 4] or [Fia76, Theorem 2.1] for more
general theorems where inequalities are also allowed. From (a) and (e) it follows that x∗ can
be found as part of the unique solution (x∗, λ) of the system of equations h(p, x, λ) = 0 that
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represents the first-order necessary optimality conditions. Specifically, λ is a k-element vector
of Lagrange multipliers, and h : U × Rn+k → Rn+k is given by

h =

(
∇g − λTAT

Ax− b

)

.

The implicit function theorem guarantees the local existence of x(p) (and λ(p)) as a solution of
h(p, x(p), λ(p)) = 0 in a neighborhood of x if the Jacobian J = ∂h/∂(x, λ) is an invertible matrix
for every p ∈ U . Moreover, differentiability of x(p) is ensured if h is continuously differentiable.
The Jacobi matrix is given by

J =
∂h(p, x, λ)

∂(x, λ)
=

(
Hg AT

A 0

)

.

Differentiability of h follows from assumption (d); we only have to check that J is invertible.
By assumption (a), Hg is positive definite and hence invertible. Thus

det J = detHg · det(−AH−1
g AT).

By assumption (c), A has full row rank, so the matrix AAT is positive definite; because Hg is
positive definite, so is AH−1

g AT. Therefore det J 6= 0. 2

Lemma 4.14 f is differentiable on U .

Proof: The objective function is the sum of the quadratic function
∑ ‖vi‖2, which has a

positive definite (constant) Hessian, and additional convex terms, and therefore assumption (a)
of Lemma 4.13 holds, as well as the second half of assumption (d). The feasible domain
Ω is defined by the inequalities (4.8), and because the inequalities are strict, Ω is an open
set, so assumption (b) holds. The problem-definition data A and b are defined by the linear
constraints (4.9) and (4.10). Both are clearly continuously differentiable, verifying the first
half of assumption (d). Assumption (e) follows from the existence of an infinitesimal motion
(Theorem 4.5).

It only remains to check assumption (c), the linear independence of the equations (4.9). We
have to check whether the system (4.9) has a solution for any choice of right-hand sides other
than 0. As argued in the proof of Lemma 4.8, there is always a vertex i that is incident to at
most two bars {i, j}, {i, k}, and moreover, these two bars cannot be parallel. The corresponding
unknown vector vi appears in at most two equations in which the scalar products with two
vectors pi − pj and pi − pk are taken; because these vectors are not parallel, there is always a
solution for vi regardless of the values of the other variables. 2

4.4.2 Solving the Differential Equation and Proving Theorem 4.1

Differentiability of f on U is sufficient to ensure that the initial-value problem

d

dt
p(t) = f(p(t)), p(0) = p0 (4.12)

has a (unique) maximal solution p(t), 0 ≤ t < T , that cannot be extended beyond some positive
bound T ≤ ∞; see for example [Wal96, Section II.XXI]. This means that one of three cases
occurs:
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(a) p(t) exists for all t, i.e., T =∞.

(b) T is finite, and p(t) becomes unbounded as t→ T .

(c) T is finite, and p(t) approaches the boundary of U as t→ T .

The last case (c) is the case we want: at the boundary of U , some angle becomes straight,
and we can reduce the linkage. Case (a) is the situation that most intuitively must be avoided:
the motion of the framework slows down and never reaches the limit of an outer-convex con-
figuration. Case (b) is another situation that must be avoided, arising only with multiple
disjoint components: the components could repel and fly away from each other faster than they
straighten or convexify, thus never reaching an outer-convex configuration.

Case (a) can be excluded very easily. By assumption, the bar-and-strut framework GA(p)
has some strut {i, j} between two points in the same component of the bar framework; their
distance increases at least with rate 1, by (4.8), but it is bounded from above because i and j
are linked by a sequence of bars. It follows that the solution cannot exist indefinitely and T
must be finite.

If there is a line L that separates the components of the arc-and-cycle set A, this partitions A
into two nonempty sets, so by keeping the two sets separated they can be treated independently
and recursively. Unfortunately, the guarantee for the expansive property between different
members of the partition is lost. But for the purposes of proving Theorem 4.1 we may assume
that there is no such separation. Then the sum of the maximum diameters of each of the
components of A is a uniform a-priori bound on the diameter of A for all time. This eliminates
case (b).

Thus we are left with case (c) only. We show that p(t) converges as t → T . Observe that
all pairwise distances of vertices p(t) are monotonically increasing, and by condition (4.10) p1
and p2 are fixed during the motion. Thus, all other vertices are determined up to reflection
(through p1p2), so the whole configuration is determined up to reflection. Thus p(t) → p for
some configuration p as t → T . The configuration p is on the boundary of U and thus must
have some vertex with a straight angle. Then we inductively continue with a simpler linkage.
This completes the proof of Theorem 4.1. 2

In this proof, the easy exclusion of possibility (b), that the motion becomes unbounded,
depends crucially on the fact that the diameter of A is bounded, and the motion is stopped as
soon as there is a separating line. Boundedness is valid even without this precaution, as stated
in the following lemma.

Lemma 4.15 (Boundedness Lemma) Let p(t) be the motion given by the differential equa-
tion (4.12), where v = f(p) is given as the solution of the optimization problem (4.7–4.9). Then
the motion of every vertex i is bounded:

‖pi(t)− pi(0)‖ ≤
∫ t

0
‖vi(t)‖ dt ≤ KB,S,p0(t),

where KB,S,p0(t) is an explicit function of t that depends only on the combinatorial structure of
the arc-and-cycle set (B and S) and on the initial configuration p0.

Note that the definition of v does not involve the pinning constraints (4.10). The lemma implies
that it is not necessary to treat separated components separately. The proof of the lemma is
complicated, and it is given in Section 4.6.
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4.4.3 Alternative Approaches

There are many ways to select a local motion v among the feasible local motions whose existence
is guaranteed by Theorem 4.5. We have chosen one possibility in equations (4.7–4.10) that is
most convenient for the proof.

As a possible alternative approach, we might consider a linear programming problem, with
some arbitrary artificial linear objective function c, and some linear normalization condition to
ensure boundedness, pinning down some bar (i1, i2) ∈ B:

minimize
∑

i∈V ci · vi
subject to (vj − vi) · (pj − pi) = 0 for {i, j} ∈ B, (4.13)

(vj − vi) · (pj − pi) ≥ 0 for {i, j} ∈ S, (4.14)
∑

i∈V di · vi = 1, (4.15)

vi1 = vi2 = 0, (4.16)

We have given up strict expansiveness in (4.14), The set of vectors given by (4.13), (4.14), and
(4.16) forms a polyhedral cone C. Theorem 4.5 guarantees that there are nonzero solutions.
One can check that the pinning constraints (4.16) ensure that the cone is pointed. The idea
is now to use an extreme ray of the cone C for the motion. A vector d can be found which
ensures that the feasible set (4.13–4.16) is a bounded set. Any basic feasible solution of the
linear program will correspond to an extreme ray of the cone C. It will have a few inequalities
of (4.14) fulfilled with equality. The resulting framework obtained by inserting “artificial” bars
corresponding to the nonbasic inequalities of (4.14), will have a unique vector of velocities v
subject to the normalization constraint (4.15). This means that the framework is a mechanism,
allowing one degree of freedom; as the mechanism follows this forced motion, all nonfixed
distances will increase, at least for some time.

So one follows the paradigm of parametric linear programming: The optimal basic feasible
solution will continue to remain feasible as the coefficients pi in the constraints (4.14) change
smoothly. At some point, one of these constraints will threaten to become violated: this is
the time to make a pivot, exchanging one of the artificial bars for a new one which allows the
motion to be continued.

The above discussion has ignored several issues, such as possible degeneracy of the linear
program. However, this approach might be more attractive from a conceptual, as well as
practical, point of view.

Recently, Streinu [Str00] has found a class of such mechanisms, so-called pseudo-triangulations.
These structures have several nice properties; for example, they form a planar framework of
bars. Streinu [Str00] has proved that a polygonal arc can be opened by a sequence of at most
O(n2) motions, where each motion is given by the mechanism of a single pseudo-triangulation.

4.4.4 Comparison of Approaches

The approach based on mechanisms might avoid some of the numerical difficulties associated
with solving the optimization problem (4.7–4.9). For example, consider a spiral n-bar arc
winding around a unit square in layers of thickness ε (Figure 4.11). Basically, a strut deep
inside the spiral cannot increase in length quickly before an outer strut increases significantly.
But in the solution of (4.8–4.9), the inner strut lengths must increase at unit speed; a rough
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estimate shows that this causes the outermost vertex to move with an exponential speed of at
least (1/ε)n/4, as ε → 0. On the other hand, the “natural” solution of unwinding the spiral
one bar at a time fits nicely into the setup of mechanisms and the parametric linear program
approach.

ε

1

Figure 4.11: An arc that is numerically difficult to unfold.

Our proof has certain nonconstructive aspects: the direction v of movement is specified
implicitly as the solution of an optimization problem, and the global motion arises as the
solution of a differential equation. Both of these items are numerically well-understood, and
our approach lends itself to a practical implementation. Indeed, we implemented our approach
to produce animations such as Figure 2.2. However, this does not necessarily lead to a finite
algorithm in the strict sense. The optimization problem (4.7–4.9), having an objective function
which is rational, can in principle be solved exactly by solving the system h(p, x, λ) = 0 of
algebraic equations as in Lemma 4.13. The differential equation cannot be solved explicitly,
but it may be possible to bound the convergence and solve the differential equation up to a
given error bound.

Because the motions of a mechanism are described by algebraic equations, Streinu’s algo-
rithm leads to a finite algorithm for a digital computer, at least in principle. It remains to
be seen how a practical implementation competes with our approach; in any case, as an algo-
rithm for a direct realization of the motion by a mechanical device, Streinu’s algorithm appears
attractive.

On the other hand, our nonlinear programming approach might be preferable because it
produces a “canonical” movement. As a consequence of this, any symmetry of the starting
configuration is preserved (see Corollary 4.16).

4.5 Additional Properties and Related Problems

4.5.1 Symmetry

We show that the deformation that we have defined in Section 4.4 preserves any symmetries
that the original configuration might have. We say that the arc-and-cycle set A has some group
H of congruences of the plane as symmetry group if each element of H permutes the vertices
and edges of A.
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Corollary 4.16 If an arc-and-cycle set has a symmetry group H, then there is a piecewise-
differentiable proper motion to an outer-convex configuration; the motion is expansive until the
linkage becomes separated, and the symmetry group H is preserved during the motion.

Proof: Because A has finitely many vertices and edges, H must be finite, so the Affine Fixed
Point Theorem implies that there must be a point fixed by all elements of H. Let this point be
the origin, and let p1 be any vertex of the configuration distinct from the origin. Consider the
infinitesimal motion defined by the conditions (4.7), (4.8), and (4.9) but not (4.10). There is a
unique solution v to this minimization problem. This solution must be symmetric with respect
to the symmetry group H. If not, then the action of some element of H takes v to another
distinct solution say v′, contradicting the uniqueness of the solution. There is now a unique
infinitesimal rotation that we can add to v so that p1 and v1 are parallel. This still maintains
the symmetry of the infinitesimal motion v. Now it is clear that the limit exists as before in
the proof of Theorem 4.1, and the symmetry of H is preserved. 2

4.5.2 Increasing Area

A natural question is whether every expansive motion increases the area bounded by each
polygonal cycle. The answer turns out to be yes, but the proof is difficult from elementary
methods. A simple example that helps motivate why this problem is nontrivial is an obtuse
triangle: if the base edge increases in length (as a strut) and the others remain the same length
(as bars), then the area decreases. The cycle of bars in a polygonal cycle is therefore crucial
but difficult to exploit except with our theory of expansive motions.

First we show how to extend any given expansive infinitesimal motion to any point in the
plane, which is of interest in its own right.

Lemma 4.17 Consider an infinitesimal motion v on points p1, . . . ,pn in Rd, and suppose
that the motion is expansive, i.e., (pi − pj) · (vi − vj) ≥ 0 for all i, j. Then the infinitesimal
motion v can be extended to another point p0 in Rd and remain expansive. Furthermore, the
new expansiveness inequalities are all strict unless p0 is in the convex hull of a subset of points
on which the original infinitesimal motion is trivial, i.e., describes a rigid motion.

Proof: We have two proofs of this statement: one proof is based on a direct calculation; the
second proof is not so straightforward, but it provides some geometric insight.

We first consider the case where we want to prove strict expansiveness. By the Farkas
lemma, the desired inequalities (v0 − vi) · (p0 − pi) > 0, can be fulfilled by some unknown
vector v0 if and only if the dual system

n∑

i=1

λi(p0 − pi) = 0 (4.17)

n∑

i=1

λivi · (p0 − pi) ≥ 0 (4.18)

λi ≥ 0
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has no solution except the trivial solution λ ≡ 0. Suppose for contradiction that a nontrivial
solution λ exists. Without loss of generality, we may assume

n∑

i=1

λi = 1.

Then we get from (4.17) a representation of p0 as a convex combination

p0 =
n∑

i=1

λipi. (4.19)

Substituting this into (4.18) yields

n∑

i=1

n∑

j=1

λiλj(vi · pj)−
n∑

i=1

λi(vi · pi) ≥ 0. (4.20)

On the other hand, multiplying the given inequalities

vi · pi − vi · pj − vj · pi + vj · pj ≥ 0 (4.21)

by −λjλj/2 and summing them over i, j = 1, . . . , n (including the trivial cases for i = j) yields

n∑

i=1

n∑

j=1

λiλj(vi · pj)−
n∑

i=1

λi(vi · pi) ≤ 0. (4.22)

By the assumption of the lemma, we have λi > 0 in (4.19) for at least two points pi and pj
whose distance expands strictly. This means that the corresponding strict inequality in (4.21)
will hold in (4.22) too, a contradiction to (4.20). This finishes the case when p0 does not lie in
the convex hull of some points which move rigidly.

In the other case, nonstrict expansiveness can be shown by a variation of the above argument.
Alternatively, we can appeal to Lemma 4.4 (or its higher-dimensional extension) and let the
point p0 move rigidly with the rigid point set in whose convex hull it lies. The resulting motion
is expansive; the distance from p0 to the other points will expand strictly, with the obvious
exception of the points with which it moves rigidly. This concludes the first proof of the lemma.

The other proof establishes a connection to tensegrity frameworks and is more intuitive.
However, we have to go through a sequence of steps to reduce the statement of the lemma to
the basic case that the points p1, . . . ,pn form the vertices of a simplex that contains the point
p0 in its interior.

We proceed by induction on the dimension d. There is nothing to prove in case d = 0. So we
assume the statement for 0, . . . , d−1 and d ≥ 1. The desired inequalities (v0−vi) ·(p0−pi) > 0
define open half spaces

Hi = {v0 | v0 · (p0 − pi) > vi · (p0 − pi)}.

This finite collection of half spaces is nonempty precisely if every set of d+1 of them is nonempty
by Helly’s theorem [DGK63]. So we first consider any subset of d+1 points p1,p2, . . . ,pd+1 of
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p. We consider the case when p1,p2, . . . ,pd+1 are affine-independent, i.e., they are the vertices
of a d-dimensional simplex σ in Rd.

If p0 is outside σ, then choose v0 in a direction along a normal to a hyperplane separating
p0 and σ, pointing away from σ. If the magnitude of v0 is large enough, then the desired
inequalities will be satisfied.

If p0 is interior to σ, suppose that the inequalities defined above do not have a solution.
Then if we look at the complementary half-spaces defined by

H−
i = {v0 | v0 · (p0 − pi) ≤ vi · (p0 − pi)},

they do have a solution. Let v = (v0,v1,v2, . . . ,vd+1) be a solution to those new inequalities.
Now v is an infinitesimal motion of the tensegrity that is obtained by having cables from p0
(whose lengths can only shrink) and the rest all struts as before. But it is easy to show that this
tensegrity has no infinitesimal motion in Rd. (For example, apply Theorem 5.2(c) of [RW81]
observing that the underlying bar framework has no infinitesimal motion, and there must be
a proper stress that is nonzero on all struts and cables. An explicit calculation of the proper
stress is given in [BC99]. The calculation is similar to the calculations (4.19)–(4.22) in the
first part of the proof, with λiλj being interpreted as stress.) So v0,v1,v2, . . . ,vd+1 must be a
trivial infinitesimal motion, which can only happen if the motion is trivial on all of σ.

If p0 lies in a proper face of σ or the vertices p,p1,p2, . . . ,pd+1 are not affine independent,
they lie in an affine (d− 1)-dimensional space S with all the points of p either in S or in one of
the open half-spaces defined S. Orthogonally project into S all of the vi that correspond to pi
that are in S. By the induction hypothesis, there is a vector vS in S such that it together with
the vertices in S is infinitesimally expansive with respect to the projected vi and hence the
vi themselves. It is strict unless p0 is in the convex hull of a simplex, where the infinitesimal
motion is trivial. Let vN be a large vector perpendicular to S pointing away from any other
points in p. If vN is large enough, v0 = vS+vN together with the other vectors v1,v2, . . . ,vd+1
will be expansive.

Thus in any case we see that there is a strict solution to the inequalities for p0,p1,p2, . . . ,pd+1
or p0 is in the convex hull of points where the infinitesimal motion acts as bars for all surround-
ing points. This concludes the second proof of the lemma. 2

Now we apply this lemma to prove that the area of a polygonal cycle increases by any
expansive motion. Using the lemma inductively, we can extend an expansive motion to any
finite set of points. Specifically, we apply Lemma 4.17 to the vertices of an appropriately chosen
triangulation of the region bounded by a polygonal cycle. (The triangulation introduces new
vertices in addition to the vertices of the polygonal cycle.) The following result can be found
in [BGR88]. (See also [BMR95, Epp97] for faster algorithms.)

Lemma 4.18 Any simple closed polygonal curve in the plane can be triangulated, introducing
extra vertices, such that all the triangles are nonobtuse, i.e., every angle is at most π/2.

There has been some interest in providing acute triangulations and subdivisions (in contrast
to nonobtuse triangulations) of various planar polygonal objects. For example, the column of
Martin Gardner [Gar60] (see also [Gar95a] and [Man60]) asks for a dissection of an obtuse
triangle, in which one angle equals π/2, into acute triangles, in which every angle is strictly less
than π/2. But we do not know of a result guaranteeing an acute triangulation for a general
polygon. Fortunately, the following is sufficient for the area-expanding property that we need:
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Lemma 4.19 Let v = (v1,v2,v3) be an infinitesimal motion of a nonobtuse triangle p =
(p1,p2,p3) such that for i 6= j,

(vi − vj) · (pi − pj) ≥ 0. (4.23)

Then the infinitesimal change in the area of triangle p is always nonnegative. Furthermore,
the infinitesimal change in the area is positive unless the infinitesimal flex v is trivial, i.e.,
no inequality in (4.23) is strict, or p is a right triangle and only the hypotenuse has a strict
inequality in (4.23).

Proof: Let the lengths of the sides of the triangle be denoted by a, b, c, and let the area of the
triangle be denoted by A. If we differentiate Heron’s formula

16A2 = 2(a2b2 + a2c2 + b2c2)− (a4 + b4 + c4)

and rearrange terms, denoting derivatives by a′, b′, c′, A′, we get

8AA′ = (b2 + c2 − a2)aa′ + (a2 + c2 − b2)bb′ + (a2 + b2 − c2)cc′. (4.24)

We can regard aa′, bb′, cc′ as the left hand side of (4.23). Each of the terms in parentheses in
(4.24) is nonnegative because p is nonobtuse. Thus A′ ≥ 0.

If p is an acute triangle and at least one of a′ > 0 or b′ > 0 or c′ > 0, then (4.24) is positive,
and thus A′ > 0. Suppose p is a right triangle and c represents the length of the hypotenuse.
If at least one of a′ > 0 or b′ > 0, then (4.24) is positive, so A′ > 0. 2

Note that with a right triangle it is possible for the first derivative of the length of the
hypotenuse to be positive while the first derivative of the length of the two legs is 0, and in this
case the first derivative of the area will still be 0. This is the reason for the condition on the
legs of the triangle.

Theorem 4.20 Any smooth expansive noncongruent motion of a simple closed polygonal curve
C in the plane, fixing the lengths of its edges, must increase the area of the interior of C during
the motion.

Proof: Consider the vector field vt, 0 ≤ t ≤ 1 defined as the derivative at each vertex of C at
time t. Apply Lemma 4.18 to find a triangulation T of the area bounded by C with all triangles
nonobtuse. Apply Lemma 4.17 to extend the vector field to the vertices of T .

To get a strictly increasing area, we have to show that the triangulation T has an acute
triangle with an edge interior to C, or a right triangle with a leg interior to C. Otherwise, T
would be a single triangle, or it would exclusively consist of right triangles with both legs on C,
hence it would be a convex quadrilateral with two opposite corners having right angles. These
cases are excluded because a triangle or a convex quadrilateral (or any convex polygon) does
not have an expansive noncongruent motion.

So we have established that T must have an acute triangle with an edge interior to C or a
right triangle with a leg interior to C. Because the motion is expansive and the derivative of at
least one of those lengths must be positive for all but a finite number of times, the derivative of
the area of at least one of those triangles must be strictly positive, and they all are nonnegative
by Lemma 4.19. So the derivative of the area bounded by C must be positive for all but a finite
number of times 0 ≤ t ≤ 1. Thus the area must strictly increase. 2
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4.6 Expansive Motion for Several Components

The motion described so far is expansive in each component, but may not expand the distance
between vertices on different components once those components separate. In this final section
we prove the following stronger version of Theorem 4.1 that guarantees a strictly expansive
motion for multiple components even after the components separate. This result is attractive
because it allows us to specify a canonical motion all the way to completion. Unfortunately,
the proof is long.

Theorem 4.21 Every arc-and-cycle set has a piecewise-differentiable proper motion to an
outer-convex configuration that is strictly expansive throughout the motion.

Proof: As mentioned in Section 4.4.2, the motion is defined in the same way as for Theorem 4.1,
except that the explicit pinning constraint (4.10) is removed from the definition of v = f(p).

As in the case of Theorem 4.1, we know that the initial value problem (4.12) has a unique
maximal solution p(t), 0 ≤ t < T , that cannot be extended beyond T , and we have T < ∞.
We have to show that, for t → T , the configuration p(t) converges to a configuration on the
boundary of U . From the Boundedness Lemma (Lemma 4.15 in Section 4.4.2), whose proof is
given below, we conclude that the monotone limit

Ki := lim
t→T

∫ t

0
‖vi‖ dt

exists. Therefore, for all t2 ≥ t1 ≥ t0, we have

‖pi(t2)− pi(t1)‖ ≤
∫ t2

t1

‖vi(t)‖ dt ≤ Ki −
∫ t0

0
‖vi(t)‖ dt.

The last bound goes to zero as t0 → T , and therefore pi(t) converges. The limit configuration
must lie on the boundary of the domain U because otherwise the solution of (4.12) could be
extended beyond T . 2

The rest of this section proves the only remaining aspect: the Boundedness Lemma (Lemma 4.15
in Section 4.4.2). That is, we would like to show that, under the expansive motion given by the
optimization problem (4.7–4.9), the motion of individual points is limited.

Before embarking on the proof, let us consider a possibly difficult situation, which the proof
has to handle. This example may aid the reader in appreciating the arguments of the proof.

We know that the distances change monotonically, and therefore their total change is
bounded if the distances remain bounded. However, it is conceivable that the points move
back and forth without increasing the distances too much. Consider three collinear points p1,
p and p2 on a horizontal line; see Figure 4.12. If the point p wiggles vertically up and down
with a small and decreasing amplitude, one can maintain an expansive motion where all dis-
tances remain bounded and yet p moves on a path of infinite length. More precisely, we move
p repeatedly up and down, each time returning to its original location, with the amount of
vertical motion decreasing harmonically: 1, 1/2, 1/3, 1/4, etc. Suppose the distance between
p and both p1 and p2 is initially d1 = 1, and after k− 1 wiggles is dk ≥ 1. Then when p moves
up 1/k units, the distance between p and pi increases from dk to

dk+1 =
√

d2k + 1/k2 = dk +
1

2dkk2
+O

(
1

d3kk
4

)

≤ dk +
1

k2
+O

(
1

k4

)

.
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When p moves back down 1/k units, we move p1 left and move p2 right by this amount, to
keep the motion expansive. After infinitely many wiggles, the distance between p and pi is at
most

∞∑

k=1

(√

d2k + 1/k2 − dk

)

≤
∞∑

k=1

(
1

k2
+O

(
1

k4

))

= O(1)

while the total motion of p is
∞∑

k=1

1

k
=∞.

This conceivable situation must be avoided.

1/k

p2pp1
dk

√

d2
k + 1/k2

Figure 4.12: Wiggling point p vertically up and down by harmonic distances
allows p to travel infinitely while pushing p1 and p2 away by only a bounded
amount.

We may get arbitrarily close to this situation if all points are very nearly collinear. We can
however get a quantitative estimate of the motion by placing bounds on the minimum width
and on the diameter of the point set. If the angles in the triangle p1pp2 are not arbitrarily
small, the motion of p relative to p1 and p2 can be bounded in terms of the increase of pairwise
distances.

4.6.1 Bounding the motion in terms of angles and distance changes

We give two geometric lemmas that allow us to bound the motions in terms of quantities that
can only change monotonically.

Lemma 4.22 Let p1, . . . ,pn be the sequence of vertices of a component with the edges of fixed
length ‖pj − pj+1‖ = `j,j+1 for j = 1, . . . , n − 1. (These constraints do not include the edge
from pn to p1 in the case of a polygonal cycle.) Say p1 and p2 are pinned, i.e., v1 = v2 = 0.
Let θj be the internal angle at vertex j (0 < θj < π; we disregard the orientation of the angles).
For any motion that preserves the lengths `j,j+1, let θ

′
j denote the derivative of θj with respect

to time, and let vk denote the derivative of pk with respect to time. Then, for k = 2, . . . , n,

‖vk‖ ≤ (`1,2 + · · ·+ `k−1,k) · (θ′2 + · · ·+ θ′k−1)

Proof: Using complex notation,

pj+1 − pj
`j,j+1

=
pj−1 − pj
`j−1,j

· exp(±θji).

Taking derivatives gives

vj+1 − vj
`j,j+1

=
vj−1 − vj
`j−1,j

· exp(±θji) +
pj−1 − pj
`j−1,j

· exp(±θji) · (±θ′ji).
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Taking the norm of both sides yields

‖vj+1 − vj‖
`j,j+1

=
‖vj−1 − vj‖

`j−1,j
·| exp(±θji)|
︸ ︷︷ ︸

=1

+
‖pj−1 − pj‖

`j−1,j
︸ ︷︷ ︸

=1

· | exp(±θji)|
︸ ︷︷ ︸

=1

·|θ′ji| =
‖vj−1 − vj‖

`j−1,j
+|θ′j |.

Applying this fact recursively,

‖vj+1 − vj‖
`j,j+1

≤ ‖vj−1 − vj‖
`j−1,j

+ |θ′j| ≤ · · · ≤ |θ′2|+ · · ·+ |θ′j|,

and thus

‖vj+1 − vj‖ ≤ `j,j+1 · (|θ′2|+ · · ·+ |θ′j|) ≤ `j,j+1 · (|θ′2|+ · · ·+ |θ′k−1|),

for j ≤ k. Applying induction we obtain the desired result. 2

The above lemma works for only a single component. For disconnected components, we want
to bound the speed of motion v in terms of distance changes. However, it is always possible to
move the point set as a whole without changing any distances at all. Therefore we will consider
a modified motion in which one vertex p1 is fixed (“pinned”). Another vertex p2 remains on a
fixed line through p1, preventing the complete set from spinning. This modification corresponds
to adding a rigid motion of the point set p to the given velocities v. It does not change the
lengths `ij or their derivatives, (vi − vj) · (pi − pj).

The width of a set of points is the minimum width of a strip (infinitely long rectangle)
containing the set.

Lemma 4.23 Consider a set p1, . . . ,pn of n ≥ 2 points with distances `ij = ‖pi−pj‖, moving
with velocities vi = p′i under an expansive motion: `′ij ≥ 0. Denote the initial width by w.
Without loss of generality, we assume that the diameter D is equal to `12. We normalize the
motion by pinning p1 and the direction of the axis from p1 to p2. In other words, we assume
that v1 = 0 and that v2 is parallel to p2 − p1. Then, for every k ∈ {1, . . . , n},

‖vk‖ ≤ C0 ·
∑

i<j

`′ij ,

where C0 = 666D3/w3.

The proof of this lemma is tedious, and delayed to Section 4.6.5 at the end of this chapter.

4.6.2 Constant Quantities

We define the following constants. We denote by D0 the maximum sum of the bar lengths
in a single component of the arc-and-cycle set. This is an upper bound on the diameter of a
component. As we shall see, D06

n−1, denoted henceforth as Dmax, is an upper bound on the
distance between two points in the same cluster of components (a notion defined in the next
subsection). Let m0 (0 < m0 ≤ 1) be a lower bound on the distance between any two different
components throughout the motion (achieved either as a distance between two vertices or as
a distance from a vertex to an edge). Let m1 (0 < m1 ≤ 1) be a lower bound on the distance
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between any two vertices (in the same component or in different components) throughout the
motion. Because these distances can only increase during the expansive motion, we just need
to choose m0 and m1 smaller than the minimum distance between two different components or
between two vertices in the initial configuration.

The constant C = 5328D3max/m
3
0 = 8·666D3max/m30 will play an important role in Lemma 4.27

and subsequently.

4.6.3 Combining components into clusters

In the proof we distinguish between components that are “close” to each other or even entangled
within each other and components that are separated. Namely, we call two nonempty sets of
points A and B well-separated if they can be separated by a line, and moreover, the two inner
common tangents separating A and B form an angle less than 60◦. See Figure 4.13(a).

D

4D

6D

60◦
D

<60◦

(a) (b)

Figure 4.13: (a) Two well-separated clusters. (b) Inductive proof of
Lemma 4.24. D = D06

k−2 denotes the bound on the diameter of the two sub-
clusters.

We now define a clustering procedure that will combine the components into clusters. (This
procedure is similar to bottom-up hierarchical clustering [Eve93, HJ97], except that we pay
no attention to the order in which we merge clusters.) We start with each component as a
separate cluster. Whenever two clusters are not well-separated, we merge them into a single
cluster. We repeat this until we end up with a single cluster or with a set of clusters that are
pairwise well-separated (because otherwise we would perform another merge). The order in
which we merge clusters has no effect on the outcome, because merging clusters may destroy
well-separated pairs but never creates them, and hence only creates mergeable pairs and never
destroys them. However, the clustering may change over time as the framework moves.

Lemma 4.24 A cluster with k components has diameter at most D06
k−1.

Proof: By induction on k. Because a single component is connected, the case k = 1 follows.
A cluster with k ≥ 2 components results from merging two clusters of at most k−1 components
that are not well-separated. By induction, these two clusters are contained in two disks of radius
at most D06

k−2. If the distance between the disk centers were bigger than 4 ·D06k−2, the two
sets would be well-separated; see Figure 4.13(b). Hence the union of the two circles, which
contains the cluster, has diameter at most (2 + 4) ·D06k−2 = D06

k−1. 2

So the quantity Dmax = D06
n−1, which has already been introduced, is indeed an upper

bound on the maximum possible distance between two points in the same cluster.
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Lemma 4.25 A cluster with at least two components has width at least m0/2.

Proof: Assume for contradiction that a cluster with at least two components lies in a strip of
width less than m0/2, which we can without loss of generality assume to be horizontal, as in
Figure 4.14. Consider any two components in the cluster. By the definition of m0, the distance
between these two components is at least m0 > m0/2. Hence, there must be a vertical line
separating the two components. Consider one of the two inner common tangents. The segment
between the tangent points has length at least m0 and lies in the strip. Therefore the angle
between the tangent and the horizontal axis is less than 30◦, and the same is true for the other
tangent. It follows that any two components in the strip are well-separated, and therefore they
do not belong to the same cluster. 2

<30◦

≥ m0
< m0/2

<30◦

Figure 4.14: Proof of Lemma 4.25: two components in a thin strip.

Lemma 4.26 Let p1 ∈ V1 and p2 ∈ V2 be points in two well-separated clusters V1 and V2, and
let c̄(1) and c̄(2) denote the center of gravity of the vertices in V1 and V2, respectively. Then the
angle between the vectors p2 − p1 and c̄(2) − c̄(1) is at most 60◦.

Proof: Immediate from the definition of well-separated, because the center of gravity of a
cluster is within the convex hull of the cluster. 2

4.6.4 Rounding up the proof

Using Lemmas 4.22 and 4.23, we can bound all velocities vi in terms of the sum of `′ij over
all pairs (pi,pj) in the same cluster (plus some θ ′ terms to accommodate single-component
clusters). These quantities cannot grow indefinitely: we have an upper bound on the diameter
of a cluster.

Lemma 4.27 Let V1 denote the set of vertices of a cluster and T1 ⊆ V1 the set of degree-2
vertices, with angles θj for j ∈ T1, 0 < θj < π. Let `ij denote the distance between vertices
i, j ∈ V1. Given an expansive motion of all vertices, let θ ′j denote the derivative of θj with
respect to time, j ∈ T1, let `′ij denote the derivative of `ij with respect to time, and let vj
denote the derivative of a vertex pj with respect to time, j ∈ V1. If the motion is pinned as in
Lemma 4.22 (for the case of a single-component cluster) or Lemma 4.23 (for a multi-component
cluster), then, for every k ∈ V1,

‖vk‖ ≤ C ·
∑

i,j∈V1

`′ij +D0 ·
∑

i∈T1

θ′i

where C = 5328D3max/m
3
0 = 8 · 666D3max/m30.
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Proof: The first term handles a cluster with at least two components by Lemma 4.23. We
have width w ≥ m0/2 by Lemma 4.25 and diameter D ≤ Dmax by Lemma 4.24. The second
term accounts for a single-component cluster and follows from Lemma 4.22. 2

Everything so far has been generic to expansive motions. Now we will use the precise form
of (4.7–4.9).

Lemma 4.28 For an arc-and-cycle set, let T ⊆ V denote the set of degree-two vertices, and let
θj denote the angle at vertex j ∈ T , 0 < θj < π. For a motion pj(t) of this arc-and-cycle set,
let `ij = ‖pi(t) − pj(t)‖ denote distances between vertices, let D(t) = max{1,maxi,j∈V `ij(t)}
denote the diameter at time t raised to be at least one, and let ¯̀

ij(t) = min{`ij(t), Dmax} denote
the “truncated” distances. Then the solution vi of the minimization problem (4.7–4.9) (defining
a motion of the arc-and-cycle set) is bounded by

‖vk‖ ≤
6n

m0m1



C
∑

i,j∈V

¯̀′
ij +D0

∑

i∈T

θ′i + 2



 ·D(t)

Proof: The strategy of the proof is as follows:

1. Start with vi given by the optimization problem (4.7–4.9).

2. In each cluster separately, “normalize” (“pin”) vi as indicated in Lemma 4.27, yielding
“well-bounded” vi’s for each cluster.

3. Combine these pinned motions into an overall expansive motion by adding a vector to each
cluster that ensures that the clusters will fly away from each other. We have control over
those vectors, and we guarantee that the overall motion is still well-bounded (bounded in
terms of the sum of `′ij over all pairs i, j in the same cluster).

4. Thus we have shown the existence of a well-bounded solution. Using the minimizing
property of the optimization problem we conclude that its solution is also well-bounded.

Here are the details. Assume that there are K clusters with vertex sets V1, . . . , VK . We first
consider the motion v̂(r) that is obtained from v by restricting it to a cluster Vr and pinning it
as in Lemma 4.22 or 4.23. We know that

‖v̂(r)k ‖ ≤ C ·
∑

i,j∈Vr

¯̀′
ij +D0 ·

∑

i∈Tr

θ′i

︸ ︷︷ ︸

denoted by H(r)

(4.25)

for all k ∈ Vr.
By construction, all distance increases ‖v̂(r)i − v̂(r)j ‖ satisfy the conditions (4.8–4.9) for i, j

in the same cluster Vr. We will now add a vector to the motion of each cluster in order to
ensure that the expansion (4.8) also holds for points in different clusters. Intuitively, we want
the clusters to “fly apart,” but in a controlled manner.

Let c̄(r) denote the center of gravity of cluster r. We set

v̄k := 2 · v̂(r)k +E · (c̄(r) − p1) (4.26)
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for k ∈ Vr, with an arbitrarily chosen fixed vertex p1 and where E is defined by

E = 2
(

H(1) +H(2) + · · ·+H(K) + 2
)

/m0 > 4.

Note that m0E/2 is the value in parentheses in the bound of Lemma 4.28 that we want to

prove. For vertices in the same cluster, we get v̄i− v̄j = 2(v̂
(r)
i − v̂(r)j ), and hence the constraint

(vi − vj) · (pi − pj) ≥ ‖pi − pj‖ (4.8)

is “twice over-fulfilled”:
(v̄i − v̄j) · (pi − pj) ≥ 2 · ‖pi − pj‖

So we get the penalty term

[
(v̄i − v̄j) · (pi − pj)− ‖pi − pj‖

]−1 ≤
[
‖pi − pj‖

]−1 ≤ 1/m1. (4.27)

We claim that this inequality also holds for points i and j in two different clusters Vr and Vs.
We have

(v̄i − v̄j) · (pi − pj) = (v̂
(r)
i − v̂(s)j ) · (pi − pj) +E

(

c̄(r) − c̄(s)
)

· (pi − pj)

≥
∣
∣
∣E
(

c̄(r) − c̄(s)
)

· (pi − pj)
∣
∣
∣−

∣
∣
∣

(

v̂
(r)
i − v̂(s)j

)

· (pi − pj)
∣
∣
∣

≥ E · 1
2
‖c̄(r) − c̄(s)‖ · ‖pi − pj‖
︸ ︷︷ ︸

by Lemma 4.26

−(H(r) +H(s)) · ‖pi − pj‖

≥ ‖pi − pj‖
[

Em0/2 − (H(r) +H(s))
]

≥ 2 · ‖pi − pj‖

by the definition of E. So v̄ is indeed a feasible solution to (4.8–4.9), and (4.27) holds for all
struts {i, j} ∈ S. From (4.25) and ‖c̄(r) − p1‖ ≤ D(t) we obtain the bound

‖v̄k‖ ≤ 2H(r) +E ·D(t) ≤ Em0 +E ·D(t) ≤ 2E ·D(t)

because we defined D(t) to be at least 1.
From this and from (4.27), the objective function (4.7) for the solution v̄ that we have

constructed satisfies

∑

i∈V

‖v̄i‖2 +
∑

{i,j}∈S

[
(v̄i − v̄j) · (pi − pj)− ‖pj − pi‖

]−1 ≤ n · (2E ·D(t))2 + n2/m1

≤ n2 · (2E ·D(t))2 · 1

m1
+

n2

m1
· E2 ·D(t)2 =

5n2

m1
·E2 ·D(t)2 ≤

(
3n

m1
· E ·D(t)

)2

. (4.28)

It follows that the optimal solution v, from which we started, must also satisfy this inequality.
Therefore we obtain,

∑

i∈V

‖vi‖2 ≤
∑

i∈V

‖vi‖2 +
∑

{i,j}∈S

[
(vi − vj) · (pi − pj)− ‖pj − pi‖

]−1 ≤
(
3n

m1
·E ·D(t)

)2

.
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and hence, for every k ∈ V ,

‖vk‖ ≤
√∑

‖vi‖2 ≤
3n

m1
· E ·D(t) 2

Corollary 4.29 D(t) ≤ D(0)eF (t) where F (t) = 12n
m0m1

(Cn2Dmax +D0nπ + 2t).

Proof: By noting the relation D′(t) ≤ 2maxk∈V ‖vk‖, we can apply the previous lemma to
obtain an upper bound on D′(t)/D(t) = d

dt logD(t):

D′(t)

D(t)
≤ 6nE

m1
≤ 12n

m0m1



C
∑

i,j∈V

¯̀′
ij +D0

∑

i∈T

θ′i + 2



 .

Integrating and noting the bounds ¯̀
ij ≤ Dmax and θi ≤ π, we obtain

logD(t)− logD(0) =

∫ t

0

D′(t)

D(t)
dt ≤ 12n

m0m1

(
Cn2Dmax +D0nπ + 2t

)
. 2

We finally establish the result of the Boundedness Lemma (Lemma 4.15).

Corollary 4.30 The path length of a vertex pk until time T is bounded by

∫ T

t=0
‖vk‖ dt ≤

D(0)F (T )

2
eF (T )

Proof: This follows from Lemma 4.28 and the previous corollary:

∫ T

0
‖vk(t)‖ dt ≤

∫ T

0

3nE

m1
D(t) dt ≤

∫ T

0

3nE

m1
dt ·D(T ) ≤ F (T )

2
·D(0) · eF (T ) 2

Remark: By a different choice of shifting vectors in (4.26) instead of E · c̄(r) for each cluster
it is possible to avoid the exponential “blow-up” in the above bounds.

4.6.5 Proof of Lemma 4.23

Unfortunately, the proof of Lemma 4.23 is quite elaborate. It is based on the special case of
three points, which is elementary.

Lemma 4.31 Consider a triangle with sides a, b, c bounded by m ≤ a, b, c ≤ D and angles
α, β, γ that are bounded by sinα, sin β, sin γ ≥ µ > 0. If the sides of the triangle are expanded
with velocities a′, b′, c′ ≥ 0, then the change of the angles is bounded by

|α′|, |β′|, |γ′| ≤ 2D

m2µ
· (a′ + b′ + c′)

Proof: The cosine law gives − cosα = −(b2 + c2 − a2)/(2bc) = 1
2 [a

2/(bc) − b/c − c/b]. Taking
the derivative and omitting negative terms on the right-hand side leads to

α′ sinα ≤ 1

2

(
2aa′

bc
+
bc′

c2
+
cb′

b2

)

≤ 1

2

(
2a′ + c′ + b′

) D

m2
≤
(
a′ + c′ + b′

) D

m2
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and thus, α′ ≤ (a′ + b′ + c′) ·D/(m2µ). We get the same upper bound for β ′ and γ′. To obtain
a lower bound, note that α+ β + γ = π and hence α′ = −β′ − γ′ ≥ −(a′ + b′ + c′) · 2D/(m2µ).
By symmetry, the same bound holds for the derivatives of the other two angles. 2

Proof (Lemma 4.23): Let p3 be the point whose distance h from the segment p1p2 is largest.
By assumption, w/2 ≤ h ≤

√

3/4 ·D. So the points are contained in a rectangle K of length
D and width 2h, see Figure 4.15. Without loss of generality, we draw p1p2 horizontal from left
to right and p3 above p1p2.

h ≥ w/2

`12 = D

p1

p2

p3

α1

α3

α2

R2

R3

R1

K

h

Figure 4.15: Proof of Lemma 4.23.

p1 p2

p3

R2

h

h/9

p0 = KUL KUR

KLR

U

LX

pj

δ

γ1

γ2 = βj

`1j

I

α1

Figure 4.16: The triangle p3p1pj associated with a point pj ∈ R2 in the proof
of Lemma 4.32.

We use the triangle p1p2p3 with angles α1, α2, α3 as a “reference frame,” and we measure
the motion of the other points with respect to this frame. In particular, every point will be
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assigned to one of the sides of the reference triangle: We partition the rectangle K into three
regions R1, R2, R3 by extending the three angular bisectors from the incenter into the direction
away from the vertices from which they emanate. Ri is the region containing the point pi, for
i = 1, 2, 3. Now, every point pj is assigned to the triangle side which lies opposite to the region
in which it lies. For example, a point pj in region R1 is assigned to p2p3. We use this side as
a basis of the triangle p2p3pj that is associated with pj , and we select one of the angles at the
basis as the reference angle βj for pj . If pj lies in R1, we select the angle at p2 in the triangle
p2p3pj . If pj lies in R2, we take the angle at p1 in the triangle p3p1pj as the reference angle
βj for pj , see Figure 4.16; and for pj in R3, βj is the angle at p1 in the triangle p1p2pj . Note
that these assignments are not completely symmetric. The rationale is to select a reference
angle incident to p1 or p2.

The idea is that the triangle associated with each point cannot have arbitrarily small angles,
and hence produces a “firm grip,” tying the point to its base: The point cannot move an
unlimited distance without increasing the pairwise distances `ij by a noticeable amount.

Lemma 4.32 The reference triangle p1p2p3 satisfies the assumptions of Lemma 4.31: The
sines of the angles are at least µ := w/(3D) and the sides are at least m := w/2.

The triangle associated with each point satisfies the assumptions of Lemma 4.31: The sines
of the angles are at least µ := w/(20D) and the sides are at least m := w/4.

This lemma is not difficult to see but the precise proof is a bit technical and it is given at
the end. Lemmas 4.31 and 4.32 allow us to conclude:

|α′
1|, |α′

3|, |α′
3| ≤

2D

(w/2)2 · w/(3D)
· (`′12 + `′23 + `′13) ≤

24D2

w3
· L,

with L :=
∑

i<j `
′
ij, and for every point pj :

|β′j | ≤
2D

(w/4)2 · w/(20D)
· L ≤ 640D2

w3
· L.

Now we can bound the motion of pj as follows. For pj ∈ R3, the angle βj between the
fixed ray p1p2 and the ray p1pj , and the length `1j determine the position of pj like polar
coordinates. We therefore have

‖p′j‖ =
√

(`1jβ′j)
2 + (`′1j)

2 ≤ `1j |β′j |+ `′1j

For pj ∈ R2, the situation is similar, except that the angle between the “x-axis” p1p2 and p1pj
is given by α1 − βj , see Figure 4.16:

‖p′j‖ ≤ `1j(|α′
1|+ |β′j |) + `′1j

For pj ∈ R1, the situation still more complicated, because the “origin” p2 of the coordinate
system moves at a speed of `′12. The angle between the “negative x-axis” p2p1 and p2pj is
given by α2 − βj .

‖p′j‖ ≤ ‖p′2‖+ ‖p′l − p′2‖ ≤ `′12 + `2j(|α′
2|+ |β′j |) + `′2j
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Putting everything together, we get for every j,

‖vj‖ = ‖p′j‖ ≤ L+D ·
(
24D2

w3
· L+

640D2

w3
· L
)

+ L =

(

2 +
664D3

w3

)

· L ≤ 666D3

w3
· L,

using D ≥ w. This concludes the proof of Lemma 4.23. 2

Finally, we have to prove Lemma 4.32. An elementary geometric fact is needed.

Lemma 4.33 In a triangle ABC with height hC through C, the distance of C from the angular
bisector g of the angle α at A is at least hC/2.

Proof: Let C ′ be the foot of hC , and let D be the point on g closest to C, see Figure 4.17.
Then C ′ and D lie on the circle over the diameter AC. The chords CD and C ′D are equal
since their peripheral angles at A are both equal to α/2. (If α > π/2, the peripheral angle over
C ′D is not α/2 but π−α/2, and for α = π/2 the equality of the chords follows directly.) From
the isosceles triangle CC ′D we get CD ≥ hC/2. 2

A

C

C ′

g

D

hC

α/2

α/2

B

Figure 4.17: Proof of Lemma 4.33.

Proof (Lemma 4.32): We first prove the lower bound on the lengths of the edges. The basis
edges p1p2, p2p3, and p3p1 all have lengths at least h ≥ w/2. By the construction of the three
regions, the point pj is separated from the point pi on its base segment (i = 1, 2, or 3) by the
angular bisector of the angle at pi in the triangle p1p2p3. From Lemma 4.33 it follows that
the distance pjpi is at least 1/2 times one of the three heights of the triangle p1p2p3. The
smallest height of this triangle is opposite to the longest edge, which is p1p2. This height is h,
and we obtain `ij ≥ h/2 ≥ w/4.

Now let us consider the angles. Note that it suffices to check the condition of Lemma 4.31
for the smallest angle: if α is the smallest angle in a triangle with angles α, β, γ, then α ≤
β, γ ≤ π − α, and hence sinβ, sin γ ≥ sinα.

The angle α1 in the triangle p1p2p3 is bigger than the angle between p1p2 and the ray from
p1 to the upper right corner KUR of the rectangle K:

sinα1 ≥
h√

D2 + h2
≥ h√

2D2
≥ w/2√

2 ·D
≥ w

3D

and similarly for α2. The angle α3 lies opposite to the longest edge of p1p2p3, and hence it
is the largest angle. So we have shown the length and angle bounds for the reference triangle
p1p2p3.
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Let us now consider the triangle associated with a point pj . We denote the basis angles of
the triangle by γ1 and γ2 and the angle at the apex pj by δ, see Figure 4.16. By construction
of the angular bisectors, an angle γj at the base is at least 1/2 times the respective angle αi in
the reference triangle p1p2p3. So we have sin γ1, sin γ2 ≥ sin αi

2 ≥ (sinαi)/2 ≥ w/(6D).
So the only angle which remains to be checked is the third angle δ at pj . If pj lies in R3, δ

lies opposite to the longest side of the triangle p1p2pj , and we are done.
In the remainder of the proof we show rather tediously that sin δ ≥ w/(20D) when pj ∈ R1

or pj ∈ R2. Let us consider a triangle p3p1pj with pj ∈ R2, see Figure 4.16. (The case pj ∈ R1
is symmetric.) Keeping pj and p1 fixed, δ is smallest when p3 moves on the upper side of the
rectangle K to the upper left corner p0 = KUL. (This position of p3 is hypothetical because `23
would be larger than D.) Keeping p1 and p0 fixed, the angle δ = ∠p1pp0 is a quasi-concave
function of p = pj as p moves inside K. (This means that the region in K where δ is bigger
than some given threshold is alway convex.) Hence the minimum value of δ on any line segment
occurs at one of its endpoints, and it suffices to check the lower bound for δ for the corners
of the region R2. More specifically, it is sufficient to check it for three points: (i) p = KUR,
the upper right corner of the rectangle K; (ii) p = KLR, the lower right corner of K; and (iii)
p = X, a point on the lower edge of K at distance h/9 from the lower left corner.

The other corners of R2 can be treated as follows: If p is the intersection U of the bisector
of α1 with the upper edge of K, then δ decreases as p moves right towards KUR. If the bisector
of α1 intersects the boundary of K in the right edge, then the intersection point lies on the
segment between KUR and KLR, and hence it is dominated by one of these points. (This
situation occurs for region R1 in Figure 4.16.) The incenter I can be treated in the same way
as U , by moving p horizontally to the right until it hits the right edge.

Another corner is the intersection L of the bisector of α3 with the lower edge of K. We
cover this case by showing that the point X lies in region R1. Therefore L lies on the segment
between X and KLR, and hence it is dominated by these two points. If the bisector of α3
intersects the boundary of K in the right edge, it is dominated by KUR and KLR. The bisector
cannot intersect the boundary of K in the left edge because of the point X.

Let us now consider the points p = KUR and p = KLR. By symmetry, p = KUR yields the
same angle δ = ∠p0pp1 as p = p2 and that cannot be the minimum because it lies between
KUR and KLR. For p = KLR, the sine law for the triangle p0pp1 with the angle δ = ∠p0pp1
gives

sin δ

h
=

sin∠p0p1p

p0p
=

D/
√
D2 + h2

√

D2 + (2h)2
≥ D√

2D2 ·
√
5D2

,

using h ≤ D. So we get

sin δ ≥ 1√
10
· h
D
≥ 1

2
√
10
· w
D
,

and the lemma holds in this case.
Let us finally consider the point X. Since h ≤

√

3/4 ·D, the point X lies on the lower edge
of K. We show that the distance of X from the ray p3p1 is smaller than the distance from
the ray p3p2, and therefore X lies in R1. The distance of X from the ray p3p1 is at most the
distance Xp1 =

√

1 + 1/81 · h < 1.0062h. The point on the ray p3p2 which is closest to X lies
either on the segment p3p2 or in the region to the right of the rectangle. In the latter case,
the distance is at least D − h/9 ≥ (

√

4/3 − 1/9)h > 1.043h, which is larger than Xp1. In the
former case, the distance between X and the segment p3p2 decreases if p3 or p2 are moved
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horizontally to the left. In the extreme cases, when p3 = KUL = p0 and `12 = D =
√

4/3 · h,
this distance can be calculated as > 1.439h, which is also larger than Xp1. A final calculation
show that the angle δ = ∠p0Xp1 satisfies sin δ > 0.055 > 1/20 ≥ w

20D , since w ≤ D, and the
proof is complete. 2
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Chapter 5

Conclusion

One contribution of this thesis has been to survey the results in the newly developing area of
folding and unfolding, which offers many beautiful mathematical and computational problems.
Much progress has been made recently in this area, but many important problems remain open.
For example, most aspects of unfolding polyhedra remain unsolved, and we highlight two key
problems in this context. The classic problem in the area is whether every convex polyhedron
can be cut along its edges and unfolded into a simple polygon. An intriguing related problem
is whether every nonconvex polyhedron, in which every edge is incident to exactly two faces,
can be cut along its surface and unfolded into a simple polygon.

The other contribution of this thesis is to prove that a planar linkage formed by a collection
of polygonal arcs and polygonal cycles of bars, none nested inside each other, can be folded into
any desired configuration while preserving the bar lengths and never crossing bars. This proof
consisted of two parts: (1) that a polygonal arc can be straightened and a polygonal cycle can
be convexified, and (2) that once a polygonal cycle is convex it can be folded into any other
convex configuration. Below we pose several open problems related to these results.

Algorithms for Unfolding Planar Linkages. The main result of this thesis is that every
linkage consisting of polygonal arcs and polygonal cycles can be folded into a configuration
in which every outermost arc is straight and every outermost cycle is convex. Our proof is
constructive in terms of the derivative of the motion, in the sense that the derivative of the
motion is given by a convex optimization problem for which there are reasonably efficient
algorithms. This property is better than an existential proof, but not as good as an algorithmic
proof. We are not ready to make claims about the existence of finite algorithms because of the
difficulty in proving theorems about solving such ordinary differential equations.

In particular, it remains open whether there is a finite algorithm to animate the “movie”
associated with our motion. More precisely, a finite animation algorithm should take a linkage
whose vertices are at rational coordinates, and compute the snapshot of the linkage at a given
rational time t during the motion such that each computed coordinate is within a given tolerance
ε of exact. The running time of the algorithm would of course depend on the encoding size of
the input linkage and t, and on ε, but should be finite in all cases.

We conjecture that such an animation algorithm exists for our motion, based on the practical
approach used to generate the animation in Figure 2.2. The difficulty is in approximating
solutions to the differential equation defined implicitly by the optimization problem (4.7–4.9),
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with guaranteed error bounds.
As described in Section 2.1.2.2, our theorem implies the existence of a finite sequence of

simple motions, each changing at most four vertex angles in an easy-to-compute fashion. Al-
though this sequence of motions is not strictly expansive, it is an even stronger notion of finite
algorithm, because it provides a finite, simple, and easy-to-compute description of the entire
motion. In principle, by avoiding complex algebraic barriers in the motion, this description
can avoid all ε tolerances, and compute all positions exactly on a machine supporting basic
arithmetic and roots.

The open question is whether such a sequence of simple motions can be computed in finite
time. Again we conjecture that a finite algorithm exists. Further, we suspect that the running
time (and output size) is pseudopolynomial in the encoding size of the input, that is, polynomial
in the unary encoding of the input. Note that the analogous problems for folding between two
convex configurations are solved in Chapter 3: we presented a linear-time algorithm on a real
RAM to compute a sequence of four-joint moves.

A related result by Streinu [Str00] is that a different expansive unfolding of arcs and cycles
can be achieved by a sequence of O(n2) algebraic motions obtained by adding bars to the
framework until only one degree of freedom remains. Algebraic curves can be approximated in
finite time, so in particular this result leads to a finite algorithm for the animation problem for
Streinu’s motion. Algebraic motions are not as simple as the ideal four-joint motions, but still
provide a relatively succinct description of the entire motion, and might also lead more easily
to a sequence of four-joint motions.

Tight Linkages. We have assumed the strict sense of simplicity, requiring two bars to inter-
sect only at common endpoints. Because of expansiveness, this property is preserved throughout
the motion. A natural problem is to consider what happens when the arc-and-cycle set is allowed
to touch but not properly cross itself. We conjecture that even in this case the arc-and-cycle
set can be brought to an outer-convex configuration.

Our methods do not directly apply in this case, because the obvious limiting process leads
to more than two bars in the arc-and-cycle set effectively meeting at a point. If we could prove
the existence of a strict infinitesimal motion from a self-touching position, however, we should
immediately fall into the normal scenario of an arc-and-cycle set that does not touch itself, and
the rest of the proof would go through.

Decision Problems. It is known that not every polygonal tree in 2D can be flattened, and
not every polygonal arc in 3D can be straightened. What is the complexity of deciding when
such unfoldings are possible? The only known algorithm is the general roadmap technique
for exploring connectivity of algebraic spaces [Can87, Can88] which uses polynomial space and
exponential time.

Via linear programming, our techniques allow detection of expansive motions. However,
there are 2D trees that can be flattened and 3D arcs that can be straightened but not by
expansive motions. The basic idea in constructing examples of such 2D trees and 3D arcs is to
take the locked examples in Figures 2.3 and 2.9 and change the parameters so that they are no
longer locked, but only barely so.

Equilateral 3D Linkages and Protein Folding. There are several connections between
linkage folding and protein folding that remain to be explored. Two attractive linkage problems
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arising in this context were raised in Section 2.1.6.1. Can every equilateral polygonal arc in 3D
be straightened? More generally, can every equilateral polygonal tree in 3D be flattened?

It seems difficult to attack these problems, because we have no footholds for a positive solu-
tion, and manual attempts at constructing counterexamples have so far failed. This situation is
similar to the former state of the planar arc-straightening and cycle-convexification problems,
before the ideas of expansiveness and tools from rigidity theory came into place. For 3D equi-
lateral linkages, however, our techniques of expansive motions do not seem to be of use: there is
an equilateral polygonal arc in 3D that has no expansive motion but can be straightened. The
example is essentially Figure 2.9 with the first and last bars trimmed to unit length. The lack of
an expansive motion can be verified by linear programming, and the existence of a straightening
motion has been established for all equilateral arcs with five bars [CJ98].
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[DGK63] Ludwig Danzer, Branko Grünbaum, and Victor Klee. Helly’s theorem and its
relatives. In Proc. Sympos. Pure Math., volume VII, pages 101–180. American
Mathematical Society, 1963.

[Dil90] Ken A. Dill. Dominant forces in protein folding. Biochemistry, 29(31):7133–7155,
August 1990.

89



[DLO01] Erik D. Demaine, Stefan Langerman, and Joseph O’Rourke. Short interlocked link-
ages. In Proceedings of the 13th Canadian Conference on Computational Geometry,
Waterloo, Canada, August 2001.

[DM01] Erik D. Demaine and Joseph S. B. Mitchell. Reaching folded states of a rectangular
piece of paper. In Proceedings of the 13th Canadian Conference on Computational
Geometry, Waterloo, Canada, August 2001.

[DO99] Erik D. Demaine and Joseph O’Rourke. Open problems from CCCG’99. In Pro-
ceedings of the 11th Canadian Conference on Computational Geometry, Vancouver,
Canada, August 1999. http://www.cs.ubc.ca/conferences/CCCG/elec_proc/

open.ps.gz.
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[Wal96] Wolfgang Walter. Gewöhnliche Differentialgleichungen. Springer-Verlag, Berlin,
6th edition, 1996. English translation: Ordinary differential equations, Springer,
New York, 1998.

[Wan97] Cheng-Hua Wang. Manufacturability-driven decomposition of sheet metal. PhD
thesis, Carnegie Mellon University, Robotics Institute, September 1997. Technical
report CMU-RI-TR-97-35.

[Weg93] Bernd Wegner. Partial inflation of closed polygons in the plane. Beiträge zur
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